Open Access

Analysis of Transient and Steady-State Behavior of a Multichannel Filtered-x Partial-Error Affine Projection Algorithm

EURASIP Journal on Audio, Speech, and Music Processing20072007:031314

DOI: 10.1155/2007/31314

Received: 28 April 2006

Accepted: 27 November 2006

Published: 18 January 2007

Abstract

The paper provides an analysis of the transient and the steady-state behavior of a filtered-x partial-error affine projection algorithm suitable for multichannel active noise control. The analysis relies on energy conservation arguments, it does not apply the independence theory nor does it impose any restriction to the signal distributions. The paper shows that the partial-error filtered-x affine projection algorithm in presence of stationary input signals converges to a cyclostationary process, that is, the mean value of the coefficient vector, the mean-square error and the mean-square deviation tend to periodic functions of the sample time.

[123456789101112131415161718192021]

Authors’ Affiliations

(1)
Information Science and Technology Institute, University of Urbino "Carlo Bo"
(2)
Department of Electrical, Electronic and Computer Engineering, University of Trieste

References

  1. Nelson PA, Elliott SJ: Active Control of Sound. Academic Press, London, UK; 1995.Google Scholar
  2. Douglas SC: Fast implementations of the filtered-X LMS and LMS algorithms for multichannel active noise control. IEEE Transactions on Speech and Audio Processing 1999,7(4):454-465. 10.1109/89.771315View ArticleGoogle Scholar
  3. Bouchard M: Multichannel affine and fast affine projection algorithms for active noise control and acoustic equalization systems. IEEE Transactions on Speech and Audio Processing 2003,11(1):54-60. 10.1109/TSA.2002.805642View ArticleGoogle Scholar
  4. Carini A, Sicuranza GL: Transient and steady-state analysis of filtered- x affine projection algorithms. IEEE Transactions on Signal Processing 2006,54(2):665-678.View ArticleGoogle Scholar
  5. Neuvo Y, Dong C-Y, Mitra SK: Interpolated finite impulse response filters. IEEE Transactions on Acoustics, Speech, and Signal Processing 1984,32(3):563-570. 10.1109/TASSP.1984.1164348View ArticleGoogle Scholar
  6. Werner S, Diniz PSR: Set-membership affine projection algorithm. IEEE Signal Processing Letters 2001,8(8):231-235. 10.1109/97.935739View ArticleGoogle Scholar
  7. Douglas SC: Adaptive filters employing partial updates. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 1997,44(3):209-216. 10.1109/82.558455View ArticleGoogle Scholar
  8. Doğançay K, Tanrikulu O: Adaptive filtering algorithms with selective partial updates. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 2001,48(8):762-769. 10.1109/82.959866View ArticleMATHGoogle Scholar
  9. Sicuranza GL, Carini A: Nonlinear multichannel active noise control using partial updates. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '05), March 2005, Philadelphia, Pa, USA 3: 109-112.Google Scholar
  10. Bjarnason E: Analysis of the filtered-X LMS algorithm. IEEE Transactions on Speech and Audio Processing 1995,3(6):504-514. 10.1109/89.482218View ArticleGoogle Scholar
  11. Tobias OJ, Bermudez JCM, Bershad NJ: Mean weight behavior of the filtered-X LMS algorithm. IEEE Transactions on Signal Processing 2000,48(4):1061-1075. 10.1109/78.827540View ArticleGoogle Scholar
  12. Shin H-C, Sayed AH: Mean-square performance of a family of affine projection algorithms. IEEE Transactions on Signal Processing 2004,52(1):90-102. 10.1109/TSP.2003.820077MathSciNetView ArticleGoogle Scholar
  13. Bouchard M, Quednau S: Multichannel recursive-least-squares algorithms and fast-transversal-filter algorithms for active noise control and sound reproduction systems. IEEE Transactions on Speech and Audio Processing 2000,8(5):606-618. 10.1109/89.861382View ArticleGoogle Scholar
  14. Mathews VJ, Sicuranza GL: Polynomial Signal Processing. John Wiley & Sons, New York, NY, USA; 2000.Google Scholar
  15. Strauch P, Mulgrew B: Active control of nonlinear noise processes in a linear duct. IEEE Transactions on Signal Processing 1998,46(9):2404-2412. 10.1109/78.709529View ArticleGoogle Scholar
  16. Das DP, Panda G: Active mitigation of nonlinear noise processes using a novel filtered-s LMS algorithm. IEEE Transactions on Speech and Audio Processing 2004,12(3):313-322. 10.1109/TSA.2003.822741View ArticleGoogle Scholar
  17. Elliott SJ, Stothers I, Nelson PA: A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Transactions on Acoustics, Speech, and Signal Processing 1987,35(10):1423-1434. 10.1109/TASSP.1987.1165044View ArticleGoogle Scholar
  18. Sayed AH: Fundamentals of Adaptive Filtering. John Wiley & Sons, New York, NY, USA; 2003.Google Scholar
  19. Al-Naffouri TY, Sayed AH: Transient analysis of data-normalized adaptive filters. IEEE Transactions on Signal Processing 2003,51(3):639-652. 10.1109/TSP.2002.808106View ArticleGoogle Scholar
  20. Haykin S: Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, USA; 2002.MATHGoogle Scholar
  21. Tan L, Jiang J: Adaptive Volterra filters for active control of nonlinear noise processes. IEEE Transactions on Signal Processing 2001,49(8):1667-1676. 10.1109/78.934136View ArticleGoogle Scholar

Copyright

© A. Carini and G. L. Sicuranza. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.