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Abstract

Humans can recognize someone’s identity through their voice and describe the timbral phenomena of voices.
Likewise, the singing voice also has timbral phenomena. In vocal pedagogy, vocal teachers listen and then describe
the timbral phenomena of their student’s singing voice. In this study, in order to enable machines to describe the
singing voice from the vocal pedagogy point of view, we perform a task called paralinguistic singing attribute
recognition. To achieve this goal, we first construct and publish an open source dataset named Singing Voice Quality
and Technique Database (SVQTD) for supervised learning. All the audio clips in SVQTD are downloaded from YouTube
and processed by music source separation and silence detection. For annotation, seven paralinguistic singing
attributes commonly used in vocal pedagogy are adopted as the labels. Furthermore, to explore the different
supervised machine learning algorithm for classifying each paralinguistic singing attribute, we adopt three main
frameworks, namely openSMILE features with support vector machine (SF-SVM), end-to-end deep learning (E2EDL),
and deep embedding with support vector machine (DE-SVM). Our methods are based on existing frameworks
commonly employed in other paralinguistic speech attribute recognition tasks. In SF-SVM, we separately use the
feature set of the INTERSPEECH 2009 Challenge and that of the INTERSPEECH 2016 Challenge as the SVM classifier’s
input. In E2EDL, the end-to-end framework separately utilizes the ResNet and transformer encoder as feature
extractors. In particular, to handle two-dimensional spectrogram input for a transformer, we adopt a sliced multi-head
self-attention (SMSA) mechanism. In the DE-SVM, we use the representation extracted from the E2EDL model as the
input of the SVM classifier. Experimental results on SVQTD show no absolute winner between E2EDL and the DE-SVM,
which means that the back-end SVM classifier with the representation learned by E2E as input does not necessarily
improve the performance. However, the DE-SVM that utilizes the ResNet as the feature extractor achieves the best
average UAR, with an average 16% improvement over that of the SF-SVMwith INTERSPEECH’s hand-crafted feature set.
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1 Introduction
The term paralinguistic was first introduced by George L.
Trager in the 1950s, relating to or denoting the nonlexical
elements of communication of speech [1]. Paralinguistic
attributes (properties) of speech play an important role
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in human communication. Much previous research works
focus on speech emotion recognition [2–4]. Nowadays,
due to the development of artificial intelligence, more and
more new paralinguistic recognition tasks are proposed.
Related competitions such as INTERSPEECH Computa-
tional Paralinguistic Challenges (ComParE) are held every
year, releasing datasets and feature sets to help researchers
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worldwide address these tasks1. Nevertheless, there are
few paralinguistic recognition describing the timbral phe-
nomena of singing voices at present.
The timbre, also known as tonal quality or tonal color

[5], was defined by “what distinguishes two sounds pre-
sented similarly and being equal in pitch, subjective dura-
tion, and loudness” by the American standard Association
in 1960. Jody Kreiman discusses some limitations for dif-
ferent definitions of the timbre and claims that the defini-
tion of timbre should emphasize the interaction between
signal and people [6]. Moreover, the timbral interaction is
a complex process that can be affected by some aspects of
the signal and stimulus, such as task type, stimulus charac-
teristics, and stimulus context [6]. “Moreover, additional
variability within a given listening task may be introduced
by such listener characteristics as experience, memory,
and attention.” The statements from Kreiman do not lift
the veil of timbre, but it emphasizes that the timbral inter-
action is related to human perception and cognition, and
the definition of timbre should not limit to a specific task
type.
The timbral interaction about singing voice commonly

happens in daily life, and related paralinguistic attributes
indeed convey paralinguistic information among differ-
ent groups of people. For example, people can describe
a listening task by adjective terms; vocal pedagogists use
vocal techniques to describe singing voices helping stu-
dents develop a good voice; speech pathologists define
and utilize some voice qualities to assess impaired voice.
Specifically, speech pathologists define a series of pho-

netic symbols as voice quality symbols (VOQS) for
describing impaired speech voice [7] and perform audi-
tory perceptual judgment based on ordinal scales of voice
qualities to assess disordered voice [8, 9]. Furthermore,
some acoustic researchers utilize perceptual dissimilar-
ity coefficients between different pairs of single sustained
vowels further to build the timbral space for perform-
ing timbral analysis [10–12]. Moreover, some vocal ped-
agogists and music theorists who have rich listening
and singing experience use vocal techniques to describe
singing voice [13]. In particular, some vocal techniques are
metaphors to help students better understand and develop
a good voice [14].

1.1 Purpose andmotivation
Regardless of confusing categories of paralinguistic
attributes about voice qualities, metaphors, vocal tech-
niques, and adjective terms, which are used in different
domains for different purposes, our purpose is to let
machines describe classical tenor singing voice using a
set of singing-related paralinguistic attributes like a music
expert. Since there are somemusic theories about describ-

1http://www.compare.openaudio.eu/winners/

ing singing voice systematically, some vocal pedagogists
also use related terms to help students develop their voices
in practice, which motivates us to select paralinguistic
attributes mainly from vocal pedagogy, called paralin-
guistic singing attributes, to describe the classical tenor
singing voice. Moreover, due to the rapid development of
supervised machine learning and the increasing availabil-
ity of data, which let us achieve our goal by performing
the task called paralinguistic singing attribute recognition
that recognizes or assesses certain singing attributes for
singing voices extracted from classical tenor singing per-
formances. Furthermore, nowadays, specific paralinguis-
tic recognition tasks develop rapidly by designing different
supervised machine learning algorithms, which motivates
us to better address paralinguistic singing attribute recog-
nition by exploring different machine learning frame-
works.

1.2 Related work
In music theory, there is some research systematically
describing singing voice using different paralinguistic
singing attributes based on different verbal scales [13,
15–17]. Specifically, David Blake offers four Booleans for
adjective terms to describe the timbral phenomena in
rock music—full, distorted, homogeneous, and digestible
[15]. Heidemann builds a system using vocal techniques
to describe the singing voice in pop music [13]. Wayne
Slawson claims that the singing voices of sustained vowels
can be described by four attributes—openness, acute-
ness, laxness, and smallness [16]. In particular, these four
attributes should be further rated through the timbre
space, which is a two-dimensional Cartesian coordinate
system designed based on the vowel phonation [16].
Not only just describing in a systematic way, but there

is some work further analyzing timbral phenomena by
spectrum [18, 19]. In particular, Robert Cogan designs
thirteen antonym pairs of adjective terms as oppositions
(binary scale) which can be used to describe a wide range
of repertoire [18]. Megan L. Lavengood uses different
oppositions that are developed from cogon’s to perform
spectral analysis for instrumental tones [19].
Besides, some researchers perform timbral analysis

using dissimilarity matrix that collected by comparing dis-
similarity coefficient of pairwise stimulus [10, 12]. And the
dissimilarity matrix can be mapped into a visualized tim-
bre space based on multidimensional scaling (MDS) algo-
rithms. In particular, Brendan OConnor performs MDS
for dissimilarity matrix of sustained vowels and further
analyzes it by class averaging and clustering techniques
[12]. For orchestral instrument tones, TM Elliott simulta-
neously performsMDS on dissimilarity matrix to generate
MDS timbre space and performs discriminant function
analysis (DFA) for semantic timbre space based on verbal
scales of sixteen adjective descriptors [10]. Furthermore,
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Elliott rotates MDS timbre space to DFA results from
semantic timbre space and assigns semantic ratings to
MDS timbre space and then finds which descriptors in
semantic timbre space combine to organize instrumen-
tal tones along the primary MDS dimension by bivariate
linear regression.
Regardless of analysis, our task is recognition. And there

is some research respectively performing tasks named
vocal technique recognition and voice quality assess-
ment using deep learning technique [20, 21]. Specifically,
Wilkins et al. perform vocal technique recognition and
publicize their dataset which is called VocalSet [20]. The
VocalSet contains audio clips of singers vocalizing a range
of pitches and sustained vowels. These clips are anno-
tated by the different paralinguistic singing attributes
such as straight, belt, breathy, fry, and vibrato. However,
the singing voice can be described better using more
terms based on existing music theories. Zwan performs
voice quality assessment for singing vowels from a music
expert point of view by supervised machine learning [21].
Unfortunately, the dataset is unavailable, and the singing
attributes describing singing voices are unknown in their
work. Furthermore, there are some other similar datasets
that can not be accessed [22, 23].
To better describe classical tenor singing voice from

a music expert perspective, it is necessary to select
more paralinguistic singing attributes and then construct
a dataset for supervised learning. Heidemann includes
chest and head voice into her system to describe the pop
singing voice [13]. These two terms and some other corre-
sponding terms (e.g., chest register, chest resonance, head
register, head resonance) are used in not only the teach-
ing of western singing but music theater singing and pop
singing [13, 24, 25]. Therefore, the chest and head res-
onance are the first two paralinguistic singing attributes
that are selected.
Moreover, vowel phonation is related to singing qual-

ity. Specifically, western singers need to open their throats
by mixed registration with certain centralized vowels for
both sounding smoothly and singing loudly [26]. More
evidence can be found since teachers let their students
sing front or back metaphorically by using front place-
ment and back placement singing techniques, which
are related to the phonation of front and back vowels
[27]. Furthermore, Slawson also borrows vowel phonation
knowledge and sets openness as one dimension of the tim-
bre space for subjectively quantifying the singing voice
[16]. Therefore, we borrow front placement singing, back
placement singing, and open throat as three paralinguis-
tic singing attributes to describe singing voice. We select
seven paralinguistic singing attributes and set different
scales for them to describe classical tenor singing voice
professionally. More information about these singing
attributes can be found in Section 3.

In this work, we construct a publicly open classical tenor
singing dataset called Singing Voice Quality and Tech-
nique Database (SVQTD)2. There are 4000 vocal solo
segments with 4–20 s long. Each vocal segment is labeled
by seven paralinguistic singing attributes based on differ-
ent scales. To get vocal segments for labeling, we firstly
download hundreds of audios from YouTube. And then,
the vocal tracks of these audios are extracted from audios
using music source separation. Furthermore, we perform
energy-based silence detection to partition vocal tracks
to vocal segments. Annotators who have studied clas-
sical singing in music department for at least 3 years
are qualified for labeling vocal segments. This dataset
can support subsequent research of performing super-
vised machine learning for paralinguistic singing attribute
recognition.
The architecture of our supervised learning methods

generally consists of two modules: a front-end process-
ing unit that extracts the appropriate features from the
available data and a back-end classifier that decides the
paralinguistic attributes of the utterance. Depending on
this architecture, we further implement three kinds of
frameworks for addressing paralinguistic singing attribute
recognition. And these three frameworks are already used
in other paralinguistic recognition tasks:

• The first framework is to extract hand-crafted
acoustic feature sets, e.g., OPENSMILE features [28,
29], at the front-end as the input of the back-end
traditional classifier. Traditional classifiers are
mathematical models such as support vector
machine (SVM) [30, 31], k -nearest neighbors (KNN)
[32–35], hidden Markov model (HMM) [30, 36, 37],
and Gaussian mixture model (GMM) [32, 35, 38].

• The second framework directly trains an end-to-end
neural network in which includes both a front-end
processing unit and a back-end classifier. In
particular, Trigeorgis proposes a convolutional
nneural network-long short-term memory network
(CNN-LSTM)-based model that handles the
time-domain signal for the prediction of spontaneous
and natural emotions [39]. Koike compares
pre-trained audio neural network (PANN) to ResNet
with and without pre-training on the COMPARE
2020 Challenge Mask Sub-Challenge [40]. Wilkins
uses the time-delay neural network (TDNN), which is
popular in speaker recognition, for the vocal
technique recognition task on VocalSet [20].

• The third framework utilize robust feature
representation from end-to-end neural network as
the input of the back-end classifier. In particular, the
representations are embeddings extracted usually

2https://hackerpeter1.github.io/SVQTD/
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from last several fully connected layers of the nerual
network. This kind of framework performs well in
paralinguistic recognition tasks with limited training
data. Specifically, Amiriparian extracts spectrograms,
which they pass into deep convolutional neural
networks (AlexNet and VGG19) and then use the
activations as the input of the SVM classifier for the
INTERSPEECH ComParE 2017 Snoring
sub-challenge [41]. Wu [42] explores both
spectrograms and log-mel spectrograms as the input
for deep convolutional neural networks (ResNet,
Inception, and DenseNet) to extract representations;
these representations are then used as the input of
the SVM classifier for the INTERSPEECH ComParE
2019 orca activity and continuous sleepiness tasks.

Even though the popularity of end-to-end systems
has increased tremendously, there is no absolute winner
between traditional classifiers with hand-crafted feature
sets and deep learning-based methods with limited train-
ing data [43]. Therefore, to better explore paralinguistic
singing attribute recognition on SVQTD, we adopt all of
these three aforementioned frameworks.
For the detailed implementation of each framework,

we repectively explore using the INTERSPEECH 2009
Challenge’s feature set [28] and the INTERSPEECH 2016
Challenge’s feature set [29] as input, followed by SVM
classifiers with the linear kernel. Each classifier is trained
separately for each paralinguistic singing attribute. We
abbreviate the first framework as SF-SVM (openSMILE
features with support vector machine). Moreover, in the
second end-to-end deep learning framework (D2EDL),
the input of feature extractors is the spectrogram, and
we separately explore the ResNet and the transformer as
feature extractors. Each end-to-end model is trained for
each paralinguistic singing attribute. Finally, for the third
deep embedding with support vector machine (DE-SVM)
framework, each end-to-end model in D2EDL is used to
extract representation as to the input of the corresponding
SVM classifier.
Moreover, a challenge for using the transformer is that

the self-attention module of the transformer encoder
brings a high computational cost for long sequential input,
even though this module, as a main characteristic of
the transformer, leads to good performance [44]. Com-
pared with one-dimensional sequential input, the input
of E2EDL is the two-dimensional spectrogram. To reduce
the computational cost, Dosovitskiy calculates attention
scores for each patch instead of for each pixel of an
image [45]. Inspired by Dosovitskiy’s idea, we build a
sliced multi-head self-attention module that slices the
spectral input to patches to use the transformer in our
paralinguistic singing attributes recognition with lower
computational cost.

1.3 Our contribution
The contributions from this work are as follows:

• Firstly, we select seven paralinguistic singing
attributes that are helpful for beginners to learn
classical singing and set label scales for them.
Moreover, we construct SVQTD, which is a free and
open classical tenor singing dataset for supervised
learning studies. And to get sentence-level vocal
segments of real singing performances, a certain
production pipeline based on music source separation
and silence detection techniques is proposed.

• Secondly, we explore three supervised machine
frameworks in this task. Specifically, the ResNet and
Transformer are separately explored as the feature
extractor for the end-to-end method. Our result
shows the DE-SVM framework based on ResNet
achieves the highest UAR (unweighted average recall)
metric for all paralinguistic singing attributes in
average.

This paper’s remainder is as follows: Section 2 gives
a description of SVQTD and its production pipeline.
In Section 3, we introduce all the paralinguistic singing
attributes selected in SVQTD and the label scale for
each of them. In Section 4, we describe three super-
vised machine learning frameworks for paralinguistic
singing attribute recognition in detail. The experimental
setup, result, and conclusion are separately presented in
Section 5, Section 6 ,and Section 7, respectively.

2 Dataset description and data pre-processing
pipeline

2.1 Dataset description
Singing Voice Quality and Technique Database (SVQTD)
is a classical tenor singing dataset collected from YouTube
for performing paralinguistic singing attribute recogni-
tion tasks2. In the SVQTD, there are nearly 4000 vocal
solo segments with 4–20 s long, totaling 10.7 h. They are
partitioned from four hundred audios downloaded from
YouTube by searching the names of six famous tenor arias.
The number of vocal segments to each aria is shown in
Fig. 1. Furthermore, each segment is labeled on seven ver-
bal scales corresponding to seven paralinguistic singing
attributes. Table 1 shows the class number of each paralin-
guistic singing attribute.

2.2 Data pre-processing pipeline
SVQTD is made by multi-stage approaches, starting from
downloading YouTube videos. We use below pipeline to
obtain thousands of labeled vocal segments.

2.2.1 Stage 1
Download videos from YouTube. The top 100 amateur
videos of six famous tenor arias are retrieved from
2https://hackerpeter1.github.io/SVQTD/
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Fig. 1 The number of vocal segments of each aria in SVQTD

YouTube. To obtain the videos from singers who have
different singing skills and levels of expertise, the words
“cover|student|amateur” are appended to the song name
to search for videos. All of the downloaded videos are con-
verted to 16 kHz sampled waveform audio files (WAV).
Moreover, we manually remove audios that are too noisy,
non-solo, and repetitive. Note that we keep audios sang by
the same singer but performed at different times. The rea-
son is that singers may have different voice qualities and
use different vocal techniques at different career stages.

2.2.2 Stage 2
Extract vocal tracks using end-to-end music source sep-
aration model. Music source separation is the task of
decomposing music into its constitutive components, e.g.,
yielding separated stems for the vocals, bass, and drums.
In recent years, end-to-end models including Open-Umix
[46], spleeter [47], and Demucus [48] performs well on
this task. And the performance between these models is
compared in [47]. In this stage, the spleeter are used to
extract vocal track from audios with accompaniment since
we only focus on the timbral interaction between human
listeners and singing voices.

2.2.3 Stage 3
Partition each vocal track to segments using energy-based
silence detection. A short audio clip should be treated as
silence if its energy is lower than a preset energy threshold.
By adjusting the preset energy threshold, we can control
the amounts of unsilence segments obtained from a vocal
track. To make sure each segment obtained is between
4 and 20 s, we rerun this algorithm with a larger energy
threshold on the segment that is longer than 20 s, and if
a segment is shorter than 4 s, we will concatenate it with
adjacent segments.

2.2.4 Stage 4
Subjectively label vocal segments for seven paralinguistic
singing attributes are mentioned in Table 1. Seven anno-
tators who have studied classical singing for more than 3

years in the music department of a college are recruited
to annotate the vocal segments based on the labeling cri-
teria defined in Section 3. Before annotating, they went
through a 10-h training process to ensure that they were
familiar with the paralinguistic singing attributes and have
a relatively consistent understanding of how to label these
data. Specifically, the 10-h training process includes 2 h
for reviewing definitions of these attributes and 8 h for
practicing labeling the data. In the reviewing process,
we firstly introduce them to the paralinguistic singing
attributes with label criteria. They discuss together and
exemplify some singers based on the label criteria. In the
pre-labeling process, they are informed to formally anno-
tate the data. And a supervisor is responsible to check 100
labeled vocal segments for each annotator. This design is
for avoiding carelessness, e.g., someone do not understand
how to label or randomly label these data for saving time.
Furthermore, the supervisor also should answer questions
from annotators. During labeling, annotators found that
the music source separation module may lead to degra-
dation on some vocal segments. And the vocal segments
that extremely interfere with the perceptual judgment are
asked to remove from the dataset. Some typical bad sam-
ples caused by music source separation module are listed
on the GitHub dataset page.

Table 1 Number of vocal segments in each class of each
paralinguistic singing attribute in SVQTD

Attributes C1 C2 C3 C4 Cnum

Head resonance 101 804 2341 786 4

Chest resonance 191 967 2435 439 4

Open throat 2757 845 366 64 4

Roughness 3552 480 N/A N/A 2

Vibrato 1052 2845 135 N/A 3

Front placement singing 1052 2845 135 N/A 3

Back placement singing 3157 724 151 N/A 3
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3 The paralinguistic singing attributes and
labeling criteria

As forementioned, we select chest resonance and head
resonance as two paralinguistic singing attributes to
describe classical singing voice. Besides, in vocal peda-
gogy, chest and head are also used for the noun adjunct of
both the voice and the register. To better introduce chest
and head resonance, we will begin with introducing the
vocal register and the vocal resonance in Section 3.1. Since
the vocal register is also defined in speech pathology, we
will also introduce it and then discuss why vocal regis-
ters from speech pathology are not suitable to describe
classical tenor singing voices from a music perspective. In
Sections 3.2 to 3.8, we separately introduce seven paralin-
guistic singing attributes chosen. For singing attributes
without a consistent definition but represent a certain
timbre to describe the singing voice, we describe our
adopted labeling criteria from the vocal color point of
view. Besides, we also provide some relevant background
for these singing attributes about acoustics, physiology,
and phonation.
To better understand these attributes, we also present

a pair of examples for each attribute and list them on
the GitHub dataset page. The data visualizations of each
example pair are presented in Fig. 2. Specifically, we trans-
form them into both the wide-band power spectrogram
with larger window length and the narrow-band spectro-
gram with narrow window length. The first five formants
are also shown on the narrow-band spectrogram by using
Praat [49].

3.1 Vocal register and vocal resonance
In speech pathology, vocal registers arise from different
vibratory patterns produced by the vocal cords. These reg-
isters includemodal voice, vocal fry, falsetto, and the whis-
tle register [50–52]. In particular, the modal register is the
most common register in singing. A well-trained singer
or speaker can phonate two octaves or more in the modal
register. However, vocal registers from speech pathology
are not suitable to describe or discriminate tenor singing
voices. One of the reasons is that it is meaningless to say
that a tenor singing voice is amodal voice sincemost of the
tenors sing classical songs with a modal voice. Moreover,
vocal fry and whistle register is not practical in classical
singing.
In vocal pedagogy, the first recorded mention of the

chest and head voice was around the thirteenth century
[53]. During the bel canto period, chest and head voices
were redefined as the lowest and the highest of three vocal
registers: the chest, passaggio, and head registers. It is still
used in the teaching of bel canto today [24]. The chest and
head voice may refer to different meanings: (i) a type of
vocal register, (ii) a vocal resonance area, and (iii) a specific
vocal timbre [51].

Rigorously, the chest or head can not produce voice, it is
related to vibratory sensations in the chest or head. More-
over, “since all registers originate in laryngeal function, it
is meaningless to speak of registers being produced in the
chest or head” [51]. McKinney states that the vibratory
sensation is actually the resonance phenomenon, and he
defined vocal resonance as “the process by which the basic
product of phonation is enhanced in timbre and/or inten-
sity by the air-filled cavities through which it passes on its
way to the outside air” [51]. In summary, to describe the
singing voice, nomatter chest voice, register, or resonance,
all of them are terms related to specific resonance phe-
nomena and can also be used to represent certain timbre
phenomena in vocal pedagogy.
However, it is hard to further describe the certain vocal

timbre that specific paralinguistic singing attributes rep-
resent by some adjective terms. If using singing attributes
for different timbral interaction situations, even music
theorists use different adjective terms for the same term.
For example, J Stark describes chest voice using quali-
ties such as dark, covered, and full [24]. However, in his
work, he mentions Lodovico Zacconi, who prefers bright
and ringing chest voice, uses stinging and biting qual-
ity for describing chest voice [24]. Moreover, in the work
about female chest voice by JL LoVetri, shementioned that
“there traditionally has been debate among pedagogues
as to whether or not chest register is responsible for the
deeper, darker color of the sound or for the ‘edge’ or bril-
liartce in the resonance” [54]. Therefore, it is hard to give a
fully correct description of these attributes for every situ-
ation. And this is why we focus on the tenor singing voices
instead of describing the timbral phenomena of all classi-
cal singing voices, whichmeans we think it will be easier to
make a consensus on a narrower extent after performing
training before annotation.

3.2 Chest resonance
The chest resonance represents the resonance area in the
chest, and the resonance phenomena give the singer a
vibratory sensation in the chest [51]. Chest resonance is
related to a darker, deeper tone coloring [54, 55]. Acoustic
research shows that chest resonance has a higher response
to open vowels [56]. During labeling, annotators assess
each vocal segment and subjectively assess the extensity
of chest resonance by a 4-class ordinal scale. For refer-
ence only, the 4 for a group of singing voices that are
darkest, strongest, and with strongest vibratory sensation
compared with other singing voices in the dataset. Level 1
for a contrary situation. The judgment process is based on
listeners’ music cognition and perception.

3.3 Head resonance
The head resonance represents the resonance area in the
head, and the resonance phenomena give the singer a
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Fig. 2 Visual comparison of example pairs of paralinguistic singing attributes. PS, wide-band power spectrogram; F#, Tte corresponding formants
depicted on the narrow-band spectrogram
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vibratory sensation in the head [51]. The head resonance
is primarily for softer singing [57]. From the physiologi-
cal perspective, singers raise their soft palate and narrow
the epilaryngeal inlet [57]. And as the pitch rises, the vocal
folds gradually tense, and only the thinned outer layers of
the vocal folds can vibrate [13]. Acoustic research shows
that head resonance is related to the singer’s formant [58].
During labeling, the annotators are told to subjectively
rate the 4-class ordinal scale of head voice from 1 to 4
for the vocal segments. For reference only, 4 for a group
of singing voices with best head register technique which
means smoothest and richest quality compared with other
singing voices in the dataset. And level 1 for a contrary
situation.

3.4 Front placement singing
The subjective judgment of chest and head resonance can
roughly describe many singing voices. However, other res-
onators have been used to describe the singing voices in
vocal pedagogy. One of the resonators is mask/nasal res-
onance, which is related to nasal quality [51]. Debertin
proposes a method for perceptual judgments of nasal res-
onance of singing [59]. Wooldridge shows that nasal reso-
nance is not being utilized as resonators if classical singers
block nose with cotton [60]. To avoid nasal quality, the rise
of velum, closure of velopharyngeal port can reduce air-
flow through the nasal passage [61]. Since nasal quality is
difficult to subjectively judge and there are nasal conso-
nants during singing, we focus on the vocal technique, the
forward placement singing, or namedmask singing, which
has an obvious nasal quality [27, 62]. Researchers utilize
low tone to high tone ratio (VLHR) acoustic features to
evaluate nasal quality [63]. And VLHR is used for the eval-
uation of hypernasality in vowels [64]. During labeling,
listeners need to judge whether the singing segment is
mask singing/forward placement singing with an obvious
nasal quality based on a binary scale, 0 for without, 1 for
always with, 2 for sometimes with.

3.5 Back placement singing
Back placement is popular in opera performances. How-
ever, some negative adjectives, such as swallowing, are
used to criticize the excessive back placement singing
[51, 65]. The “extreme” back placement does not help
the resonance and often has excessive muscle tension
[66]. Compared with back placement singing, Vurma and
Ross perform spectral analysis, which shows that front
placement singing is not only with higher frequencies of
the first and second formants but also with the higher
frequency and level of the singer’s formant [62]. Wyllys
performs acoustic and articulatory research on both for-
ward placement and back placement singing [65]. During
labeling, annotators need to subjectively judge whether
the singing segment is “extreme” back placement singing

which is characterized by uncomfortable swallowing qual-
ity based on a binary scale, 0 for without, 1 for always with,
2 for sometimes with.

3.6 Open throat
In Western singing, teachers train students to open their
throat by mixed registration with certain centralized vow-
els to sing loudly and sound smoothly [26]. Slawson also
borrows vowel phonation knowledge and sets openness as
one dimension of the timbre space for subjectively quanti-
fying the singing voice [16]. The open throat scale ranges
from 1 to 4. For reference only, level 1 for a group of
singing voices that feel extremely uncomfortable, strained,
and narrow, and level 4 for singers who are very good at
performing mix registration using centralized vowels that
make listeners feel the obvious open quality.

3.7 Roughness
In speech pathology, roughness is usually rated on an ordi-
nal scale in multiple dysphonic vocal quality assessment
protocols, e.g., breathiness and hoarseness (RBH), consen-
sus auditory perceptual evaluation voice (CAPE-V), and
grade, roughness, breathless, asthenia, strain (GRBAS)
[9]. Singing in the wrong way may produce a rough,
raspy voice that may harm the singer’s voice. And classical
singers do avoid making their voice sound raspy. During
labeling, annotators pay attention to judge whether there
is apparent roughness in the vocal segment, 0 for without,
1 for with.

3.8 Vibrato
Singers from various musical genres use vibrato while
singing. There are good vibrato and bad vibrato (tremolo
and wobble), and the tension in the breathing, neck, or
vocal mechanisms may cause faulty vibrato [67]. There
are good vibrato and bad vibrato (tremolo and wobble)
[67]. As mentioned in Section 1.3, frequency and ampli-
tude variations are important acoustic parameters used
to judge good vibrato and bad vibrato [68]. Wobble has
a wider pitch fluctuation and a slower frequency than
good vibrato, while tremolo has a narrower pitch fluctua-
tion and faster frequency than good vibrato [69]. Vibrato
can be used in the singing evaluation systems [70] and in
singer classification [71]. During labeling, the annotators
should focus on the vibrato of vocal segments, rating seg-
ments as 0 for having no vibrato, 1 for having good vibrato,
or 2 for having bad vibrato.

4 Supervisedmachine learning frameworks for
paralinguistic singing attribute recognition

SVQTD is obtained by the aforementioned data pre-
processing and annotation with 4000 labeled vocal seg-
ments. Hence, we use SVQTD to perform the paralin-
guistic singing attribute recognition task by supervised
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machine learning. In this section, we first formulate the
problem in Section 4.1; then the adopted three meth-
ods (SF-SVM, E2EDL, and DE-SVM) are described with
details in Sections 4.2, 4.3, and 4.4, respectively.

4.1 Problem definition
We assume a set of n training vocal segments S = {Si}ni=1
with corresponding labels Y = {Yi}ni=1. Yi is a set of
nattr labels for the corresponding paralinguistic singing
attributes, Yi = {yji}nattrj=1 , where y

j
i ∈[ 1, · · · njclass] and njclass

is the number of classes of each paralinguistic singing
attribute, as defined in the label criteria. Our paralin-
guistic singing attributes recognition task contains nattr
classification subtasks corresponding to nattr paralinguis-
tic singing attributes. We implement three frameworks to
explore better ways of solving each subtask.

4.2 The SF-SVM framework
As mentioned in Section 1.2, a common framework for
solving paralinguistic attribute recognition tasks utilizes a
set of acoustic and prosodic features as the input of the
traditional machine learning classifier [30, 32, 72]. Refer-
ring to this framework, we design the SF-SVM framework
as shown in the left column of Fig. 3. Specifically, for the
front-end feature extraction, we extract both the feature
set of INTERSPEECH 2009 emotion challenge and that

of INTERSPEECH 2016 challenge [73] (Table 2). And we
train the SVM classifier with linear kernel as the back-end
classifier for each classification subtask with two feature
set as input.

4.2.1 Feature set
The INTERSPEECH 2009 emotion challenge feature set
(ComparE09) includes 16 low-level descriptors: zero-
crossing rate (ZCR) from the time signal, root mean
square (RMS) frame energy, pitch frequency (normalized
to 500 Hz), harmonics-to-noise ratio (HNR) by autocor-
relation function, and 12 dimensional mel-frequency cep-
stral coefficients (MFCC) features. The delta coefficients
and various kinds of functionals, e.g., mean, standard
deviation, kurtosis, skewness, minimum and maximum
values, relative position, and range as well as two lin-
ear regression coefficients with their mean square error
(MSE) are applied to generate 16 × 2 × 12 = 384
dimensional utterance level feature vectors. Moreover, the
INTERSPEECH 2016 challenge feature set includes 6373
static features which is more powerful and comprehen-
sive. Its fully description can be found in [74].

4.3 The E2EDL framework
The right column in Fig. 3 presents our E2EDL frame-
work that uses the log-mel spectrogram (Fbank) as input.

Fig. 3 The proposed three frameworks
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Table 2 Features in the INTERSPEECH 2009 emotion challenge
feature set

LLD (16*2) Functionals (12)

(�) ZCR Mean

(�) RMS energy Standard deviation

(�) F0 Kurtosis, skewness

(�) HNR Extremes: value, rel. position, range

(�) MFCC 1-12 Linear regression: offset, slope, MSE

The network architecture consists of a front-end feature
extractor and a back-end classifier. Specifically, we use a
multilayer perceptron (MLP) as the back-end classifier.
The Resnet and transformer encoder serve as the feature
extractors; thus, we implement two types of end-to-end
frameworks and experiment with both of them. For the
transformer’s encoder, we transform themulti-head atten-
tion (MSA) module into a slice multi-head self-attention
(SMSA) to deal with the log-mel spectrogram input. Here,
we first introduce the standard transformer’s encoder for
automatic speech recognition (ASR) (4.3.1). The trans-
former with SAMA as the feature extractor is introduced
in Section 4.3.2. Finally, the details of the model con-
struction, the loss function, and the evaluationmetrics are
presented in Section 4.3.3.

4.3.1 The standard transformer encoder
The standard transformer encoder architecture proposed
in [44] includes multi-head self-attention (MSA) and a
multilayer perceptron (MLP), with layernorm (LN) [75]
and skip connection [76] operations in between (Fig. 4).
The main module, multi-head self-attention, is derived
from self-attention (SA).
Equations (1), (2), and (3) present the calculation of self-

attention. Specifically, for an input Fbank sequence x ∈
R
T×F , T is the length of the time sequence, and F is the

number of Mel filters. The Q, K, V ∈ R
T×F is the linear

projection of x. The attention scores A are calculated by
the multiplication ofQ and K representations.

Q,K ,V = x[Uq;Uk ;Uv] (1)

A = softmax(QKT/
√
C), (2)

SA(x) = AV . (3)

Here, Uq,Uk ,Uv ∈ R
F×F . 1/

√
C is a regulating term to

avoid a large inner product as well as gradient vanishing.
MSA is an extension of SA, in which h self-attention

operations, called “heads,” are connected in parallel and
project their concatenated outputs. To keep the dimen-
sion consistent when changing h, another linear projec-
tion by Umsa, Umsa ∈ R

kF×F should be calculated as
shown in Eq. (4).

MSA(x) =[ SA1(x); . . . ; SAh(x); ]Umsa. (4)

Fig. 4 The standard transformer encoder architecture

4.3.2 Transformer encoder with the slicedmulti-head
attention

The standard transformer encoder used in automatic
speech recognition (ASR) is for handling one-dimensional
sequences. Thus, we modified the standard transformer
encoder as our feature extractor so that it can handle two-
dimensional spectrogram input. Specifically, the original
MSA is replaced by the sliced multi-head self-attention
(SMSA). The architecture of the SMSA is shown in Fig. 5.
The log-mel spectrogram is divided into k slices, trans-
formed by linear projection, and then fed into h “heads”
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Fig. 5 The architecture of our SAMA model

of multi-head self-attention. Figure 5 illustrates when k
equals h, and The calculation is formulated in Eqs. (5)
and (6).

x =[ S1; S2; . . . Sk−1; Sk] (5)
SMSA(x) =[ SA1(S1); . . . ; SAh(k)] (6)

4.3.3 Model construction
There are two types of end-to-endmodels: one is based on
the ResNet, and the other one is based on the transformer
encoder with SAMA. To construct the former, we utilize
the ResNet34 [76]. We present the model architecture of
the latter in Table 3.
For the loss function, we first train the neural net-

work using cross-entropy. However, the neural network is
inclined to predict all the samples as the majority class,
which is caused by the imbalanced classes in SVQTD.
Rosenberg presents a method to assign the importance
weight for each class in the SVM classifier [77]. On Inter-
speech 2009 Emotion Challenge tasks, their importance
weighting for SVM achieves the best unweighted average
recall (UAR) compared with other sampling techniques,
such as the oversampling and undersampling [77]. More-
over, importance weighting is also used on the weighted
cross-entropy loss for the end-to-end method. Lin pro-
poses the focal loss to address the imbalanced problem
for dense object detection [78]. Therefore, we use both
the weight cross-entropy and the focal loss simultaneously
as the loss function for training our end-to-end models,
and the UAR is also served as an evaluation metric in our
work.

4.4 The DE-SVM framework
The DE-SVM framework is shown in the middle col-
umn of Fig. 3. The representation is used to replace the
hand-crafted feature set as the input of the SVM clas-

sifier. Specifically, we extract embedding representations
from the penultimate layer of the MLP classifier of every
end-to-end model that is trained for each classification
subtask. Importance weighting is also used here for SVM
training.

5 Experimental setup
This section describes the experimental setup and design,
covering feature extraction, data processing, data prepa-
ration, training, and evaluation.

5.1 Features extraction
For SF-SVM, both the INTERSPEECH 2009 Emotion
Challenge’s feature set and the INTERSPEECH 2016
Challenges’s feature set are extracted by OpenSMILE [28].
To the log-mel spectrogram input for the end-to-end
model, we first compute the short-time Fourier trans-

Table 3 The details of the proposed transformer encoder model.
TE transformer encoder, SMSA sliced multi-head self-attention,
MSAmulti-head self-attention,MLPmulti-layer perceptron, FC
fully connected,MP global max pooling

Layer Parameters Output

Extractor TE × 3 SAMA Slice k = 4 Tdim × 32

FC × k [ 1 × 1, 32] Tdim × 32

MSA h = 4 Tdim × 32

MLP Cat k = 4 Tdim × 128

FC [ 1 × 1, 128] Tdim × 128

FC [ 1 × 1, 512] Tdim × 512

FC [ 1 × 1, 128] Tdim × 128

GMP [ Tdim × 1, 1] 1 × 128

Classifier MLP FC [ 1 × 1, 64] 1 × 64

FC [ 1 × 1, Cnum] 1 × Cnum
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Table 4 Different frameworks’ UAR results for classification subtasks of three 4-class paralinguistic singing attributes

Unweighted average recall (UAR) [%]

Frameworks Chest resonance Head resonance Open throat Average

SF-SVM (ComparE09) 34 37.21 28.1 33.10

SF-SVM (ComparE016) 38.7 34.34 46.2 39.74

E2EDL (ResNet) 44.39 37.33 28.8 36.84

E2EDL (Transformer) 41.54 37.68 29 36.07

DE-SVM (ResNet) 46.63 44.43 30.82 40.63

DE-SVM (Transformer) 42.17 40.26 22.58 35

form (STFT), and thenmap the power spectrogram on the
Mel-scale. The STFT is the 4096-point discrete Fourier
transform using a Hanning window with 75% overlap
between frames. Furthermore, the number of band-pass
filters is 128.

5.2 Data processing
For the music source separation in the dataset produc-
tion pipeline, we use the two-stem model provided by
spleeter3. Furthermore, we use the silence detection algo-
rithm embedded in Pydub4.

5.3 Data preparation
SVQTD is divided into training, validation, and testing
subsets. We try our best to avoid data leaking, i.e., mak-
ing sure that the vocal segments do not coexist in multiple
subsets.

5.4 Training and evaluation
The SVM classifier is trained by the scikit-learn toolkit
[79]. For training the SVM classifier, we adopt the linear
kernel, the balanced class weight, and grid searching the
complexities of 1, 0.1, 0.001, 0.0001, 0.00001, 0.000001;
the other parameters are set to default. The model that
obtains the best unweighted average recall (UAR) in the
validation set with specific parameters is used for evalua-
tion. Furthermore, the end-to-end model is implemented
and trained on PyTorch [80]. The model construction is
detailed in Section 4.3.3. The focal loss’s parameter γ is
set to 2, and class weights for the weighted cross-entropy
loss are obtained by dividing the number of each class
by the number of the minority class. We utilize Adam
as the optimizer, with an initial learning rate of 0.0001
and 50 percentage dropout for the MLPs. During train-
ing, the batch size of the models based on Resnet is 4, and
that based on the transformer is 8. Moreover, we employ
an early stop strategy to halt the training process when
the validation UAR does not improve for more than 10

3Spleeter, 2021, Available: https://github.com/deezer/spleeter
4Pydub, 2021, Available: https://github.com/jiaaro/pydub

epochs. Finally, the best UAR result on the validation set
is used for evaluation. Note that the random seeds of both
Pytorch and scikit-learn are fixed to avoid biased results.

6 Result
To handle our paralinguistic singing attributes recogni-
tion task, we separately train the classifiers for seven
attribute classification subtasks with different numbers
of classes. Since we adopt two different network struc-
tures, the CNN-based ResNet and RNN-like transformer,
the related frameworks of DE-SVM and E2EDL can be
further divided. Since data from different labels are imbal-
anced, we use UAR that considers the recall percentage
of each class equally as the metric. The UAR results of
the 4-class, 3-class, and 2-class paralinguistic attribute
classification subtasks are shown in Tables 4, 5, and 6,
respectively.
As shown in Table 4, the ResNet based DE-SVM system

performs best on recognizing chest resonance and head
resonance. For the recognition of the open throat, the
ComparE16 feature set based SF-SVM approach performs
better. We believe the reason might be that some fea-
tures in the ComparE16 feature set contain discriminative
information about the open throat attribute.
Table 5 shows the result of three 3-class classifica-

tion subtasks. ResNet-based DE-SVM also achieves the
highest average UAR percentage. However, the ResNet-
based DE-SVM only performs best on the third subtask,
the recognition of the Vibrato, and the best framework
for the first two subtasks is E2EDL, which reflects that
the use of the SVM classifier for representation does
not necessarily improve performance in these subtasks.
The ResNet-based E2EDL framework achieves the highest
UAR for front placement singing, while the transformer-
based E2EDL framework achieves the highest UAR for
back placement singing. Furthermore, SF-SVM does not
perform well here. Table 6 shows the results of binary
classification.
In summary, ResNet-based DE-SVM has the best over-

all performance, which achieves the highest UAR on four
subtasks. However, the subsequent SVM classifier for

https://github.com/deezer/spleeter
https://github.com/jiaaro/pydub
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Table 5 Different frameworks’ UAR result for classification subtasks of three 3-class paralinguistic singing attributes

Unweighted average recall (UAR) [%]

Frameworks Front placement singing Back placement singing Vibrato Average

SF-SVM (ComparE09) 31.87 34.91 35.52 34.10

SF-SVM (ComparE016) 33.7 33.76 42.84 36.77

E2E (ResNet) 35.2 36.2 41.89 37.76

E2E (Transformer) 33.6 39.42 38.97 37.33

DE-SVM (ResNet) 33.22 33.76 47.02 38

DE-SVM (Transformer) 30.61 36.71 43.67 37

the representation learned by E2EDL does not neces-
sarily improve the performance on top of E2EDL on all
subtasks which might be affected by the difficulties of
our task, the amount and quality of the training data,
etc. Therefore, we need to try different frameworks and
explore different neural networks’ feature extractors for
classifying different paralinguistic singing attributes. In
general, the SF-SVM framework has lower UAR compared
to deep learning based methods. However, there is no
absolute winner all tasks, since the ComparE016 feature
set based SF-SVM approach achieves the highest UAR
on the open throat task. In the future, we will collect a
large-scale database and evaluate the proposed methods
again.
It is worth noting that the classification accuracy is still

quite low which is far away from real applications. But
we believe that the proposed problem formulation, label-
ing criteria, data pre-processing pipeline, open-source
database, and different machine learning frameworks
would contribute to the research in the paralinguistic
singing attribute recognition field.

7 Future work
In the future, we aim to firstly improve our dataset pro-
duction pipeline. In particular, it is necessary to further
update the music source separation module with more
powerful models to avoid quality degradation.
Secondly, it is needed to makemore data for both robust

training and better prevent data leaking.

• To prevent data leaking, our current method is firstly
to avoid the same segment existing in any of the three
sub-datasets, and then make sure that sub-datasets
are respectively with segments from different arias.
However, there is still a better way to prevent data
leaking, which is to avoid segments of the same singer
existing in other sub-datasets. Therefore, we will
collect more audios with singer identity to better
perform dataset splitting.

• For robust training with machine learning
algorithms, it is necessary to get more judgment
results from different music experts for each sample.
With more data, we can perform more experiments

to observe the linear correlation between data
collected from different annotators. If the correlation
between two experts is weak or moderate, it is hard
to say which music expert is right, it will be
interesting to further analyze embedding space to
interpret this phenomenon.

8 Conclusion
To enable a machine to describe a singing voice as a
human in vocal pedagogy would and to help beginners in
their vocal training, we propose the paralinguistic singing
attribute recognition task. We construct a classical tenor
singing dataset called SVQTD for exploring different
supervised learning methods. We also propose a pipeline
with music source separation and silence detection to pre-
process the data; and introduces labeling criteria for each
paralinguistic singing attribute.
For the supervised machine learning algorithms, we

implement three frameworks, namely SF-SVM, E2EDL,
and DE-SVM. Moreover, to use two-dimensional spectro-
grams as the input for the transformer, we modify the
multi-head self-attention to a sliced version. Our experi-
mental results show no absolute winner between E2EDL
andDE-SVM, whichmeans the subsequent SVM classifier
for the deep embedding representation learned by E2EDL
does not necessarily improve the performance for every
single subtask. Moreover, the DE-SVM that utilizes the
ResNet as the feature extractor achieves the best average
UAR for majority attributes.

Table 6 Different frameworks’ UAR result for binary classification
subtask of roughness

Unweighted average recall (UAR) [%]

Frameworks Roughness

SF-SVM (ComparE09) 51.85

SF-SVM (ComparE016) 55.19

E2E (ResNet) 56.23

E2E (Transformer) 55.39

DE-SVM (ResNet) 58.83

DE-SVM (Transformer) 54.4
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