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Abstract

audio classes.

Feature generation

A vast amount of audio features have been proposed in the literature to characterize the content of audio signals.
In order to overcome specific problems related to the existing features (such as lack of discriminative power), as
well as to reduce the need for manual feature selection, in this article, we propose an evolutionary feature synthesis
technique with a built-in feature selection scheme. The proposed synthesis process searches for optimal linear/
nonlinear operators and feature weights from a pre-defined multi-dimensional search space to generate a highly
discriminative set of new (artificial) features. The evolutionary search process is based on a stochastic optimization
approach in which a multi-dimensional particle swarm optimization algorithm, along with fractional global best
formation and heterogeneous particle behavior techniques, is applied. Unlike many existing feature generation
approaches, the dimensionality of the synthesized feature vector is also searched and optimized within a set range
in order to better meet the varying requirements set by many practical applications and classifiers. The new
features generated by the proposed synthesis approach are compared with typical low-level audio features in
several classification and retrieval tasks. The results demonstrate a clear improvement of up to 15-20% in average
retrieval performance. Moreover, the proposed synthesis technique surpasses the synthesis performance of
evolutionary artificial neural networks, exhibiting a considerable capability to accurately distinguish among different
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Introduction

Due to the drastically increased amount of multimedia
data available in the Internet and in various public and
personal databases, the development of efficient index-
ing and retrieval methods for large multimedia databases
has become a widely studied research topic. Scientific
fields, such as digital signal processing (DSP) and com-
puter science (particularly machine learning), provide ef-
ficient and mathematically well-defined methods for
data mining and knowledge discovery from specific
observations or databases [1]. One of the major research
foci in the field is concentrated around content-based
classification using supervised learning methods. In
these, a dataset together with its perceived class labels,
known as “ground truth,” is used to train a classifier, so
that it can learn to discriminate among the individual
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classes in the training dataset. This enables the classifier
to classify new, previously unseen data items with a cer-
tain degree of accuracy. Once successful such methods
can be applied to several application areas, such as
advanced database browsing, query-by-example retrieval,
highlight-spotting from movies and/or sport events,
speaker recognition, and so on.

In general, whenever machine learning techniques are
to be applied to data classification or clustering tasks,
certain features need to be extracted from the data. The
features can be numerical or nominal scalars or vectors
describing specific characteristics of the data such as, in
the case of audio signals, tonality or fundamental fre-
quency (FF). Because the data classification and mining
methods are strongly dependent on the extracted fea-
tures, their quality and discriminative capability have an
obvious influence on overall classification performance.
Unfortunately, despite the enormous number of different
audio feature extraction methods available in the
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literature, the features have limitations and drawbacks in
describing the data content, so that the current audio
classifiers cannot really compete with the human auditory
perception system. As will be shortly reviewed, such a
lack of semantic representation, the “semantic gap,” has
led to developing several promising techniques to obtain
more power of discrimination from the extracted low-
level features. The related work in this field is presented
in the following section, which focuses on the two most
important feature enhancement methods in the literature,
feature selection and feature synthesis (also known as fea-
ture generation/construction/transformation).

Related work

Generally in machine learning, it is desirable to work
with low-dimensional feature vectors (FVs) to reduce
computational complexity, and also to avoid the so-
called curse of dimensionality phenomenon [2], which
basically states that in high-dimensional representations
the available data become too sparse for any decent stat-
istical or structural analysis. In a feature selection
scheme, the FV dimensionality is lowered by selectively
choosing an expressive and compact set of features
among a possibly much larger original set. Evolutionary
algorithms, such as genetic algorithms (GAs) [3] and gen-
etic programming (GP) [4], are encountered in several
feature selection approaches in the literature (see, e.g.,
[5,6]). Recently, another population-based stochastic
optimization algorithm, particle swarm optimization
(PSO) [7], was used by Ramadan and Abdel-Kader [8].
They applied PSO to features extracted by discrete
cosine transform and discrete wavelet transform. The
face-recognition results were comparable to GA-based
feature selection but with the benefit of fewer features.
Another PSO-based feature selection approach was
presented by Chuang et al. [9] in which an improved
binary particle swarm optimization was applied to a set
of gene expression data classification problems. The
highest classification accuracy was obtained in 9 out of
the 11 tested gene expression problems. It was also
reported that the average classification accuracy
obtained by a K-nearest neighbor classifier was increased
by 2.85% when compared to the previously published
methods. Other types of classifiers, such as support vec-
tor machines (SVM) [10,11] and back-propagation net-
works [12], have also been tested with PSO-based feature
selection in varying types of classification problems. Fi-
nally, in [13], a survey of several other feature selection
methods was presented, leading the authors to conclude
that “applying first a method of automatic feature con-
struction yields improved performance and a more com-
pact set of features.” Hence, research for generating
completely new (or modified) features has gained more
attention during the past few years.
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To date, several feature generation approaches have
been proposed [14], which have shown improvements
over many types of classification problems. In one of the
pioneer works, Markovitch and Rosenstein [15] pro-
posed a framework for feature generation based on a
grammar consisting of feature construction functions
(such as arithmetic and logic operators). In their re-
search, new features were iteratively constructed using
decision trees, while the evaluation of the framework
was done using the Irvine repository of (symbolic) classi-
fication problems. Improved classification results were
obtained with several tested classifiers when applying
them with the original and constructed feature sets (ES).
However, such grammar-based methods lack the ability
to generalize across more concrete and realistic cases,
where, instead of symbols, the input data consists of raw
signals. The challenge with signals is that there are no
“universally good” features available; rather one has to
manually choose and extract a specific set of features
among the huge amount of existing possibilities. Thus, it
can never be guaranteed that the selected features truly
represent the optimal set of features for the problem at
stake. To address the issue, a fascinating and rather re-
cent idea of automatic feature generation has proven to
be a promising approach, as it allows going beyond the
limitations of human imagination in producing new
transformations and (artificial) features.

Automated feature generation approaches are gener-
ally based on a “trial and attempt” type of methodology,
meaning that stochastic searching and optimization algo-
rithms are commonly applied. In [16], a combination of
both feature selection and generation was proposed
based on a modified GA. The algorithm was applied for
the feature transformation process, and an inductive
learner was used to evaluate the constructed features on
an interpretation of chromatography time series. It was
confirmed that one can significantly improve the learn-
ing performance when using the constructed features in-
stead of the original time series data. The term “feature
synthesis” was first used by Krawiec and Bhanu [17] in
the context of object recognition. They applied linear
GP to encode potential recognition procedure synthesis
solutions, expressed in terms of elementary operations.
The training consisted of co-evolving feature extraction
procedures, each being a sequence of elementary image
processing and feature extraction operations. The recog-
nition accuracies obtained were comparable to those
achieved by standard methods. Bhanu et al. [18,19] con-
tinued the work in the context of face expression recog-
nition, where a Gabor-wavelet representation was used
for primitive features and linear/nonlinear operators
were selected among 37 different options to synthesize
new features. Each individual in the applied GP algo-
rithm was represented by a binary tree, each of which
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corresponded to a single composite operator (consisting
of several primitive operators). The operator selection
was tuned using a Bayesian classifier, and the operator
yielding the best classification accuracy was used in syn-
thesizing new FVs for each image in the database.
Improved classification accuracy with fewer features was
obtained compared to results obtained using the original
set of primitive features in the expression recognition
task. The work was expanded in [20], where co-evolu-
tionary processing was added to the approach to enable
using several sub-populations in the GP algorithm. In
this case, the final FVs were formed by combining the
composite features synthesized by each individual sub-
population. The obtained classification results for
synthetic aperture radar images showed occasional
improvements compared to the primitive features; as
before, fewer features were required to obtain compar-
able recognition rates. However, the authors also
conclude that “... it is still very important to design
effective primitive features. We cannot entirely rely on
CGP (co-evolutionary GP) to generate good features.”
Probably the first audio feature generation system was
one proposed by Pachet and Zils [21]. Their approach
uses GP as the core feature generation algorithm in an
extractor discovery system (EDS) framework, to explore
large operator function space and to automatically dis-
cover new high-level audio features. The search is
guided by specific heuristics, which enable applying
knowledge representation schemes about signal proces-
sing functions as part of the feature generation process.
More recently, Pachet and Roy [22] applied the same
EDS framework, where analytical features (AF) were
also introduced. These represent a large subset of all
possible audio DSP functions, and are expressed as a
functional term consisting of basic operators. The main
idea in [22] is to apply genetic transformations in order
to improve the current population of the (first random)
AFs, while the fitness of each AF is evaluated using an
SVM classifier. The idea of EDS bears some similarities
to the framework proposed in [15] and some other fea-
ture generation approaches, but differs in providing op-
erator knowledge (such as function patterns and
heuristics) within the process. As a result, improved clas-
sification results compared to common audio features
were obtained with the AFs in several challenging classi-
fication tasks. The authors also participated to the re-
search made in [23] with AFs proposing a method to
improve search performance involved in feature gener-
ation tasks. The applied algorithm is a variant of simu-
lated annealing, guided by the so-called spin patterns,
which are statistical properties of the feature space.
Three audio classification problems were evaluated using
the generated features, and significant improvements in
execution time were reported when the results were
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compared to those obtained with features searched using
GA, as described in [22].

Generally in audio signal processing, ad hoc domain-
specific features have also gained considerable attention
during the past few years, mainly applied to specific
audio classification problems. For example, Morchen
et al. [24] constructed a large set of features by applying
cross products between several existing short- and long-
term (obtained by several aggregation methods) feature
functions, resulting in approximately 40,000 audio fea-
tures in total. It was shown that some of the constructed
features could indeed improve music classification per-
formance relative to conventional features. Another such
example was presented by Mierswa and Morik [25],
where method trees consisting of ad hoc features for a
given audio signal were introduced. The trees were auto-
matically generated with GP by combining elementary
feature extraction methods. To do this, an additional
complexity constraint was applied to keep the computa-
tional processing feasible. Improvements were reported
in music genre classification accuracy over approaches
with traditional audio features. Furthermore, in [26] the
same approach was applied to speech emotion recogni-
tion with comparable results.

Considering potential drawbacks and uncertainties in
the previously proposed feature generation approaches,
an important issue relates to the computational time and
complexity required for the synthesis process. More spe-
cifically, generating new FVs with high dimensionality
may be laborious and time-consuming; for example, in
[20], a separate subpopulation needed to be generated
for each new generated feature. However, despite the in-
creasing amount of computation required, also high-
dimensional representations should be considered when
striving to generate efficient new FVs. The individual
feature search method, introduced in [23], provides a sig-
nificant contribution to the field in decreasing computa-
tion time with respect to GP (by an order of magnitude).
Due to the somewhat constrained set of experiments,
however, eventually the method shows particularly sig-
nificant differences to traditional GP mainly at the initial
stage of the search, whereas the fitness difference
becomes less significant as the search goes on. The
allowed search space size in general plays an important
role, as it may become too large to be explored efficiently
(and throughout). For example, in the case of the AF pro-
posed in [22], it was said that “the space of ‘reasonable
size’ AFs is huge” (as it should be to allow capturing a suf-
ficient collection of DSP functions), and, later, that “even-
tually the EDS framework reaches the fringe of the space,
although it certainly does not explore all of it.” Now, de-
pending on the case, such partial exploration might cause
some lack of performance to the generated features,
which is addressed in this article by applying two
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dedicated techniques for converging towards the global
optimum of the parameter search space. The EDS frame-
work applied and discussed in [22] uses several heuristics
as a vital component to guide the search. These may
complicate the system implementation and, in some
cases, cause additional uncertainty or fuzziness (due to
stochastic behavior) to the process. Considering the com-
bined feature selection and feature generation methods
proposed so far, a separate feature selection scheme is
generally required as a part of the main system topology,
whereas the approach proposed in this article provides
feature selection as a built-in property within the under-
lying PSO algorithm. This makes the overall design and
implementation of the method easier, and possibly
decreases the number of adjustable parameters. Finally,
in some cases (e.g., in [20] or in [24] with most of the
cases), it was demonstrated that the generated features
cannot always improve the final classification results,
which is an issue worth taking into a deeper discussion in
order to discover valid reasoning for such synthesis behav-
ior. It could be that the search for the optimal synthesis
parameters in a high-dimensional solution space gets
trapped into a local optimum, ultimately yielding deficient
synthesis results. Another reason could be that the evalu-
ation of the feature quality does not correlate with the ac-
tual performance obtained using the features. The
problem might also relate to the manually selected di-
mension for the synthesized FV, which may serve as an
apparent source of sub-optimality. Nonetheless, in the
previously proposed feature generation approaches, the
dimensionality issue is only rarely considered and dis-
cussed. In [22,27], separate classification experiments with
different FS dimensions are performed and compared.
Automatic, simultaneous, and on-going search and
optimization regarding to output FV dimensionality, how-
ever, is a novel property provided by the synthesis tech-
nique proposed in this article.

The proposed feature synthesis technique

In this article, we aim to overcome the mentioned pro-
blems by proposing an evolutionary feature synthesis
(EES) technique based on PSO. The technique is applied

Table 1 Comparison of GA and PSO as search algorithms
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for audio feature selection and synthesis. The main mo-
tivation for the work is to provide improved content-
based audio classification and retrieval performance. To
motivate the selection of PSO instead of the generally
applied GA (or its derivatives), a comparison of the two
algorithms, based on [9], is provided in Table 1. In short,
the main advantage of PSO over GAs is that the algo-
rithm provides more profound intelligent background
[28], and it can be performed more easily than GAs [28].
Also, the computation time of PSO is usually less than
for GAs, because all the particles in PSO tend to con-
verge to the best solution rather quickly [29]. The syn-
thesis approach presented in this article provides the
ability to apply any fitness measure found appropriate
for the final feature task at hand (such as classification).
Furthermore, we apply a multi-dimensional extension of
the basic PSO algorithm (MD PSO, [30]) to allow dy-
namic output FV dimensions. This avoids the need of
fixing the dimension of the solution space (correspond-
ing to the dimensionality of the synthesized vector) in
advance, which is a property not considered in the audio
feature generation methods published before.

In order to better avoid the problem of premature con-
vergence related to the traditional PSO, a recent tech-
nique, the fractional global best formation (FGBF)
suggested in [31], is also adopted within the proposed
synthesis approach. A preliminary work was presented
in [32], in which the performance improvement pro-
vided by the approach was tentatively verified in the
context of images. Furthermore, in this article, a hetero-
geneous particle behavior approach, recently proposed
by Engelbrecht [33], is considered. The approach pro-
vides further assistance for the particle swarm to con-
verge to the global optimum of the search space by
altering the particle velocity update rules. Hence, finally,
as a combination of all the PSO extensions, in this study
we propose applying an MD PSO algorithm with FGBF
and heterogeneous particle behaviors for audio feature
synthesis. To the best of the authors’ knowledge, we are
not aware that such an approach (or PSO in general)
should have been proposed earlier in the audio feature
generation field.

Property GA PSO

Genetic operators Included Excluded

Key functions Crossover Social particle interaction
Mutation Particle velocity updates

Information source

Update occurrence
mutation rates)

Local optimum

All the chromosomes (the whole
population moves in one group)

Probabilistic (cross-over and

Can become easily trapped

The global best particle (evolution
only looks for the best solution)

All particles are updated after each
iteration

Can avoid well the local optima
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The rest of the article is organized as follows. The
low-level audio features considered in this research are
described in “Low-level audio features” section, whereas
in “Evolutionary optimization techniques” section, the
underlying evolutionary optimization technique, the MD
PSO, is introduced in detail. “EFS and selection” section
presents an overview and technical details of the pro-
posed feature synthesis approach, and the experimental
results with comparative evaluations are shown and dis-
cussed in “Experimental results” section. Finally, “Con-
clusion” section concludes the article and discusses
topics for future research.

Low-level audio features
In order to provide some important background infor-
mation for the ultimate goal of this study, i.e., improving
the audio retrieval performance, we start by introducing
the applied original (low-level) audio features and the
extraction procedures preceding the actual feature syn-
thesis process. As mentioned in “Introduction” section,
audio features play an essential role in content-based
classification and retrieval tasks, so that selecting and
extracting the “correct” features for the problem at hand
is of utmost importance. Thus, the major focus is on
synthesizing new features from the low-level audio fea-
tures most typically used in the literature. This provides
us a solid “baseline” FSs and allows us to demonstrate
the effectiveness of the proposed synthesis technique.
Two separate audio feature extraction approaches are
used to evaluate the performance of the feature synthesis
with different types of features. In order to detect specific
temporal signal characteristics, the considered audio clips
are processed in short time frames of 40-ms duration.
The first approach extracts segment-based features, while
the second one is based on the so-called “bag-of-frames”
approach [34], where the features are extracted directly
from the short-time frames. The details of the extraction
methods are provided in the following sections.

Segment features

The segment features are extracted based on the method
introduced in [35]. The energy levels of the audio frames
are computed, and then compared to the average energy
level of the whole audio signal to detect and discard si-
lent audio frames. In the second phase, seven audio FSs
(specified on the left column of Table 2) are extracted
from the non-silent frames, and consecutive non-silent
frames are merged to form distinct audio segments.
Hence, theoretically, an audio signal with no silent sec-
tions would be considered as a single segment. However,
due to some background noise or environmental acous-
tics, occasional non-silent frames may occur in the mid-
dle of a silent section. To filter out such noisy frames in
the process, an empirically determined threshold of five
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Table 2 The extracted low-level audio features

Segment features
STAT? (39-D)

Key-frame features
MFCC + A-MFCC+ AA-MFCC (39-D)

12th-order LPC + 14th-order
LPCC (26-D)

K_AUDIO® (31-D)

13 Mel-frequency cepstral
coefficients (MFCC) (26-D)

13 A-MFCC (26-D)
13 AA-MFCC (26-D)

10th-order linear prediction
coefficients (LPC) (20-D)

14th-order linear prediction
cepstral coefficients (LPCC) (28-D)

S_AUDIOP (38-D)

2STAT includes the mean (p) and standard deviation (o) values of signal
statistical features, both in time and frequency domain: mean, variance,
standard deviation, average deviation, skewness, kurtosis, and also the
following segment features (u,0): band-energy ratio (BER), spectral centroid,
transition rate, FF, irregularity (2 versions), flatness (both in linear and decibel
scale), and tonality.

PS_AUDIO includes the following segment features (,0): tristimulus,
smoothness, spectral spread, spectral roll-off, RMS amplitude, inharmonicity,
spectral crest, loudness, noisiness, power, odd-to-even ratio, and sub-band
powers of six frequency bands.

“K_AUDIO includes the following key-frame features: irregularity (two versions),
tristimulus, smoothness, spectral spread, zero-crossing rate, spectral roll-off,
loudness, flatness (linear and decibel scale), tonality, noisiness, RMS amplitude,
inharmonicity, spectral crest, odd-to-even ratio, spectral slope, FF, skewness,
kurtosis, spectral skewness, spectral kurtosis, and 7-band sub-band powers.

consecutive frames was set as a minimum duration for a
signal segment. Finally, the actual audio segment fea-
tures are formed by computing the mean (i) and stand-
ard deviation (o) statistics of each FS (including also the
STAT features, ie., means of means, etc.) over the
formed segments. Thus, as an example, an audio signal
consisting of four separate segments is represented by
four corresponding segment FVs of each FS. For a more
detailed description of the segment feature extraction,
the reader is referred to [35].

Key-frame features

In the second feature extraction approach, the features
are extracted directly from the short time frames. Due to
this, the frames are first Hamming-windowed to avoid
sharp discontinuities at the frame edges. Because there
are many frames already in a single audio clip, a specific
key-frame extraction method, proposed in [36], is ap-
plied to reduce the most redundant frames. Such redun-
dancy occurs because many audio classes, such as music
or speech, contain similar and almost identical sounds
(such as common vowels or same notes of an instru-
ment). In short, the main idea in the frame reduction ap-
proach is to partition the extracted frame features into
distinct clusters (based on their similarity/distance be-
tween each other) and to select only one or few key-
frames from each cluster to represent its corresponding
sound. For this, a minimum spanning tree clustering al-
gorithm is applied, which is detailed in [36]. As an out-
come of the procedure, the overall amount of frames is
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significantly decreased, whereas most of the feature de-
scription power is still maintained. The three frame-level
ESs used in this study are listed on the right column of
Table 2.

The extracted features of Table 2 represent an inclu-
sive set of common audio features found from the litera-
ture. The feature implementations are based on a
publicly available “LibXtract” library [37], although some
of the segment features, such as dominant BER and seg-
ment FF, are extracted as described in [35]. The dimen-
sions of the extracted FSs/vectors are also given in
parenthesis for all sets in Table 2. For example, taking
the mean and standard deviation of the 13th-order seg-
ment MFCC features results to a 26-dimensional FV.
The feature values of each segment/key-frame—as well
as their corresponding ground truth class labels and clip
indices (describing from which audio file a particular FV
is extracted from)—are stored in a single plain text file,
so that the actual audio files are not needed anymore
after the feature extraction phase. For specific definitions
and formulas for the extracted features, the reader is re-
ferred to the audio signal processing literature (see, e.g.,
[38-40]).

Evolutionary optimization techniques

In this section, the PSO algorithm, its multi-dimensional
extension, and the FGBF technique are introduced. The
adaptation of heterogeneous particle behaviors within the
MD PSO process is discussed in detail at the end of the
section.

MD PSO

PSO was first introduced by Kennedy and Eberhart [7].
The PSO algorithm is a population-based optimization
technique, in which a swarm of particles propagates in a
pre-defined search space. Each individual particle, p, of
the swarm represents a potential solution to an under-
lying optimization problem, in which the particles are
evaluated using a proper fitness function, F|[p]. The PSO
algorithm is specifically designed for solving nonlinear
optimization problems. Due to the diversity associated
with randomly distributed particles, the algorithm is
capable of searching the best solution among several
local minima. After the initialization phase of the algo-
rithm, where the particle randomization is performed,
the particles are evaluated and moved iteratively in the
search space. In order to eventually converge to the

dy(t+1)
ydp(t+1)(t+ 1) = ' (t),
p dy(t+1)

Xp (t+1), else,
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global optimum of the search space, each particle p
holds in its memory both social and cognitive terms,
where the former corresponds to the best position found
so far by the entire swarm (the global best) and the latter
stands for the best position found by the particle p itself
(personal best). As will be shortly seen, both the social
and cognitive terms contribute in a stochastic manner to
the particle position at the next iteration round.

An MD PSO algorithm was proposed in [30]. The al-
gorithm allows the particles to make inter-dimensional
jumps and visit any dimension, d, within a given range,
d € |Dmin, Dmax)- Thus, in order to provide improved
fitness scores, the MD PSO searches for the global best
solution among several search spaces with different
dimensions. The particle navigation among the dimen-
sions is controlled by a separate dimensional PSO
process, which is interleaved with the regular positional
update process. For this, each particle keeps also track of
its personal (and the global) best dimension (from which
the best fitness value so far has been achieved).

In a MD PSO process, the components of each par-
ticle p at iteration round ¢ in a swarm of P particles are
presented as,

dy(t): dimension of particle p,

xZ{}(t)(t): J™ element of the position of particle p in

dimension d,,(t),

VZf}(t) (t): /™ element of the velocity of particle p in
dimension d,(z),
yZ‘_}m(t): j™ element of the personal best position of

particle p in dimension d,,(%),
vd,(t): dimensional velocity of particle p,

yd,(t): personal best dimension of particle p,
j/f(t): j™ element of the global best position of the
whole swarm in dimension 4, j, € [1,d]

yd(t): global best dimension of the whole swarm,

where (if not stated otherwise) j €{1,...,d, (t)}. The par-
ticle fitness values are only evaluated within its current di-
mension, meaning that the positional PSO components in
all other dimensions remain the same for the next iter-
ation round £+ 1, that is, x7(£ + 1) = %0(¢), vi(t +1) =
v(£), (¢ + 1) = y(£),¥d € [Din, D] A d(8).
After computing the fitness score of each particle position
with the applied fitness function F, the following update
equations are used for the personal best position and

if 7| (4 1)} > F[yj‘f”('“)(t)}
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dimension of particle p for iteration £+ 1:
and

sies1) = {90 i Fl e ] > AR )]
’ dy(t+1), else.

(2)

Furthermore, for each dimension d € [Dpin, Dmax), the
global best particle position is updated as

3 (6).if min (F |yi(e + )] )27 [3(0)]
argmin (f [y;(t + 1)} ) ,else,

ya(t+1)

Pt +1)=

(3)

and, finally, the global best dimension is updated as

yd(t).if min (f [y;dwn(t + 1)] ) >F [yﬁ“”(t)]
argmin (f [y;dp(‘“) (t+ 1)} ) ,else,

ey (t+1)

yd(t+1)=

(4)

where, in both (3) and (4), p € [1, P].

The particle positions within the current dimension
d,(t) are updated after each iteration as shown in (5),
where w(t) is a so-called inertia weight, c¢; and c, are
pre-determined constants, 7; and 72 are vectors of uni-
formly distributed random variables, that is ryj,7ry; ~
U(0,1),Vj € [1,dy(t)], and C(2, [Zmin, Zmax]) works as a
clamping operator that limits the elements of vector z
between the specified values Z;, and Z,... Typical
PSO parameters [41] were used in this study, that is,
the inertia weight was linearly decreased from 0.9 to
0.4, and ¢; and ¢, were both set to 2. The limiting
values for the particle position, velocity, and dimen-
sional velocity, X, V, and VD, respectively, were empiric-
ally set into proper values, as will be discussed later in
“Experimental results” section. Note that the new par-

ticle position, x, ()(t+ 1), remains in the current di-
mension d,(t) after the positional update, whereas the
dimension may change afterwards in the dimension
update process defined in (6), which is performed at
the end of each iteration round. The |.| operator in
(6) stands for a floor function, and r; and ry, are
now scalar uniformly distributed random variables;
otherwise the update is performed similarly to the
positional updates. For an interested reader, the
pseudo-code and further details of the MD PSO are
provided in [30].
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v e+ 1) = wiowp (@) + ery(0) (o ©

— (t)) + caray(t) (yj"’“) (£) — (t))
iyidp(t)(t 1) = dp(t)(t) +C (v (t + 1), [Vinin, Vmax})

e 41) = C (557 (4 1), o Koo
(5)
vdy(t +1) = [vdy(t) + c1ri(t) (ydy(t) — dp(t))
Feara () (9 (t) — dp(t))]
dy(t +1) = dy(t) + C(vdy(t + 1), [VDmin, VDmax))
dyp(t + 1) — C(dp(t + 1), [Dimin, Dimax])
(6)

FGBF algorithm

In some cases, the (MD) PSO algorithm suffers from the
so-called premature convergence problem, meaning that
the global best particle traps into a local minimum in the
search space. This is especially true in high-dimensional
and multi-modal search spaces, which are often encoun-
tered in real-world applications. The problem is mainly
caused by the loss of diversity, meaning that all the parti-
cles are clamped too close to each other in the search
space. A recent method called FGBF [31] has been pro-
posed to tackle this problem by exploiting the potential of
individual particle elements of each particle position. The
idea in the technique is to evaluate a separate fitness
score for each particle element, in order to form an artifi-
cial global best (aGB) particle by combining the best ele-
ments found from the entire swarm. The formed aGB
particle is then applied whenever it surpasses in fitness
the regular global best particle, 7(¢), of the swarm. For
MD PSO, this means that a separate aGB particle needs
to be assigned for each search space dimension,
d € [Dmin, Dinax]- However, in this case the aGB particle
of a particular dimension can be also formed by combin-
ing particle elements from dimensions other than the cur-
rent one. This is demonstrated in Figure 1, where elements
from three different particles from separate dimensions,

Figure 1 An illustration of the formation of an aGB particle
dimension of 4. Elements of three different particles, g, b, and ¢,
having the dimensions of 2, 6, and 3, respectively, are brought
together and combined in the formation process. Note that several
elements can be taken from a single particle.
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dp(t)
Xpj

approach increases the probability of finding an aGB par-

(t) , are combined to form the aGB particle. Such an

ticle with a higher fitness score than the existing 7% (t) so-
lution for the dimension d at stake. For the sake of clarity,
pseudo-code for the FGBF approach within the MD PSO
algorithm is shown in Algorithm 1.

Algorithm 1 Pseudo-code of the FGBF algorithm in MD
PSO

Let [j] = argminyep pF {x;lf}u)(t)}, then

1. Select the best particle indices for each element, b|j],
where j € [1,D,,], among all the particles, p€[1,P].
2. For (d€[Dminy Dmax]) do:

a. Assign the best elements into the aGB solution:

() .
aGBY(t) = xbbﬁ'; )je [1,d].

b.If (F[aGB*(t)] < F[3*(¢)]), then
3(t) = aGB(t).

3. Re-evaluate: yd(t) = argmingF [jd(t)].

Heterogeneous particle behaviors

As proposed recently by Engelbrecht [33], variation of the
particle behaviors, i.e., the velocity update rules, is another
efficient way to enhance the convergence ability of the
swarm in highly multi-modal problems. In addition to the
particle velocity update equations (5) and (6), four other
update models are introduced in this section. The models
are extended to be used with the MD PSO approach so
that the corresponding dimensional update rules are
changed accordingly. Whenever a particle seems to get
stuck into a local optimum, a new behavior model is
assigned to it in a random manner. As well, the initial
behaviors are chosen randomly for each particle.

Cognitive-only MD PSO model

In the cognitive-only MD PSO model [42], as the name
suggests, the social terms 7% () (¢) and yd(t) of the parti-
cles (i.e., the latter terms of (5) and (6) with the ¢, coeffi-
cients) are removed from the velocity update equations.
This leads to broader particle exploration as interaction
among particles ceases. This, instead, causes every par-
ticle to become an independent hill-climber in the search
space. Thus, whenever the particle position is updated
using this model, the (artificial) global best particle pos-
ition is not considered in the update process.

Social-only MD PSO model
Like the previous model, in the social-only velocity rules

[42], the cognitive terms ny}(t) (¢) and yd,(t) of the particles
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(i.e., the former terms of (5) and (6) with the ¢; coefficients)
are removed from the velocity update equations. Such a
behavior provides faster particle exploitation, as now the
entire swarm becomes a single stochastic hill-climber.

Barebones MD PSO
The Barebones PSO was suggested in [43], and in this
model the velocity update rule is replaced by

d L dy(t)
it W)+ )
fo]j (t+1)NN 2 ,0 |, (7)

d,(t L dp(t)
yp,/()(t) 7y]p

changes to fo}<t>(t +1) = VZ{}(t)(t +1), so that the vel-
ocity ends up being the new position of the particle,
sampled from the described Gaussian distribution A .
Similarly, for the particle dimensional velocity, the fol-

lowing equation is applied

%m+n~NG%@+me) @

where o =

(t)‘ The position update

2

where o = |yd,(t) — yd(t)|. Again, the dimension vel-
ocity is considered as the actual new dimension, i.e.,
d,(t + 1) = vd,(t + 1). Note that the clamping operation
is still applied to the obtained positions, so that the set
limiting values are not exceeded.

In the positional point of view, the Barebones MD
PSO facilitates an initial exploration, because at first the
personal best positions are far away from the global best
solution, causing large deviations to the Gaussian distri-
bution. However, as more iterations are performed, the
deviation approaches to zero, causing the behavior to
focus on exploitation of the average of the personal best
and global best positions.

Modified barebones MD PSO
A modified version of the Barebones, also suggested in
[43], is defined as

v (e), if 1(0,1) < 0.5
d, (t) d, (¢) (1)
Vpy (1) = Yoy &)+ (2)
G ) N[ . Jo |, else
9)

and for dimensional update, similarly, as,

ydp(t)a
vdy(t +1) = N(J’dp(t) ;Fj’d(t) ,a>

if t(0,1) <0.5
, else.
(10)

Such a modification increases the exploration during
the initial stages of the search process (compared to
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regular Barebones), as now 50% of the time the focus is
on the personal best solutions. As the process converges,
the behavior will turn to exploitation, when all of the
personal best solutions converge towards the global best
solution.

As mentioned, each particle obtains its starting behav-
ior randomly among the introduced models (including
the regular one), after which the behavior is changed
whenever a particle cannot improve its fitness score for
the last ten consecutive iteration rounds. The whole idea
here is that a new behavior model may help the particle
to step out from a possible local optimum, and hence
eventually provide improvements to the particle fitness
score.

EFS and selection

As earlier discussed, the motivation behind proposing
the EFS technique is to obtain enhanced audio features,
so that audio classification and retrieval performance
can be improved. In this section, we will describe the
proposed feature selection and synthesis technique in
detail. It will be shown that, with a proper encoding
scheme (encapsulating several linear/nonlinear operators
and the selected original features with their weights), the
MD PSO particles can perform an evolutionary search
towards finding the optimal synthesis parameters and
output vector dimension. For this, a proper fitness meas-
ure is to be designed, which maximizes the overall clas-
sification (or retrieval) performance. The fitness
functions applied in this study for evaluating the particle
swarm performance during the synthesis procedure are
introduced at the end of the section.

Definition of the main objectives
In an ideal case, a feature synthesis system, also called
here as a feature synthesizer, receives as its input a spe-
cific set of (low-level) audio features, selects the most
representative and appropriate subset among them,
combines and modifies the features by applying a proper
set of transformation operators and feature weights, and
finally produces a set of new and descriptive features in
an optimal dimension with respect to the fitness func-
tion assigned for the problem. Such an ideal feature syn-
thesis operation (for the purpose of clustering) is
demonstrated in Figure 2, where two-dimensional fea-
tures of a 3-class dataset are successfully synthesized
into clearly distinct clusters, enabling a much easier clas-
sification and/or retrieval task compared to the original
feature distribution. Note that, unlike in the figure, the
proposed feature synthesis approach allows the output
dimension to differ from the original dimension.
Changing the output dimensionality makes the ap-
proach somewhat similar to SVM, which attempt to
transform the original features into a higher dimension
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Criginal Synthesized
feature O .
o X o synthesis [m} I:[Ij : 7
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Figure 2 An example of an ideal feature synthesis performed
to 2D FVs representing three classes. The synthesized features are
much more distinct from each other than the original ones.

- J

to enable linear separation. However, a drawback with
SVMs is their high dependency on the applied kernel
function and the corresponding internal parameters,
which may not fit to the problem at hand properly. This
phenomenon is demonstrated in Figure 3, where two
successful sample feature synthesizers are presented for
a two-class classification problem. The upper case corre-
sponds to an SVM with a polynomial kernel in a quad-
ratic form. It is indeed capable of performing a proper
transformation from 2D to 3D, enabling thus a linear
separation between the two classes. However, in the
lower case, a sinusoid with a proper angular frequency,
w, needs to be applied instead for satisfactory class dis-
crimination. Hence, it can be seen that searching for the
correct transformation (instead of applying a fixed ker-
nel) is of paramount importance, and this is actually
considered as one of the main motivations for designing
the feature synthesis scheme proposed in this article.

In light of the above discussion, the main objectives of
the proposed EFS technique are to

e perform a proper feature selection among the
original features,

2
{xIZ, x5, sqrix;x,)}

o class 1

1 | sin(@x) |

0 R 1

1 1D ——> 1D
E— g

Figure 3 Two examples of feature synthesis (or transform)
performed on 2D (upper case) and 1D (lower case) feature
spaces using SVM. Depending on the original data distributions,
different transformation functions are needed for successful feature
separation.
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e search for the optimal operators and feature weights
for the synthesis process, and

e search for the optimal output FV dimension among
a defined dimension range.

Overview of the proposed feature synthesis system

To meet the aforementioned objectives, an evolutionary
search procedure is performed. For each new synthe-
sized feature (meaning a specific single feature in the
generated output FV), the system, with a specified
synthesis depth value K,

1. selects K+ 1 original features fy,. . ..fi , ,

2 scales the selected features with proper weights
wo, ..., WK,

3. selects K operators, 01, ..., 0k , to be applied over
the selected and scaled features, and

4. bounds the output with a nonlinear operator (here
tangent hyperbolic is applied).

Now, suppose that 6,(f;,f,), where n € [1,K], stands
for performing a specific operator 6, over the features f,
and f,. Then, a formula for synthesizing a new feature s;
can be defined as

Sj =tanh[01<(91<_1(. .. 62(61(W0ﬁ), W]fl)7 szz), .. .), WKﬁ()]7
(11)

that is, first the operator 6, is applied to the weighted
features fy and f;, after which the operator 8, is applied
to the result of the first operation and the weighted fea-
ture f5, and so on. Finally, the operator O is applied to
the result of all the previous operations and the
weighted feature fi. With the details provided in “Encod-
ing of the particles” section, the dimension of the
synthesized FV, s , along with the rest of the parameters
in (11) are simultaneously optimized within the applied
MD PSO search process.

In this article, the term “evolutionary” refers both to
the underlying computing technique, the MD PSO, as
well as to the nature of the feature synthesis process it-
self, which can be performed in one or several runs. The
idea here is that each new run can further synthesize the
features generated at the previous run and, hopefully,
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further increase their discrimination power. A block
diagram of the overall synthesis process is illustrated in
Figure 4, where R synthesis runs are performed. The
total number of runs, R, can either be determined in ad-
vance or adaptively, in which case the fitness evaluation
results are monitored after each run, and the process is
stopped after no significant improvement is obtained
anymore. Whether there should be more than a single
set of features to be synthesized, an individual feature
synthesizer will be evolved for each FS. This is done in
order to decrease the computational time needed for the
overall processing, as this enables synthesizing the FSs
in parallel by separate processes.

In a sense, the proposed EFS technique can be seen as
a generalized form of artificial neural networks (ANN).
Considering the four system steps listed above, a single-
layer perceptron (SLP) classifier performs only steps 2
and 4, as neither feature nor operator selection is
involved in the process. Instead, SLP does add a bias
value to its weighted features, which can be mimicked
also in our approach by inserting an additional constant
value of I at the end of each original input FV (which
the synthesizer can then select and scale among the
other selected features). However, as no notable per-
formance gain was witnessed by performing such an ac-
tion, in the end the bias encoding is not considered in
the proposed EFS technique. For further comparison,
note that in the SLP topology the output layer dimen-
sion is fixed, whereas in the EFS the output dimension is
(as mentioned) optimized within the set range. Also no-
tice that performing several consecutive EFS runs corre-
sponds to a multi-layer perceptron (MLP), or, in fact,
any feed-forward ANN type. Similarly to SLP, the MLP
does not include feature selection, and it also performs
with fixed operator and output dimension. An important
difference between the MLP and EFS approaches is that
in the EFS technique the fitness of the synthesized FV is
evaluated after each run, whereas in MLPs only the final
fitness score in the output layer is considered, as the
intermediate network layers are “hidden.”

Encoding of the particles
Recalling the PSO definitions introduced in “MD PSO”
section, the position of a d,(¢)-dimensional particle p at

~

Original
Fv

Audio
Database

Synt.
FV(R-1)

Synt.
FV(I)

Figure 4 A block diagram of the proposed EFS approach with R runs. Different arrows correspond to parallel synthesis processes with
different FSs. The fitness evaluation is performed with a specified fitness function.
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time ¢, xZ" (t)(t), represents a potential solution on how
to perform the synthesis operation over the original fea-
tures, that is, a potential synthesizer. The search space
dimension, d,(t), corresponds to the number of features
synthesized into the output FV, that is, the output FV di-
mension. Each particle position encapsulates a complete
set of synthesis parameters: the indices of the selected
features, the feature weights, and the selected feature
operators. Accordingly, each positional element of a par-
ticle p, xZ‘,}(t)(t), where j € [1,d,(t)], corresponds to a
way of synthesizing the jth feature of the output FV.
Thus, referring to the previously introduced four system
steps, each such element must contain the following:
K+1 indices for selecting the original features, K+ 1 fea-
ture weights, and K operators in an encoded form to
synthesize the corresponding output feature. For this,
the positional elements of each particle in the particle
swarm are encoded in a vector form of length 2K+ 1, in-
cluding K+1 “A-type” and K “B-type” components.
These define the corresponding synthesis parameters as
follows:

fi=14A.] +1,ne{0,K},
wy = A, — |An],n € {0,K},
0, = [By],n € {1,K},

(12)

where the |.| and [.] operators correspond to the floor
and ceiling mathematical integer functions, respectively.
The value ranges for the components can be defined
based on the input FV dimension, £, and the total number
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of operators available, ®, as A, € [0, F[and B, €]0,9] .
The weight values are limited to 0 <w,, < 1.

To give an example of the particle encoding scheme,
Figure 5 presents a 6D particle p with the corresponding
synthesis process. Note that only the synthesis process
of the first element of the output FV at run r, FV(r), is
shown in detail, although a similar process is performed
for all the output vector elements. For simplicity, the
synthesis depth value, K, is set to 3, meaning that only
K+ 1=4 features, fo,. . ..f3, are selected from input FV(r —
1). Thus, as demonstrated in the figure, each of the par-
ticle elements includes 2K+1=7 encoded synthesis
components, Ao,...,Az and Bj,...,B3. The dimension of
the input FV (which may either refer to the original FV
consisting of a specific set of low-level features, or to an
output FV from a previous EFS run, r — 1) is F=8. As
the total number of operators is set to ® =5, the value
ranges for the two component types can be defined as
A, € [0, 8[and B, €]0,5]. In Figure 5, the selected features
obtained by the underlying MD PSO process are the 7th,
3rd, 1st, and again the 3rd element of the input FV, while
the corresponding operators are selected as ‘+, ‘min; and
" Thus, performing the synthesis process as given in (11),
the first element of the output FV is obtained by

51 = tanh[min((wqu + w]f[gl),w [1]) * W3f[3ﬂ,
(13)

where f|,) stands for the nth element of the input FV.
Considering again the similarities of the EFS technique
and an SLP classifier, it can be noticed that by setting

FV(r=1)

~

S/ pa =
U -7 \t
~ =]/ [ min]

and the number of operators defined as @ =5.

Figure 5 An example of a particle encoding in a 6D feature space with a synthesis depth set to K=3, an input FV dimension of F=8,
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K+1=F discarding the feature selection as f, = fi,, and
setting each operator 6, to ‘+, the two approaches be-
come identical. Similarly, by performing several runs
with such synthesis parameters corresponds to an MLP
approach with a one-to-one analogy between the num-
ber of hidden layers and the number of runs performed.
In this sense, it can be stated that a regular feed-forward
ANN is a special case of the proposed EFS approach.

The fitness measures

Proper designing of the applied fitness measure plays an
essential role in the feature synthesis process. The design
is dependent on the intended use of the features, as the
measured fitness value should highly relate to the object-
ive of the synthesis process. Traditionally in content-based
classification and retrieval scheme, specific similarity mea-
sures, such as Euclidean distance, are applied to measure
the distances between the FVs of a classified (or queried)
item and each item belonging to the database. In a re-
trieval case, the performance can be evaluated using the
average precision (AP) metric, or the so-called average
normalized modified retrieval rank (ANMMR), which is
defined in the MPEG-7 standard [44].

As the main goal of the research is to improve audio
retrieval performance by the means of feature synthesis,
an intuitive approach for constructing a proper fitness
function F[-] for the task would involve computing ei-
ther the average retrieval precision (AP) or the ANMMR
values. However, neither option would be computation-
ally feasible for large databases, as they both require
conducting a separate batch query (ie., selecting each
item in the database as a query item one by one, per-
forming a separate query for each of them, and finally
taking the mean of the obtained retrieval results) for
every fitness evaluation during the synthesis process.
Therefore, in this article, we concentrate on obtaining a
maximal discrimination between the features of differ-
ent database classes, which should in turn result in
improved retrieval performance. To achieve this we
propose two alternative ways to form the fitness func-
tion, described in the following sections.

Discrimination measure

First, a measure for evaluating the discrimination capabil-
ity provided by the synthesized features is proposed. The
measure is based on two widely used criteria in clustering:

o Compactness: the database items of one cluster
should be similar and close to each other in the
feature space, and

o Separation: different clusters and their centroids
should be distinct and well separated from each
other.
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Suppose the different labels of an L-class database are
denoted as /o, ...,/;1, and the corresponding class cen-
troids as y, . .., #;_,. Then, the following discrimination
measure (DM) can be defined over a set of synthesized
FVs, S={s},

DM]S] = FP(S) + Smean (In)/Smin Ly Lin ),
where Z

WS SN
6mean(ln) - Z;T’
Omin (b ) = ity ({148, — phy])-

(14)

The terms of (14) are defined as follows: FP(S) stands
for the number of false positive FVs occurring among
the synthesized FVs S, meaning that those FVs are actu-
ally located in closer proximity to some other class cen-
troid than their own, mean(ly)is the average intra-class
distance, and Omin(ly,n) corresponds to the minimum
centroid distance among all the classes. Thus, the dis-
crimination measure, DM([S], strives for minimizing the
intra-cluster distance, while maximizing the shortest
inter-cluster distance. Ideally, each synthesized feature is
in the closest proximity of its own class centroid, thus
leading to a high discrimination among classes as illu-
strated in Figure 2. However, minimizing the DM does
not always lead to improved retrieval results. This is due
to the fact that query items located at the outskirt of
their own classes may be actually situated in closer prox-
imity to some other FV located on the outskirt of its
corresponding (wrong) class. Thus, in order to improve
not only the feature discrimination in the feature space,
but also the audio retrieval performance, next we
propose applying a similar methodology that is utilized
in feed-forward ANNs.

Target vector assignment

In the second approach, the idea is to assign a binary
synthesizer target vector for each class, and let the
underlying optimization algorithm to search for the
proper synthesis parameters producing the desired out-
put. The actual fitness value is then obtained by compar-
ing the obtained and desired output vectors in a mean
square error (MSE) sense. However, as the output di-
mension of the EFS is not fixed in advance, a separate
target vector is generated for each dimension d €
[Dinin; Dmax) > resulting to a complete target matrix. For
producing the matrix, a so-called error correcting output
code [45] analogy is applied, which suggests two criteria
for generating proper binary target matrices:

e Row separation: The target vectors should be well
separated from each other in the terms of Hamming
distance.
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e Column separation: Also the columns of the target
matrix should be well separated from each other in
the terms of Hamming distance.

Large row separation allows the synthesized vectors
to differ somewhat from the actual target vectors with-
out losing the discrimination between different classes.
The reasoning for large column separation follows
from the fact that each column in the target matrix
can be seen as an individual binary classification task
(between the classes having a value 1 and the classes
having a value -1 in a specific column). Because of
the varying similarity between two arbitrary audio
classes, some of such binary classifications are likely to
become much easier than others. Hence, as the same
target vectors are nonetheless applied to any given in-
put classes, it is also beneficial to keep the binary clas-
sification tasks as different as possible by maximizing
the column separation.

To generate a binary matrix with maximal row and
column separation, the following matrix generation pro-
cedure is used:

1. Compute the minimum number of bits, b.,;,, needed
to represent the total number of classes, L, in the
database.

2. Form an empty matrix with L rows.

3. For each row, assign a binary representation of the
row number n € [0,L — 1] as the first/next by,
target vector values.

4. Move the first row of the matrix to the bottom and
shift the other rows up by one.

5. Repeat the steps 3 and 4 until D,,,, target vector
values have been assigned.

6. Replace the first L values of each target vector with a
1-of-L coded [46] section.

The procedure generates new columns until the
matrix is rotated back to its original order, resulting into
a high column separation. Simultaneously, the row sep-
aration is greatly increased compared to the regular 1-
of-L coding section. However, in practice it was observed
that for distinct classes it is often easiest to find a
synthesizer that discriminates a certain single class from
the others, and, therefore, sparing the 1-of-L coding sec-
tion at the beginning of the matrix generally improves
the synthesis results. For the vector dimensions d < D,y
only the first d elements of the target vectors are consid-
ered. This yields identical target vector elements be-
tween the vectors of different length, allowing the FGBF
algorithm to combine particle position elements from
different dimensions (refer to FGBF algorithm).

For clarification of the procedure, a target matrix for a
4-class database is demonstrated in Figure 6, where the
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maximum dimension is set to Dy, =10, and the mini-
mum number of bits needed to represent the L=4
classes is by, =2. The empty entries of the matrix cor-
respond to values -1, and T'[/,] stands for a target vector
for class /,. As illustrated in this example, the generated
matrix follows the provided algorithm with its 1-of-L
coding section for the first L elements, followed by the
elements created by the shifted rows of 2-bit row num-
ber representations.

By applying the definitions given above, the fitness
value for the jth elements of all the synthesized FVs, S,
can be computed as

L-1

> (1t

n=0 Vsel,

2
_51) ’

where T'[l,]; denotes the jth element of the target vector

(15)

of class /,, and s; is the jth element of a single synthe-
sized output vector belonging to class /,. The overall fit-
ness score F[S] can then be formed by adding the
fractional fitness scores F;[S;| together and applying
normalization with respect to the number of dimensions.
However, due to an observation that the first L vector
elements, having the 1-of-L encoding, are usually the
easiest ones to synthesize (and thus mainly favored in
the dimension search by the MD PSO algorithm), the
first L vector elements are handled separately in
the summation process. Thus, for the dimensions d> L,
the normalizing divisor is strengthened by an additional
power parameter a > 1, which is to moderately increase
the probability of converging into higher output vector
dimensions whenever found beneficial. As a result, the
overall fitness function F[S] can be formulated as

1L Ll )
FIS =722 > (T~ )
j=1 n=0 vsel,
Ly S 2
f L (ru)-s)' o)
(d B L j=L+1 n=0 Vsel, !

in which it is assumed that D,.;, > L.
e N

T[]
Tl1;]
T[il,]
T[ls]

Figure 6 An illustration of a target matrix assigned for L=4
classes.
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Experimental results

The EFS technique proposed in this article was tested
with several audio classification and retrieval experi-
ments using two separate audio databases. The first
database consists of six distinct classes, while the second
one was created by adding another six classes to the first
database to form a more challenging 12-class database.
The contents of the two databases are shown in Table 3,
where the class numbers ranging from 1 to 6 belong to
the basic database of 6 classes, and the extended data-
base with 12 classes includes also the class numbers ran-
ging from 7 to 12. The audio class samples are collected
from a few different data sources; the speech classes
(class nos. 1 and 7) are derived from the TIMIT® data-
base, the music classes (class nos. 5, 6, and 12) are from
the RWC Music Database” and another music collection
at Tampere University of Technology (TUT), the “gen-
eral” audio sounds (class nos. 4, 9, 10, and 11) were pur-
chased from the StockMusic.com webpage,® and, finally,
the singing and whistling samples (class nos. 2, 3, and 8)
are self-recorded and produced at TUT. The reasoning
for two separate databases is to evaluate the scalability
of the proposed feature synthesis system to more com-
plex and difficult classification and retrieval tasks (i.e., to
those cases where good features are truly needed).

In the experiments shown in this section, unless stated
otherwise, the following parameters and settings were
used for the EFS: the depth of the synthesis was set to
K =7, meaning that 7 operators and K+1=8 features
were chosen for the synthesis process of each output
vector element, and the total number of operators, listed
in Table 4 for features f, and f;, was set to ® = 18. Simi-
larly, the parameters for the MD PSO algorithm were set
as follows: the swarm size was set to P=600 particles,
1,500 iterations were used, the dimension ranges for the
basic and extended databases were set as [Dpin, Dmax] =

Table 3 The contents of the two audio databases
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[7,45] and [Dmin, Dmax] = [13,45], respectively, and the
dimensional velocity range was experimentally deter-
mined as [VDin, VDmax] = [—6,6] . Finally, the param-
eter o >1 used in (16) was determined separately for the
key-frame and segment features as o =1.15 and a =1.3,
respectively, as these values were found out to yield the
best trade-off between the computational cost caused by
higher dimensionality and the possible lack of perform-
ance caused by reduction of the synthesized FV
dimension.

In this study, separate “training sets” were considered
for both databases. The training sets were formed by
random selection, such that 45% of the audio clips of
each class from both databases were included to them.
Analogous to supervised machine learning, extracted
features of these training sets were then used in search-
ing the most suitable synthesis parameters for the corre-
sponding databases, after which the found parameters
were applied in synthesizing the features of the whole
data. Thus, after the parameter search process, the
resulting EFS system may synthesize new features for
the rest of the (unseen) data without further
optimization processes. The final obtained synthesized
features were tested with multiple evaluations, demon-
strating their enhanced discrimination capabilities over
the original FSs.

Performance evaluations on feature discrimination

We will first concentrate on evaluating the feature
DM of the original and synthesized FSs. The DM was
given in (14), and the obtained results for the original
and synthesized segment- and key-frame-level audio
features of low-level audio features are shown in
Table 5. Recall that the higher the DM value, the
more the features are mixed up with each other in
the feature space (indicating less discrimination). As

Class number

Audio class name Number of samples

12-class audio 6-class audio 1 Female speech 111
database (extended) database (basic) 5 Male singing 63
3 Whistling 94
4 Breaking glass 83
5 Classical music 116
6 Electrical/techno music 107
The 6 added classes 7 Male speech 103
8 Female singing 119
9 Bird singing 91
10 Dog barking 49
11 Fire sounds 9%
12 Rock/metal music 72

Total 1104
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Table 4 The list of operators used in the feature synthesis
process for features f, and f,

6, Formula 6, Formula

0 —fy 9 fox 1y

1 ~fy 10 10 (fy * fp)

2 max (fg, fp) 11 fo/fp

3 min (f,, fp) 12 sin (100m(f, + £,))

4 fo*fy 13 cos(100m(f, + )

5 fy * fy 14 tan(100m(f, = fp))

6 fo+ 1ty 15 tan(100m(f, + 1))

7 10 (fy+1p) 16 0.5 = exp(—(fu—fp) * (fa—1p)
8 fa="to 17 0.5 * exp(+ (fy+1p) * (fla+ 1))

expected, it can be seen that discriminating the fea-
tures of the extended 12-class database is significantly
more challenging than those with the basic database.
However, after performing the feature synthesis pro-
cedure with the found synthesis parameters, substan-
tial DM improvements were obtained for all the FSs.
Note that, due to the stochastic nature of the under-
lying optimization approach, ten separate EFS evalua-
tions were performed for all the FSs, and the
obtained mean (p) and standard deviation (o) values
are also reported. The rest of the synthesis results
presented in this section conform to the same
protocol.

As the DM as such is not an intuitive measure of
fitness for the FSs, we will concentrate on demon-
strating the audio retrieval performances obtained
with different FSs. Recall, however, that in general the
usage of new synthesized features is not by any
means restricted to merely retrieval purposes. Instead,
as long as a proper fitness function can be designed,
the EFS technique can be applied to basically any task
requiring feature improvement. To show an example,
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a rather obvious application is demonstrated, in which
a K-means classifier is applied. The algorithm was
first run with the formed training sets to compute
the class centroids, after which the unseen (55%) test
data samples were classified according to their closest
class centroid. The classification error (CE) results
obtained with the synthesized features for the both
databases were compared to the errors associated
with the original FSs. The results, shown in Table 6,
indicate clearly improved classification performance
obtained by the new synthesized features.

Performance evaluations on audio retrievals

For evaluating the audio retrieval performance, the
metrics, ANMRR and AP, introduced in “The fitness
measures” section were applied. In our approach, we
first compute (using Euclidean distance) the distances
between the first FV of a query item and all the FVs of a
particular database item from which we take the mini-
mum distance (normalized by the vector length) and
store it. Second, we take the next FV of the query item
and continue similarly with all the query item FVs. Fi-
nally, before moving to the next database item, we take
the sum of all the obtained minimum distances to obtain
a single distance value between the queried item and the
database item (which is used to rank that query item). In
order to provide some baseline results, the ANMRR and
AP values obtained by using a batch query and the ori-
ginally extracted audio features are shown in Table 7. As
expected, for both the segment- and the key-frame-
based FSs, the retrieval performance deteriorates
considerably as the database size increases from the
basic 6-class database to the extended 12-class database.
Like in the results shown in Tables 5 and 6, the segment
MECC features seem to provide the best performance
among the original FSs.

Table 5 The DM statistics of ten separate EFS evaluations for the original and synthesized features

FS Basic database (6 classes) Extended database (12 classes)
Original DM Synthesized DM (u + o) Original DM Synthesized DM (p+ o)
Segment
STAT 500.5 436+6.7 1793 4003 +47.6
MFCC 3334 615+85 1141 361.0+£224
A-MFCC 515.7 1305+79 1865 620.1£27.1
AA-MFCC 622.6 1409+11.5 2072 53274236
LPC 1114 2703+89 4520 1204 +£29.1
LPCC 1638 3103+£128 10830 1395+ 26.5
S_AUDIO 3426 56.0+4.1 1365 3828+15.2
Key-frame
MFCC + deltas 2627 8206+53.6 7113 3093 +138
LPC+LPCC 6951 2143 +£394 23 900 6378157
K_AUDIO 3150 782.7+50.5 10 140 2774 +£154
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Table 6 CE of a K-means classifier over the original and synthesized features

FS Basic database (6 classes)

Extended database (12 classes)

Original CE (%)

Synthesized CE (%)

Original CE (%) Synthesized CE (%)

Segment

STAT 333 152+16
MFCC 182 13517
A-MFCC 30.7 242+14
AA-MFCC 37.8 291 +£2.1
LPC 47.5 418+13
LPCC 576 456114
S_AUDIO 221 180+£09
Key-frame

MFCC + deltas 372 292+22
LPC+LPCC 756 644+12
K_AUDIO 538 360+46

548 374+24
360 344+29
483 399+15
56.7 394+23
70.8 684+20
789 745+16
428 343+£20
503 500+20
86.8 845+12
69.1 462+27

Next, a standard SLP classifier was trained with the
MD PSO approach (by the methods described in [30]),
in order to compare the proposed EFS technique with
neural network-based approaches. Similar to EFS, an
SLP can be treated as a feature synthesizer, in which case
the original audio features are propagated through the
network and the output layer dimensionality is set equal
to the total number of classes, L. We call the resulting
output vector a class vector, as it indicates the class
designated for a particular input FV. The corresponding
ANMRR and AP values obtained with these vectors are
shown in Table 8. Compared to the values obtained with
the original features, a clear improvement can be
observed with nearly all the ESs, excluding some of the
segment features of the extended database. As

Table 7 The retrieval performances obtained with the
original features for both audio databases

FS Basic database Extended database
(6 classes) (12 classes)
ANMRR AP (%) ANMRR AP (%)
Segment
STAT 0.358 61.0 0514 459
MFCC 0228 73.8 0367 60.2
A-MFCC 0351 622 0.507 46.6
AA-MFCC 0379 59.5 0.531 444
LPC 0.549 431 0.686 29.8
LPCC 0.569 411 0.717 269
S_AUDIO 0.263 71.0 0450 523
Key-frame
MFCC + deltas 0460 514 0.568 410
LPC+LPCC 0.637 348 0.787 204
K_AUDIO 0.375 59.5 0524 449

mentioned in “Low-level audio features” section, this is
most probably due to the fact that, because of the nature
of the segment-based features, the total number of FVs
per an audio clip is considerably less for segment fea-
tures than for key-frame features. Hence, because the
FV dimensionality is highly decreased during the SLP
synthesis process (to L), the extended database is ex-
tremely complicated for an SLP classifier to learn with
such a limited amount of data. In contrast, the basic
database is well learned by the SLP, as an AP of nearly
90% is achieved with the segment-based MFCC features.

We will now demonstrate the significance of the add-
itional properties associated with the EFS technique

Table 8 The retrieval performances obtained with the
class vectors of an MD PSO-trained SLP classifier for both
audio databases

FS Basic database Extended database
(6 classes) (12 classes)
ANMRR AP (%) ANMRR AP (%)
Segment
STAT 0.238 750 0626 364
MFCC 0.101 89.2 0518 473
A-MFCC 0339 64.7 0.581 40.0
AA-MFCC 0.290 70.1 0.585 40.1
LPC 0491 49.7 0673 313
LPCC 0.564 423 0.714 274
S_AUDIO 0.229 75.7 0578 412
Key-frame
MFCC + deltas 0.279 70.2 0414 56.5
LPC+LPCC 0.669 321 0.794 19.7
K_AUDIO 0.308 67.7 0.504 47.1
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germane to SLPs. In the first demonstration, the feature
selection property is enabled and applied to the input
FVs, so that only K+ 1 =8 original features are included
into the actual synthesis process. The output FV dimen-
sionality is fixed to L, and only the ‘+” and ‘—‘ operators
are included in the synthesis process in order to mimic
the behavior of typical neural networks (the subtraction
operation is also needed to compensate with SLP
weights, which are limited to [-1,1]). Such arrangements
make the EFS similar to an SLP classifier (with the ex-
ception of additional feature selectivity). The retrieval
performance obtained with these settings is shown in
Table 9, from where it can be seen that, excluding the
MECC features, the results are fairly comparable to
those obtained with the SLP classifier. This is a result
worth noting as only eight features were selected among
the original input FVs. Such a reduction in the number
of original features (without significant performance
loss) suggests that at least some of them may not be es-
sential to attain optimal discrimination capability.

In the next phase, the fixed output dimensionality of
the synthesis method was changed so that the optimal
dimensionality found using the underlying MD PSO al-
gorithm was used in the synthesis process. All the opera-
tors shown in Table 4 were included to the process to
provide the synthesizer more possibilities for modifying
the features. After the changes, a significant improve-
ment in the retrieval performance was obtained, as
shown in Table 10. Hence, optimizing the output FV
dimension (and applying several operators in the
synthesis process) significantly enhances the retrieval

Table 9 The retrieval performance statistics obtained
using the EFS technique with fixed output dimension and
only two operators
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performance. However, it should be noted that retrieval
performance obtained with the original segment-based
MECC features of the extended database could not be
improved either by the SLP classifiers or by the EFS
experiments made so far. We believe this indicates that
the MFCC features need to be treated as a whole and
that selecting only few of them may decrease the overall
retrieval performance. However, in this instance the per-
formance drop is limited and clear performance
improvements relative to key-frame-based MFCC fea-
tures are still achieved. Also key-frame LPC + LPCC fea-
tures show only minor improvements in AP values,
which implies that certain audio features are not as
synthesizable as others or that different types of arith-
metic or logic operators may be required to achieve sig-
nificant improvements in discrimination performance.
Finally, several comsecutive EFS runs were performed
to see whether the obtained synthesis results can be fur-
ther improved (see Figure 4 in “Overview of the pro-
posed feature synthesis system” section). Retrieval
performance associated with certain synthesized FSs
improved over several runs (<25), whereas some other
features could not be enhanced notably. More generally,
the segment-based features were more suitable for con-
secutive EFS runs, as retrieval performance of the key-
frame features remained rather stable during the runs. A
graphical presentation of the experiments is shown in
Figure 7, where the evolution of both the AP results and
the synthesized FV dimensions over 25 synthesis runs
are shown for several FSs and for both databases (L =6/
L =12). For simplicity, those FSs unable to demonstrate

Table 10 The retrieval performance statistics obtained
using the EFS technique with dynamic output dimension
and 18 operators

FS Basic database Extended database FS Basic database Extended database

(6 classes) (12 classes) (6 classes) (12 classes)

ANMRR AP (%) ANMRR AP (%) ANMRR AP (%) ANMRR AP (%)

(nxo) (uxo) (uxo) (uxo) (nxo) (nxo) (nxo) (nxo)
Segment Segment
STAT 02780016  704+17 0534+0024 441+24 STAT 0.167+0013  81.7£15 0425+£0012 550+12
MFCC 0280+£0.022 696+2.1 0.528+£0.023 449+22 MFCC 0221 £0.021 755+22 0398+0012 575%12
A-MFCC 0375£0016  606+16  0574+0.011 406£10 A-MFCC 0332£0015 647+15 0511£009 439+3.1
AA-MFCC 0393+£0013 590£13 0598+0020 383+20  AA-MFCC 0313+0016  66.7+16  0526+0033 450+32
LPC 0549+0006 438+06 0729+0013 257+12  LPC 0524+0016 46.1+15 0675+0008 31.1+08
LPCC 0589+£0015 396+15 0740+0006 248+05 LPCC 0556+£0010 428+1.0 0720£0017 267%16
S_AUDIO 0236+£0015 74716 0480+0013 499+12  S_AUDIO 0171£0011  815+12 0442+0029 534+29
Key-frame Key-frame
MFCC+deltas  0463+0024 514+23 0629+0030 352+28 MFCC+deltas  0371+0012  603+12 0470£0012 505+1.1
LPC+LPCC 0709+0007 284+0.7 0813+0003 180+03  LPC+LPCC 0634+0013  353+12 0775£0011 216+10
K_AUDIO 0346+£0016 63015 0532+0012 444+12 K_AUDIO 0289+£0029 687+28 0441+£0009 532+09
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much improvement during the process are not shown in
the graphs, whereas the best obtained AP values of all
the FSs are shown in Table 11. The most significant ob-
servation concerns the behavior of the extended data-
base segment features (upper right plots in Figure 7),
where major improvements can be seen with all the
shown FSs. Moreover, the dimensionality of the
“S_AUDIO” FV could be reduced to only 13. Also note
that now the AP performance of the synthesized
segment-based MFCC features surpasses the original
features after the second EFS run. However, in the case
of key-frame features (the lower plots), the improvement
is more moderate, stating that these features have not as
much additional potential to be found by repeating the
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synthesis process, or at least such potential could not be
found in the experiments using the applied MD PSO
and EFS parameters.

Comparative evaluations and discussion

In order to provide some additional comparative results,
an MLP classifier was trained using the MD PSO
algorithm as described in [30]. In this approach, a
specific architecture space (AS) with lower and upper
limits for the number of neurons for each network layer
is specified, from which the applied optimization
algorithm searches for the optimal network structure
for synthesizing new features. Two different ASs
were experimented, specified by the limiting vectors
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Table 11 The best retrieval performances obtained by 25
consecutive EFS runs
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Table 12 The retrieval performances obtained with the
class vectors of an MLP classifier

FS Basic database Extended database

(6 classes) (12 classes)

ANMRR AP (%) ANMRR AP (%)

(run no.) (run no.) (run no.) (run no.)
Segment
STAT 0134 (run 7) 858 (run 7) 0.380 (run 23) 604 (run 23)
MFCC 0.181 (run 6) 809 (run 6) 0.333 (run 22) 65.3 (run 22)
A-MFCC 0.235 (run 16) 76.0 (run 16) 0.514 (run 7)  47.0 (run 7)
AN-MFCC 0.258 (run 10) 73.2 (run 10) 0.467 (run 10) 51.4 (run 10)
LPC 0.446 (run 22) 543 (run 22) 0.673 (run2) 314 (run 2)
LPCC 0.521 (run 24) 473 (run 24) 0710 (run 1)  27.7 (run 1)
S_AUDIO 0.135 (run 3) 856 (run 3) 0.386 (run 25) 60.0 (run 25)
Key-frame
MFCC+deltas 0.346 (run4) 633 (run4) 0462 (run 2) 514 (run 2)
LPC + LPCC 0638 (run 2) 350 (run2) 0.757 (run 2) 233 (run 2)
K_AUDIO 0.251 (run 2) 725 (run 2) 0426 (run 10) 55.6 (run 16)

AS1in = {F,13,L}, AS1 max{F,45,L} and AS2min =
{F,8,4,L},AS2 n.x = {F,16,8,L} , where the fixed in-
put and output layers F and L correspond to the number
of input features and database classes, respectively.
These settings correspond to performing two (AS1) and
three (AS2) consecutive EFS runs. For this reason, the
number of MD PSO iterations were set to 2%1500 =
3000 and 3*1500 = 4500 , respectively, in order to have
a fair comparison. Both ASs were separately searched
with the MD PSO algorithm and the best network con-
figuration was used to generate the corresponding MLP
class vectors from the original features. The obtained re-
trieval performance measures are shown in Table 12,
where also the AS number (1 or 2) yielding the better
result is shown in parenthesis. The MLP classifier per-
forms notably well with the segment-based MFCC fea-
tures for the basic database, whereas its performance
falls below the EFS results with the extended database.
This result suggests that regular neural networks can
succeed as synthesizers with rather small and simple
databases. Also, as no feature selection is performed, the
MLP can utilize the original MFCCs as a whole, which
may ease the synthesis process. On the other hand, when
it comes to the key-frame-based MFCC feature perform-
ance, the difference is not as significant. This suggests
that the content and nature of the original FV indeed
has an effect on the synthesis process output both with
ANNSs and EFS.

Strictly speaking, performing several EFS runs in a row
is analogous to concatenating several SLP classifiers such
that the output class vector of a previous SLP is consid-
ered as an input vector for the next one. To see whether
such an arrangement makes a difference in retrieval

FS Basic database Extended database

(6 classes) (12 classes)

ANMRR AP (%) ANMRR AP (%)
Segment
STAT 0334 (1) 66.0 (1) 0620 (2) 3712
MFCC 0.089 (1) 904 (1) 0532 (1) 457 (1)
A-MFCC 0.340 (2) 65.3 (2) 0.680 (1) 309 (1)
AA-MFCC 0.320 (1) 66.8 (1) 0634 (2) 353 (2)
LPC 0489 (1) 50.2 (1) 0.704 (2) 28.7 (2)
LPCC 0.562 (1) 426 (1) 0.746 (1) 244 (1)
S_AUDIO 0.255 (1) 736 (1) 0.561 (2) 432 (2)
Key-frame
MFCC + deltas 0.334 (1) 64.8 (1) 0.555 (1) 42.7 (1)
LPC+LPCC 0.669 (1) 321.(1) 0.805 (1) 188 (1)
K_AUDIO 0391 (2) 594 (2) 0604 (1) 380 (1)

performance, Figure 8 shows the evolution of AP values
of ten concatenated SLP classifiers trained with the MD
PSO. The obtained results are shown also numerically
for all FSs in Table 13. Compared to single SLP evalua-
tions, no significant improvements were achieved by
concatenating the SLP classifiers. Rather, retrieval per-
formance begins to decrease either immediately or after
two or three SLP classifiers. This leads to a conclusion
that, at least with the databases and parameters used in
our study, SLP (as a feature synthesizer) achieves its best
performance almost right away, whereas the proposed
EFS framework can improve its performance over sev-
eral additional synthesis runs. Moreover, in most cases
the EFS results are clearly better than those obtained
with MLPs, which supports the EFS approach of per-
forming the fitness evaluation after every run.

Finally, the evaluation shown in Figure 7 was repeated
for segment-based features so that every EFS run was
repeated three times, with only the best synthesis solu-
tion (i.e., the one maximizing the retrieval performance
in the training dataset) being used. This was done in
order to demonstrate the full potential of the EFS tech-
nique; in this way the occasional sub-optimal solutions
(caused by the stochastic nature of the search process)
can be reduced efficiently. Note that unless grid comput-
ing with parallel processes can be used, the processing
time would be three times longer. Hence, such a demon-
stration is more about providing an idea of EFS’s poten-
tial than a practical application. Nevertheless, Figure 9
shows additional improvements in AP scores, especially
in the case of the extended 12-class database where per-
formance increases notably. With the basic database, the
optimal performance level (in the sense of AP values) is
reached after 5-7 runs. Note that improved retrieval
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Evolution of SLP average precisions, L=6 (segment features)
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Figure 8 The AP performances obtained by consecutive SLP classifiers. In general, the results cannot be further improved by concatenating
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performance was also obtained using lower FV dimen-
sions than the original ones, which is an attractive prop-
erty considering the computational requirements for
processing the vectors. For example, the dimensionality
of the synthesized vectors can significantly be decreased
for STAT and S_AUDIO features. However, the best FV
dimensions found may vary depending on the FS. Specif-
ically, it was observed that synthesizing the 26-
dimension MFCC features of the extended database into
a lower dimensionality (and yet obtain improved re-
trieval performance) is a challenging task. Nonetheless,
allowing a dynamic output FV dimensionality is an ad-
vantage, as specific applications (or classifiers) requiring
synthesized features may have strict computational (or
other) constraints on the FS dimensions. Such require-
ments can be met with the EFS technique by setting the
output dimension range equal to the requested one, or
by setting it to a single specific value. Furthermore, by
allowing the output vector dimension vary during the

synthesis process, the most suitable FV dimension can
be found concurrently in a single experiment, obviating
the need to perform separate experiments with different
(fixed) FV dimensions.

Computational complexity

Considering the computational complexity of the SLP,
MLP, and EFS approaches, the most important factor is
the number of particles and iterations applied to the
underlying MD PSO algorithm. Their selection is influ-
enced by the number and identity of the FV dimensions
synthesized (i.e., database size, feature extraction
approaches, and the original FSs). In the case of EFS, the
synthesis depth, K, is another important factor, as in
every particle element the synthesis process consists of
K - 1 input features. There is usually a trade-off be-
tween computation time and performance attained, so
that the parameters affecting processing time should be
set depending on the specific task.
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Table 13 The best retrieval performances obtained by ten
consecutive SLP classifiers

FS Basic database Extended database

(6 classes) (12 classes)

ANMRR AP (%) ANMRR AP (%)

(run no.) (run no.) (run no.) (run no.)
Segment
STAT 0206 (run'3) 786 (run3) 0579 (run 2) 40.7 (run 2)
MFCC 0.109 (run 3)  89.7 (run 3) 0479 (run 2) 51.2 (run 2)
A-MFCC 0295 (run 2) 698 (run2)  0.534 (run 3) 452 (run 3)
ANA-MFCC 0269 (run 10) 724 (run 10) 0.579 (run 4) 41.3 (run 4)
LPC 0483 (run2) 509 (run2) 0667 (run4) 323 (run 4)
LPCC 0550 (run2) 442 (run2) 0714 (run 1) 274 (run 1)
S_AUDIO 0202 (run'5) 794 (run 5)  0.541 (run 2) 44.7 (run 2)
Key-frame
MFCC+deltas 0279 (run'1) 702 (run' 1) 0414 (run 1) 56.5 (run 1)
LPC + LPCC 0669 (run'1) 321 (un1) 079 (run 1) 19.7 (run 1)
K_AUDIO 0277 (run'1) 696 (run 1) 0504 (run 1) 47.1 (run 1)
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The structure of the proposed feature synthesis tech-
nique is particularly designed for parallel computing, so
that grid computing® was utilized in computing the
results. Here, each FS was processed on its own, as
shown in Figure 4. With the applied MD PSO and EFS
parameters, the computational time of a single EFS run
varied between 30 min (segment features of the basic
database) and 3.5 h (key-frame features of the extended
database). The corresponding computation times for the
SLP and MLP classifiers trained with MD PSO were
more or less the same. However, it should be kept in
mind that once the synthesis (or network) parameters
are found, features of any previously unseen data can be
synthesized afterwards with no need for any further
search or training processes.

Conclusions

A method for transforming and modifying traditional
audio features by an evolutionary optimization algorithm
is proposed, one that improves feature discrimination as
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well as audio classification and retrieval performance.
The process, EFS, is a generalized form of feed-forward
neural networks. In addition to traditional ANNs, the
EFS technique provides (1) numerous linear/nonlinear
attribute operators, (2) a built-in feature selection
scheme, and (3) dynamic output (layer) dimension.

The experimental results obtained from clustering, K-
means classification, and several audio retrieval tasks
demonstrate the ability of the technique to provide sub-
stantial improvements compared with the original fea-
tures. It was also shown that the audio retrieval
performance can be further improved by performing
several synthesis runs, whereas comparable performance
could not be achieved using concatenated SLP evalua-
tions. Based on these experiments, the synthesis ap-
proach appears capable of producing more descriptive/
discriminative (artificial) features than those designed
and selected by humans (i.e., the traditional low-level
audio features).

The underlying optimization algorithm used to dis-
cover the optimal feature synthesis parameters is based
on PSO, extended in our study by the addition of three
properties previously introduced in the literature. First,
an MD PSO was applied, which enables optimizing the
output FV dimension during the synthesis process. Sec-
ond, an FGBF technique was used to increase the prob-
ability of converging to the global optimum of the
search space and third, the heterogeneous particle be-
havior was addressed via the swarm in order to avoid
local optima in the fitness function surface.

In this study, the optimization of output vector dimen-
sion was considered only with respect to classification
and retrieval performance. As a result, the best output
vector dimension found by the EFS was usually higher
than that of the original FS. This may be an important
aspect for certain applications where there is consider-
able post-processing for the output vectors. However, an
appropriate upper limit for the output vector dimension-
ality can be determined and tuned to the specific prob-
lem to be solved. Some of the experiments using the
basic 6-class database suggest that when it comes to dis-
criminating features of a relatively small and distinguish-
able database, the EFS technique may not be worth
implementing. However, with the larger and more over-
lapping (in terms of the pre-determined data classes) 12-
class database, regular neural networks were not able to
achieve as significant improvements to the retrieval per-
formance as those obtained with the EFS.

In general, the EFS framework can be used in any such
tasks in which it is applicable to take advantage of
enhanced feature discrimination. For example, content-
based classification and knowledge mining are suitable
venues for the proposed framework, as are those in
which the quality and description power of the applied

Page 22 of 23

features play an essential role. In future research, the
synthesis performance may be enhanced by experiment-
ing with other optimization techniques (such as simu-
lated annealing and GAs) or by optimizing the
mathematical operators used. This would require analyz-
ing operator selection during the synthesis process so
that some statistical conclusions could be drawn about
the selection behavior. A similar analysis could be ap-
plied, with caution, to the selection of the original fea-
tures in order to avoid using “vain” (or very rarely
selected) features. Unlike general feed-forward ANNS,
where regular gradient-descent training methods (such
as back-propagation) are designed to minimize fixed and
differentiable fitness functions (such as MSE), the EFS
technique can be used to minimize any types of fitness
functions. In this way, the optimization tasks can be
attuned to the specific goals of the research, such as
audio retrieval, as closely as possible. Designing add-
itional fitness functions for particular problems is thus
one of the main advantages of the proposed feature syn-
thesis scheme. Such issues will be addressed in future
research.

Endnotes

TIMIT (Texas Instruments, Massachusetts Institute
of Technology) is a corpus of phonemically and lexically
transcribed speech of American English male and female
speakers of different dialects. "RWC (Real World Com-
puting) Music Database is a copyright-cleared music
database that is available to researchers as a common
foundation for research (http://staff.aist.go.jp/m.goto/
RWC-MDB/). “The StockMusic.com web shop (http://
www.stockmusic.com/). “Techila Technologies Ltd.,
Techila Grid, http://www.techila.fi/.
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