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This paper presents an image-based talking head system, which includes two parts: analysis and synthesis. The audiovisual analysis
part creates a face model of a recorded human subject, which is composed of a personalized 3D mask as well as a large database
of mouth images and their related information. The synthesis part generates natural looking facial animations from phonetic
transcripts of text. A critical issue of the synthesis is the unit selection which selects and concatenates these appropriate mouth
images from the database such that they match the spoken words of the talking head. Selection is based on lip synchronization and
the similarity of consecutive images. The unit selection is refined in this paper, and Pareto optimization is used to train the unit
selection. Experimental results of subjective tests show that most people cannot distinguish our facial animations from real videos.
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1. Introduction

The development of modern human-computer interfaces
[1–3] such as Web-based information services, E-commerce,
and E-learning will use facial animation techniques com-
bined with dialog systems extensively in the future. Figure 1
shows a typical application of a talking head for E-commerce.
If the E-commerce Website is visited by a user, the talking
head will start a conversation with the user. The user is
warmly welcomed to experience the Website. The dialog
system will answer any questions from the user and send
the answer to a TTS (Text-To-Speech Synthesizer). The TTS
produces the spoken audio track as well as the phonetic
information and their duration which are required by the
talking head plug-in embedded in the Website. The talking
head plug-in selects appropriate mouth images from the
database to generate a video. The talking head will be shown
in the Website after the right download and installation
of the plug-in and its associated database. Subjective tests
[4, 5] show that a realistic talking head embedded in these
applications can increase the trust of humans on computer.

Generally, the image-based talking head system [1]
includes two parts. One is the offline analysis, the other is
the online synthesis. The analysis provides a large database
of mouth images and their related information for the

synthesis. The quality of synthesized animations depends
mainly on the database and the unit selection.

The database contains tens of thousands of mouth
images and their associated parameters, such as feature
points of mouth images and the motion parameters. If these
parameters are not analyzed precisely, the animations look
jerky. Instead of template matching-based feature detection
in [1], we use Active Appearance Models- (AAM-) based
feature point detection [6–8] to locate the facial feature
points, which is robust to the illumination change on
the face resulted from head and mouth motions. Another
contribution of our work in the analysis is to estimate
the head motion using gradient-based approach [9] rather
than feature point-based approach [1]. Since feature-based
motion estimation [10] is very sensitive to the detected
feature points, the approach is not stable for the whole
sequence.

The training of image-based facial animation system
is time consuming and can only find one of the possible
optimal parameters [1, 11], such that the facial animation
system can only achieve good quality for a limited set of
sentences. To better train the facial animation system, an
evolutionary algorithm (Pareto optimization) [12, 13] is
chosen. Pareto optimization is used to solve a multiobjective
problem, which is to search the optimal parameter sets in
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Figure 1: Schematic diagram ofWeb-based application with talking
head for E-commerce.

the parameter space efficiently and to track many optimized
targets according to defined objective criteria. In this paper,
objective criteria are proposed to train the facial animation
system using Pareto optimization approach.

In the remainder of this paper, we compare our approach
to other talking head systems in Section 2. Section 3 intro-
duces the overview of the talking head system. Section 4
presents the process of database building. Section 5 refines
the unit selection synthesis. The unit selection will be
optimized by Pareto optimization approach in Section 6.
Experimental results and subjective evaluation are shown in
Section 7. Conclusions are given in Section 8.

2. PreviousWork

According to the underlying face model, talking heads
can be categorized into 3D model-based animation and
image-based rendering of models [5]. Image-based facial
animation can achieve more realistic animations, while 3D-
based approaches are more flexible to render the talking head
in any view and under any lighting conditions.

The 3D model-based approach [14] usually requires a
mesh of 3D polygons that define the head shape, which
can be deformed parametrically to perform facial actions. A
texture is mapped over the mesh to render facial parts. Such
a facial animation has become a standard defined in ISO/IEC
MPEG-4 [15]. A typical shortcoming is that the texture is
changed during the animation. Pighin et al. [16] present
another 3D model-based facial animation system, which can
synthesize facial expressions by morphing static 3D models
with textures. A more flexible approach is to model the face
by 3D morphable models [17, 18]. Hair is not included in
the 3D model and the model building is time consuming.
Morphing static facial expressions look surprisingly realistic
nowadays, whereas a realistic talking head (animation with
synchronized audio) is not possible yet. The physics-based
animation [19, 20] has an underlying anatomical structure
such that the model allows a deformation of the head in
anthropometrically meaningful ways [21]. These techniques
allow the creation of subjectively pleasing animations. Due to
the complexity of real surfaces, texture, and motion, talking
faces are immediately identified as synthetic.

The image-based approaches analyze the recorded image
sequences, and animations are synthesized by combining
different facial parts. A 3D model is not necessary for
animations. Bregler et al. [22] proposed a prototype called
video rewrite which used triphones as the element of the
database. A new video is synthesized by selecting the most
appropriate triphone videos. Ezzat et al. [23] developed
a multidimensional morphable model (MMM), which is
capable of morphing between various basic mouth shapes.
Cosatto et al. [1] described another image-based approach
with higher realism and flexibility. A large database is
built including all facial parts. A new sequence is rendered
by stitching facial part images to the correct position in
a previously recorded background sequence. Due to the
use of a large number of recorded natural images, this
technique has the potential of creating realistic animations.
For short sentences, animations without expressions can be
indistinguishable from real videos [1].

A talking head can be driven by text or speech. The text-
driven talking head consists of TTS and talking head. The
TTS synthesizes the audio with phoneme information from
the input text. Then the phoneme information drives the
talking head. The speech-driven talking head uses phoneme
information from original sounds. Text-driven talking head
is flexible and can be used in many applications, but the
quality of speech is not so good as that of a speech-driven
talking head.

The text-driven or speech-driven talking head has an
essential problem, lip synchronization. The mouth move-
ment of the talking head has to match the corresponding
audio utterance. Lip synchronization is rather complicated
due to the coarticulation phenomena [24] which indicate
that a particular mouth shape depends not only on its
own phoneme but also on its preceding and succeeding
phonemes. Generally, the 3D model-based approaches use a
coarticulation model with an articulation mapping between
a phoneme and the model’s action parameters. Image-based
approaches implicitly make use of the coarticulation of the
recorded speaker when selecting an appropriate sequence of
mouth images. Comparing to 3D model-based animations,
each frame in the image-based animations looks realistic.
However, selecting mouth images, which provides a smooth
movement, remains a challenge.

The mouth movement can be derived from the coar-
ticulation property of the vocal tracts. Key-frame-based
rendering interpolates the frames between key frames. For
example, [25] defined the basic visemes as the key frames
and the transition in the animation is based on morphing
visemes. A viseme is the basic mouth image corresponding
to the speech unit “phoneme”, for example, the phonemes
“m”, “b”, “p” correspond to the closure viseme. However,
this approach does not take into account the coarticulation
models [24, 26]. As preceding and succeeding visemes affect
the vocal tracts, the transition between two visemes also gets
affected by other neighbor visemes.

Recently, HMMs are used for lip synchronization. Rao
et al. [27] presented a Gaussian mixture-based HMM for
converting speech features to facial features. The problem is
changed to estimate the missing facial feature vectors based
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on trained HMMs and given audio feature vectors. Based
on the joint speech and facial probability distribution, con-
ditional expectation values of facial features are calculated
as the optimal estimates for given speech data. Only the
speech features at a given instant in time are considered to
estimate the corresponding facial features. Therefore, this
model is sensitive to noise in the input speech. Furthermore,
coarticulation is disregarded in the approach. Hence, abrupt
changes in the estimated facial features occur and the mouth
movement appears jerky.

Based on [27], Choi et al. [28] proposed a Baum-Welch
HMM Inversion to estimate facial features from speech.
The speech-facial HMMs are trained using joint audiovisual
observations; optimal facial features are generated directly by
Baum-Welch iterations in the Maximum Likelihood (ML)
sense. The estimated facial features are used for driving
the mouth movement of a 3D face model. In the above
two approaches, the facial features are simply parameterized
by the mouth width and height. Both lack an explicit
and concise articulatory model that simulates the speech
production process, resulting in sometimes wrong mouth
movements.

In contrast to the above models, Xie and Liu [29]
developed a Dynamic Bayesian Network- (DBN)- structured
articulatory model, which takes the articulator variables
into account which produce the speech. The articulator
variables (with discrete values) are defined as voicing (on,
off), velum (open, closed), lip rounding (rounded, slightly
rounded, mid, wide), tongue show (touching top teeth, near
alveolar ridge, touching alveolar, others), and teeth show
(on, off). After training the articulatory model parameters,
an EM-based conversion algorithm converts audio to facial
features in a maximum likelihood sense. The facial features
are parameterized by PCA (Principal Component Analysis)
[30]. The mouth images are interpolated in PCA space to
generate animations. One problem of this approach is that
it needs a lot of manual work to determine the value of the
articulator variables from the training video clips. Due to
the interpolation in PCA space, unnatural images with teeth
shining through lips may be generated.

The image-based facial animation system proposed in
[31] uses shape and appearance models to create realistic
talking head. Each recorded video is mapped to a trajectory
in the model space. In the synthesis, synthesis units are
the segments extracted from the trajectories. These units
are selected and concatenated by matching the phoneme
similarity. A sequence of appearance images and 2D feature
points are the synthesized trajectory in the model space.
The final animations are created by warping the appearance
model to the corresponding feature points. But the linear
texture modes using PCA are unable to model nonlinear
variations of the mouth part. Therefore, the talking head has
a rendering problem with mouth blurring, which results in
unrealistic animations.

Thus, there exists a significant need to improve coar-
ticulatory model for lip synchronization. The image-based
approach selects appropriate mouth images matching the
desired values from a large database, in order to maintain the
mechanism of mouth movement during speaking. Similar to

the unit selection synthesis in the text-to-speech synthesizer,
the resulted talking heads could achieve the most natural-
ness.

3. SystemOverview of
Image-Based Talking Head

The talking head system, also denoted as visual speech
synthesis, is depicted in Figure 2. First, a segment of text is
sent to a TTS synthesizer. The TTS provides the audio track
as well as the sequence of phonemes and their durations,
which are sent to the unit selection. Depending on the
phoneme information, the unit selection selects mouth
images from the database and assembles them in an optimal
way to produce the desired animation. The unit selection
balances two competing goals: lip synchronization and
smoothness of the transition between consecutive images.
For each goal a cost function is defined, both of them are
functions of the mouth image parameters. The cost function
for lip synchronization considers the coarticulation effects by
matching the distance between the phonetic context of the
synthesized sequence and the phonetic context of the mouth
image in the database. The cost function for smoothness
reduces the visual distance at the transition of images in the
final animation, favoring transitions between consecutively
recorded images. Then, an image rendering module stitches
these mouth images to the background video sequence. The
mouth images are first wrapped onto a personalized 3D
face mask and rotated and translated to the correct position
on the background images. The wrapped 3D face mask is
shown in Figure 3(a). Figure 3(b) shows the projection of
the textured 3D mask onto a background image in a correct
position and orientation. Background videos are recorded
video sequences of a human subject with typical head
movements. Finally the facial animation is synchronized with
the audio, and a talking head is displayed.

4. Analysis

The goal of the analysis is to build a database for real
time visual speech synthesizer. The analysis process is
completed in two steps as shown in Figure 4. Step one is to
analyze the recorded video and audio to obtain normalized
mouth images and related phonetic information. Step two
is to parameterize normalized mouth images. The resulted
database contains the normalized mouth images and their
associated parameters.

4.1. Audio-Visual Analysis. The audio-visual analysis of
recorded human subjects results in a database of mouth
images and their relevant features suitable for synthesis.
The audio and video of a human subject reading texts of
a predefined corpus are recorded. As shown in Figure 4(a),
the recorded audio and video data are analyzed by motion
estimation and aligner.

The recorded audio and the spoken text are processed
by speech recognition to recognize and temporally align the
phonetic interpretation of the text to the recorded audio data.
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Figure 2: System architecture of image-based talking head system.

(a) (b)

Figure 3: Image-based rendering. (a) The 3D face mask with
wrapped mouth and eye textures. (b) A synthesized face by
projecting the textured 3D mask onto a background image in a
correct position and orientation. Alpha blending is used on the edge
of the face mask to combine the 3D face mask with the background
seamlessly.

The process is referred to aligner. Finally, the timed sequence
of phonemes is aligned up to the sampling rate of the corre-
sponding video. Therefore, for each frame of the recorded
video, the corresponding phoneme and phoneme context
are known. The phonetic context is required due to the
coarticulation, since a particular mouth shape depends not
only on its associated phoneme but also on its preceding and
succeeding phonemes. Table 1 shows the American English
phoneme and viseme inventory that we use to phonetically
transcribe the text input. Themapping of phoneme to viseme
is based on the similarity of the appearance of the mouth. In
our system, we define 22 visemes including 43 phoneme from

Table 1: Phoneme-viseme mapping of SAPI American English
Phoneme Representation. There are 43 phonemes and 22 visemes.

Viseme type no. Phoneme Viseme type no. Phoneme

0 Silence 11 ay

1 ae, ax, ah 12 h, hh

2 aa 13 r

3 ao 14 l

4 ey, eh, uh 15 s, z

5 er 16 sh, ch, jh, zh

6 iy, y, ih, ix 17 th, dh

7 w, uw 18 f, v

8 ow 19 d, t, n

9 aw 20 k, g, ng

10 oy 21 p, b, m

American English Phoneme Representation of Microsoft
Speech API (version SAPI 5.1).

The head motion of the recorded videos is estimated
and the mouth images are normalized. A 3D face mask is
adapted to the first frame of the video using the calibrated
camera parameters and 6 facial feature points (4 eye corners
and 2 nostrils). Gradient-based motion estimation approach
[9] is carried out to compute the rotation and translation
parameters of the head movement in the later frames. These
motion parameters are used to compensate head motion
such that normalized mouth images can be parameterized by
PCA correctly.
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Figure 4: Database building by analysis of recorded human subject. (a) Analysis of recorded video and audio. (b) Parameterization of the
normalized mouth images.

4.2. Parameterization of Normalized Mouth Images.
Figure 4(b) shows the parameterization of mouth images.
As PCA transforms the mouth image data into principal
component space, reflecting the original data structure, we
use PCA parameters to measure the distance of the mouth
images in the objective criteria for system training. In order
to maintain the system consistency, PCA is also used to
parameterize the mouth images to describe the texture
information.

The geometric parameters, such as mouth corner points
and lip position, are obtained by template matching-based
approach in the reference system [1]. This method is
very sensitive to the illumination change resulted from
mouth movement and head motion during speaking, even
though the environment lighting is consistent in the studio.
Furthermore, the detection error of the mouth corners may
be less accurate when the mouth is very wide open. The
same problem exists also in the detection of eye corners,
which will result in an incorrect motion estimation and
normalization.

In order to detect stable and precise feature points, AAM-
based feature point detection is proposed in [8]. AAM-
based feature detection uses not only the texture but also
the shape of the face. AAM models are built from a training
set including different appearances. The shape is manually
marked. Because the AAM is built in a PCA space, if there
are enough training data that can construct the PCA space,
the AAM is not sensitive to the illumination change on the
face. Typically the training data set consists about 20 mouth
images.

The manual landmarked feature points in the training set
are also refined by AAM building [8]. The detection error
is reduced to 0.2 pixels, which is calculated by measuring
the Euclidean distance between the manual marked feature
points and detected feature points. Figure 5 shows the AAM-
based feature detection used for the test data [32] (Figures
5(a) and 5(b)) and the data from our Institute (Figures 5(c)
and 5(d)). We define 20 feature points on the inner and outer
lip contours.

All the parameters associated with an image are also
saved in the database. Therefore, the database is built with
a large number of normalized mouth images. Each image
is characterized by geometric parameters (mouth width and
height, the visibility of teeth, and tongue), texture parameters
(PCA parameters), phonetic context, original sequence, and
frame number.

(a) Closed mouth (b) Open mouth

(c) Closed mouth (d) Open mouth

Figure 5: AAM-based feature detection on normalized mouths of
different databases.

5. Synthesis

5.1. Unit Selection. The unit selection selects the mouth
images corresponding to the phoneme sequence, using a
target cost and a concatenation cost function to balance lip
synchronization and smoothness. As shown in Figure 6, the
phoneme sequence and audio data are generated by the TTS
system. For each frame of the synthesized video a mouth
image should be selected from the database for the final
animation. The selection is executed as follows.

First, a search graph is built. Each frame is populated
with a list of candidate mouth images that belong to the
viseme corresponding to the phoneme of the frame. Using
a viseme instead of a phoneme increases the number of
valid candidates for a given target, given the relatively small
database. Each candidate is fully connected to the candidates
of the next frame. The connectivity of the candidates builds a
search graph as depicted in Figure 6. Target costs are assigned
to each candidate and concatenation costs are assigned to
each connection. A Viterbi search through the graph finds
the optimal path with minimal total cost. Given in Figure 6,
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Figure 6: Illustration of unit selection algorithm. The text is the input of the TTS synthesizer. The audio and phoneme are the output of the
TTS synthesizer. The candidates are from the database and the red path is the optimal animation path with a minimal total cost found by
Viterbi search. The selected mouths are composed of several original video segments.

the selected sequence is composed of several segments. The
segments are extracted from the recorded sequence. Lip
synchronization is achieved by defining target costs that are
small for images recorded with the same phonetic context as
the current image to be synthesized.

The Target Cost (TC) is a distance measure between the
phoneme at frame i and the phoneme of image u in the
candidate list:

TC(i,u) = 1
∑n

t=−n vt+i

n∑

t=−n
vi+t ·M(Ti+t ,Pu+t), (1)

where a target phoneme feature vector

−→
Ti = (Ti−n, . . . ,Ti, . . . ,Ti+n) (2)

with Ti representing the phoneme at frame i, a candidate
phoneme feature vector

−→
Pu = (Pu−n, . . . ,Pu, . . . ,Pu+n) (3)

consisting of the phonemes before and after the uth phoneme
in the recorded sequence and a weight vector

−→vi= (vi−n, . . . , vi, . . . , vi+n) (4)

with vi = eβ1|i−t|, i ∈ [t − n, t + n], n is phoneme context
influence length, depending on the speaking speed and the
frame rate of the recorded video, we set n = 10, if the frame
rate is 50Hz, n = 5 at 25Hz. β1 is set to −0.3. M is a
phoneme distance matrix with size of 43×43, which denotes
visual similarities between phoneme pairs.M is computed by
weighted Euclidean distance in the PCA space:

M
(
Phi, Ph j

)
=

√
∑K

k=1 γ
2
k ·
(
PCAPhi,k − PCAPh j ,k

)2

∑K
k=1 γk

, (5)

where PCAPhi and PCAPh j are the average PCA weights of
phoneme i and j, respectively. K is the reduced dimension
of the PCA space of mouth images. γk is the weight of the
kth PCA component, which describes the discrimination of
the components, we use exponential factor γk = eβ2|k−K|, k ∈
[1,K], with β2 = 0.1 and K = 12.

The Concatenation Cost (CC) is calculated using a visual
cost ( f ) and a skip cost (g) as follows:

CC(u1,u2) = wccf · f (U1,U2) + wccg · g(u1,u2) (6)

with the weights wccf and wccg. Candidates, u1 (from frame
i) and u2 (from frame i − 1), have a feature vector U1 and
U2 of the mouth image considering the articulator features
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including teeth, tongue, lips, appearance, and geometric
features.

The visual cost measures the visual difference between
two mouth images. A small visual cost indicates that the
transition is smooth. The visual cost f is defined as

f (U1,U2) =
D∑

d=1
kd ·

∥
∥
∥Ud

1 −Ud
2

∥
∥
∥
L2
, (7)

where ‖Ud
1 −Ud

2 ‖L2 measures the Euclidean distance in the
articulator feature space with D dimension. Each feature is
given a weight kd which is proportional to its discrimination.
For example, the weight for each component of PCA
parameters is proportional to its corresponding eigenvalue
of PCA analysis.

The skip cost is a penalty given to the path consisting of
many video segments. Smooth mouth animations favor long
video segments with few skips. The skip cost g is calculated
as

g(u1,u2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,
∣
∣ f (u1)− f (u2)

∣
∣ = 1∧ s(u1) = s(u2),

w1,
∣
∣ f (u1)− f (u2)

∣
∣ = 0∧ s(u1) = s(u2),

w2,
∣
∣ f (u1)− f (u2)

∣
∣ = 2∧ s(u1) = s(u2),

...

wp,
∣
∣ f (u1)− f (u2)

∣
∣ ≥ p ∨ s(u1) /= s(u2)

(8)

with f and s describing the current frame number and the
original sequence number that corresponds to a sentence in
the corpus, respectively, and wi = eβ3i. We set β3 = 0.6 and
p = 5.

A path (p1, p2, . . . , pi, . . . , pN ) through this graph gener-
ates the following Path Cost (PC):

PC = wtc ·
N∑

i=1
TC
(
i, Si,pi

)
+ wcc ·

N∑

i=1
CC
(
Si,pi , Si−1,pi−1

)

(9)

with candidate Si,pi belonging to the frame i. wtc and wcc are
the weights of two costs.

Substituting (6) in (9) yields

PC = wtc · C1 + wcc ·wccf · C2 + wcc ·wccg · C3 (10)

with

C1 =
N∑

i=1
TC
(
i, Si,pi

)
,

C2 =
N∑

i=1

(
f
(
Si,pi , Si−1,pi−1

))
,

C3 =
N∑

i=1

(
g
(
Si,pi , Si−1,pi−1

))
.

(11)

These weights should be trained. In [33] two approaches
are proposed to train the weights of the unit selection for
a speech synthesizer. In the first approach, weight space
search is to search a range of weight sets in the weight
space and find the best weight set which minimize the
difference between the natural waveform and the synthesized
waveform. In the second approach, regression training is
used to determine the weights for the target cost and the
weights for the concatenation cost separately. Exhaustive
comparison of the units in the database and multiple linear
regression are involved. Both methods are time consuming
and the weights are not globally optimal. An approach
similar to weight space search is presented in [11], which
uses only one objective measurement to train the weights of
the unit selection. However, other objective measurements
are not optimized. Therefore, these approaches are only sub-
optimal for training the unit selection, which has to create
a compromise between partially opposing objective qual-
ity measures. Considering multiobjective measurements, a
novel training method for optimizing the unit selection is
presented in the next section.

5.2. Rendering Performance. The performance of visual
speech synthesis depends mainly on the TTS synthesizer, the
unit selection, and the OpenGL rendering of the animations.
We have measured that the TTS synthesizer has about 10ms
latency in a WLAN network. The unit selection is running as
a thread, which only delay the program at the first sentence.
The unit selection for the second sentence is run when the
first sentence is rendered. Therefore, the unit selection is
done in real time. The OpenGL rendering takes the main
time of the animations, which relies on the graphics card. For
our system (CPU: AMD Athlon XP 1.1GHz, Graphics card:
NVIDIA Geforce FX 5200), the rendering needs only 25ms
for each frame of a sequence with CIF format at 25 fps.

6. Unit Selection Training by
Pareto Optimization

As discussed in Section 5.1, several weights, influencing TC,
CC, and PC, should be trained. Generally, the training
set includes several original recorded sentences (as ground
truth) which are not included in the database. Using the
database, an animation will be generated using the given
weights for unit selection. We use objective evaluator func-
tions as Face Image DistanceMeasure (FIDM). The evaluator
functions are average target cost, average segment length,
average visual difference between segments. The average
target cost indicates the lip synchronization, the average
segment length and average visual difference indicate the
smoothness.

6.1. Multiobjective Measurements. A mouth sequence
(p1, p2, . . . , pi, . . . , pN ) with minimal path cost is found by
the Viterbi search in the unit selection. Each mouth has a
target cost (TCpi) and a concatenation cost including a visual
cost and a skip cost in the selected sequence.
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The average target cost is computed as

TCavg. = 1
N

N∑

i=1
TCpi . (12)

As mentioned before, the animated sequence is com-
posed of several original video segments. We assume that
there are no concatenation costs in the mouth image
segment, because they are consecutive frames in a recorded
video. The concatenation costs occur only at the joint posi-
tion of two mouth image segments. When the concatenation
costs are high, indicating a large visual difference between
two mouth images, this will result in a jerky animation. The
average segment length is calculated as

SLavg. = 1
L

L∑

l=1
(SLl), (13)

where L is the number of segments in the final animation.
For example, the average segment length of the animation in
Figure 6 is calculated as SLavg. = (6 + 3 + 2 + 11 + 3)/5 = 5.

The Euclidean distance ( fpca) between mouth images
in the PCA space is used to calculate the average visual
difference in the following way:

VCavg. = 1
L− 1

N−1∑

i=1
fpca(i, i + 1), (14)

where fpca(i, i + 1) is the visual distance between mouth
images at frame i and i + 1 in the animated sequence. If the
mouth image at frame i and i+1 is two consecutive frames in
a original video segment, the visual distance is set to zero.
Otherwise, the visual distance for the joint of the mouth
image segments is calculated as

fpca(i, i + 1) =
∥
∥
∥
−−→
PCAi −−−→PCAi+1

∥
∥
∥
L2
, (15)

where PCAi is the PCA parameter of the mouth image at
frame i.

6.2. Pareto Optimization of Unit Selection. Inspired in natural
evolution ideas, Pareto optimization evolves a population
of candidate solutions (i.e., weights), adapting them to

multiobjective evaluator functions (i.e., FIDM). This process
takes advantage of evolutionmechanisms such as the survival
of the fit test and genetic material recombination. The fit
test is an evaluation process, which finds the weights that
maximize the multiobjective evaluator functions. The Pareto
algorithm starts with an initial population. Each individual
is a weight vector containing weights to be adjusted. Then,
the population is evaluated by the multiobjective evaluator
functions (i.e., FIDM). A number of best weight sets are
selected to build a new population with the same size as
the previous one. The individuals of the new population are
recombined in two steps, that is, crossover andmutation. The
first step recombines the weight values of two individuals to
produce two new children. The children replace their parent
in the population. The second step introduces random
perturbations to the weights with a given probability. Finally,
a new population is obtained to replace the original one,
starting the evolutionary cycle again. This process stops when
a certain finalization criteria is satisfied.

FIDM is used to evaluate the unit selection and the
Pareto optimization accelerates the training process. The
Pareto optimization (as shown in Figure 7) begins with
thousand combinations of weights of the unit selection in the
parameter space, where ten settings were chosen for each of
the four weights in our experiments. For each combination,
there is a value calculated using the FIDM criteria. The
boundary of the optimal FIDM values is called Pareto-front.
The boundary indicates the animation with smallest possible
target cost given a visual distance between segments. Using
the Pareto parameters corresponding to the Pareto-front,
the Pareto optimization generates new combinations of the
weights for further FIDM values. The optimization process
is stopped as soon as the Pareto-front is declared stable.

Once the Pareto-front is obtained, the best weights
combination is located on the Pareto-front. The subjective
test is the ultimate way to find the best weights combination,
but there are many weight combinations performing similar
results that subjects cannot distinguish. Therefore, it is
necessary to define objective measurements to find the best
weight combination automatically and objectively.

The measurable criteria consider the subjective impres-
sion of quality. We have performed the following objective
evaluations. The similarity of the real sequence and the
animated sequence is described by directly comparing the



EURASIP Journal on Audio, Speech, and Music Processing 9

visual parameters of the animated sequence with the real
parameters extracted from the original video. We use the
cross-correlation of the two visual parameters as the measure
of similarity. The visual parameters are the size of open
mouth and the texture parameter.

Appearance similarity is defined as the correlation coef-
ficient (rpca) of the PCA weights trajectory of the animated
sequence and the original sequence. If the unit selection finds
a mouth sequence, which is similar to the real sequence,
the PCA parameters of the corresponding images of the
two sequences have a high correlation. Movement similarity
is defined as the correlation coefficient (rh) of the mouth
height. If themouth in the animated sequencemoves realistic
just as in the real sequence, the coefficient approaches 1. The
cross-correlation is calculated as

r =
∑N

i=1
[
(xi −mx) ·

(
yi −my

)]

√∑N
i=1 (xi −mx)

2 ·
√
∑N

i=1
(
yi −my

)2
, (16)

where xi and yi are the first principal component coefficient
of PCA parameter or the mouth height of the mouth image
at frame i in the real and animated sequence, respectively.mx

and my are the means of the corresponding series, x and y.
N is the total number of frames of the sequence.

7. Experimental Results

7.1. Data Collection. In order to test our talking head system,
two data sets are used, comprising the data from our Institute
(TNT) and the data from LIPS2008 [32].

In our studio a subject is recorded while reading a corpus
including about 300 sentences. A lighting system is designed
and developed for an audio-visual recording with high image
quality [34], which minimizes the shadow on the face of
an subject and reduces the change of illumination in the
recorded sequences. The capturing is done using an HD
camera (Thomson LDK 5490). The video format is originally
1280× 720 at 50 fps, which is cropped to 576× 720 pixels at
50 fps. The audio signal is sampled at 48 kHz. 148 utterances
are selected to build a database to synthesize animations. The
database contains 22 762 normalized mouth images with a
resolution of 288× 304.

The database from LIPS2008 consists of 279 sentences,
supporting the phoneme transcription of the texts. The video
format is 576 × 720 at 50 fps. 180 sentences are selected to
build a database for visual speech synthesis. The database
contains 36 358 normalized mouth images with a resolution
of 288× 288.

A snapshot of example images extracted from two
databases is shown in Figure 8.

7.2. Unit Selection Optimization. The unit selection is trained
by Pareto optimization with 30 sentences. The Pareto-
front is calculated and shown in Figure 9. There are many
weight combinations satisfying the objective measurement
on the Pareto-front, but only one combination of weights
is determined as the best set of weights for unit selection.
We have tried to generate animations by using several weight

(a) TNT (b) LIPS2008

Figure 8: Snapshot of an example image extracted from recorded
videos at TNT and LIPS2008, respectively.
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Figure 9: Pareto optimization for unit selection. The curves are
the Pareto-front. Several Pareto points on the Pareto-front marked
red are selected to generate animations. The cross-correlation
coefficients of PCA parameters and mouth height (rpca, rh) between
real and animated sequences are shown for the selected Pareto
points.

combinations and find out that they have similar quality
subjectively in terms of naturalness, because quite different
paths through the graph can produce very similar animations
given a quite large database.

To evaluate the Pareto-front automatically, we use the
defined objective measurements to find best animations
with respect to naturalness. The cross-correlation coefficients
of PCA parameter and mouth height between real and
animated sequences on the Pareto-front are calculated and
shown in Figure 10. The red curve is the cross-correlation of
PCA parameter of mouth images between real and animated
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Figure 10: Cross-correlation of PCA parameters and mouth height
of mouth images between real and animated sequences on the
Pareto-front. Red curve is cross-correlation of PCA parameter
between real and animated sequences. The blue one is the cross-
correlation of mouth height.

sequences. The blue curve is the cross-correlation of mouth
height. The cross-correlation coefficients of several Pareto
points on Pareto-front are labeled in Figure 9(a), where the
first coefficient is rpca, the second is rh. Given in Figure 10,
the appearance similarity (red curve) and the movement
similarity (blue curve) run in a similar way, which reach the
maximal cross-correlation coefficients at the same position
with the average visual distance of 18.

Figure 11(a) shows the first component of PCA parame-
ters of mouth images in real and animated sequences. The
mouth movements of the real and synthesized sequences
are shown in Figure 11(b). We have found that the curves
in Figure 11 do not match perfectly, but they are highly
correlated. The resulting facial animations look realistic
compared to the original videos. One of the most important
criteria to evaluate the curves is to measure how well
the closures match in terms of timing and amplitude.
Furthermore, objective criteria and informal subjective tests
are consistent to find the best weights in the unit selection.
In such a way the optimal weight set is automatically selected
by the objective measurements.

The weight set corresponding to the point on the Pareto-
front with maximal similarity are used in the unit selection.
Animations generated by the optimal facial animation
system are used for the following formal subjective tests.

7.3. Subjective Tests. A subjective test is defined and carried
out to evaluate the facial animation system. The goal of
the subjective test is to assess the naturalness of animations
whether they can be distinguished from real videos.

Assessing the quality of a talking head system becomes
even more urgent as the animations become more lifelike,
since improvements may be more subtle and subjective. A
subjective test where observers give feedback is the ultimate
measure of quality, although objective measurements used
by the Pareto optimization can greatly accelerate the devel-
opment and also increase the efficiency of subjective tests
by focusing them on the important issues. Since a large
number of observers is required, preferably from different
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Figure 11: The similarity measurement for the sentence: I want to
divide the talcum powder into two piles. (a) shows the appearance
similarity, (b) shows the mouth movement similarity. The red curve
is the PCA parameter trajectory and the mouth movement of the
real sequence; the blue curve is the PCA parameter trajectory and
mouth movement of the animated sequence. The cross-correlation
coefficient of PCA parameters between the real and animated
sequence is 0.88, the coefficient formouth height is 0.74. Themouth
height is defined as the maximal top to bottom distance of the outer
lip contour.

demographic groups, we designed a Website for subjective
tests.

In order to get a fair subjective evaluation, let the viewers
focus on the lips and separate the different factors, such
as head motions and expressions, influencing the speech
perception, we selected a short recorded video with neutral
expressions and tiny head movements as the background
sequence. The mouth images, which are cropped from a
recorded video, are overlaid to the background sequence
in a correct position and orientation to generate a new
video, named original video. The corresponding real audio
is used to generate a synthesized video by the optimized unit
selection. Thus a pair of videos, uttering the same sentence,
are ready for subjective tests. Overall 5 pairs of original and
synthesized videos are collected to build a video database
available for subjective tests on our Website. The real videos
corresponding to the real audios are not part of the database.

A Turing test was performed to evaluate our talking head
system. 30 students and employees of Leibniz University of
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Table 2: Results of the subjective tests for talking heads by using
TNT database. 5 video pairs were shown to 30 viewers. The number
of the viewers, which identified the real and synthesized video
correctly (NCI), was counted. The correct identifying rate (CIR) for
each video pair was calculated.

Video pair 1 2 3 4 5

NCI 21 16 17 11 21

NTS 30 30 30 30 30

CIR 70% 53% 57 % 37 % 70%

Hanover were invited to take part in the formal subjective
tests. All video pairs from the video database were randomly
selected and the video pair was itself presented to the
participant randomly only once. The participant should
decide whether it is an original or a synthesized video
immediately after the video pair was displayed.

The results of the subjective tests are summarized in
Table 2. The Turing test can be quantified in terms of the
Correct Identifying Rate (CIR), which is defined as

CIR = Number of correctly identified utterances (NCIs)
Number of testing utterances (NTSs)

.

(17)

Table 2 shows the results of subjective tests. CIR 50% is
expected, which means that the animations are as realistic
as the real one. From the results of the subjective tests, we
can find that the original videos of video pairs 1 and 5 are
correctly recognized by 70% of the viewers. The video pairs 2
and 3 are almost indistinguishable to the viewers, where the
CIR is approaching 50%. The synthesized video of video pair
4 is decided by most viewers as original video.

Our hypothesis is that original and animated videos are
indistinguishable from each other. If the hypothesis is true,
the value for NCI is binomially distributed. The probability
mass function of binomial distribution is defined in the
following way:

P(X = k) =
⎛

⎝
n

k

⎞

⎠pk
(
1− p

)n−k (18)

with parameters n = NTS = 30, k = NCI, and P = .5 for our
subjective tests. Figure 12 shows the binomial distribution of
the subjective tests. The 95% confidence interval is estimated
in the zone between 10 and 20. The video pairs 2, 3, and
4 are kept in the confidence interval, which means that the
video pairs are indistinguishable. The video pairs 1 and 5 are
outside of the confidence interval, but they are very close
to the confidence level. In fact, these video pairs are very
difficult to be distinguished according to the feedback of the
viewers in the subjective tests.

The generated talking heads using LIPS 2008 database
were evaluated on the conference of Interspeech 2008. In
comparison to other attended systems [35], our proposed
talking head system achieved the most audio-visual con-
sistency in terms of naturalness. The Mean Opinion Score
(MOS) of our system was about 3.7 in the subjective test
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Figure 12: Binomial distribution (n = 30, P = .5) of the subjective
tests. The video pairs are marked with red on the distribution.

evaluated by a 5-point grading scale (5: Excellent, 4: Good,
3: Fair, 2: Poor, 1: Bad). The original videos were scored with
about 4.7.

The subjective tests carried out in our institute show
that the talking head generated by using the database of
TNT performs better than the talking head generated by
using the database of LIPS2008. A reason for the better
animation results is the designed light settings resulting in
a high quality recording. All viewers think the videos from
TNT look better, since the lighting contrast of the image gives
a big impact on the perception of overall quality of talking
heads in the subjective tests. Furthermore, the shadow and
the illumination changes on the face cause problems in
motion estimation, which makes the final animations jerky
and blinking. Therefore, talking heads generated by using the
database of LIPS2008 do not look as realistic as those heads
by using the database of TNT.

Based on the facial animation system, Web-based
interactive services such as E-shop and Newsreader were
developed. The demos and related Website are available
at http://www.tnt.uni-hannover.de/project/facialanimation/
demo/. In addition, the video pairs used for the subjective
tests can be downloaded from http://www.tnt.uni-hannover
.de/project/facialanimation/demo/subtest/.

8. Conclusions

We have presented the optimization of an image-based
talking head system. The image-based talking head system
consists of an offline audio-visual analysis and an online unit
selection synthesis. In the analysis part, Active Appearance
Models (AAMs) based facial feature detection is used to
find geometric parameters of mouth images instead of color
template-based approach that is a reference method. By
doing so, the accuracy of facial features is improved to sub-
pixel. In the synthesis part, we have refine the unit selection
algorithm. Furthermore, optimization of the unit selection
synthesis is a difficult problem because the unit selection is
a nonlinear system. Pareto optimization algorithm is chosen
to train the unit selection so that the visual speech synthesis
is stable for arbitrary input texts. The optimization criteria
include lip synchronization, visual smoothness, and others.
Formal subjective tests show that synthesized animations
generated by the optimized talking head system match the
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corresponding audio naturally. More encouraging, 3 out of
5 synthesized animations are so realistic that the viewers
cannot distinguish them from original videos.

In the future work, we are planning to record additional
videos in which the subject is smiling while speaking. We
hope to generate expressive talking heads by switching
between the smile and the neutral mouth images.
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