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Abstract

Subtitles are a crucial component of Digital Entertainment Content (DEC such as movies and TV shows) localization.
With ever increasing catalog (≈ 2M titles) and localization expansion (30+ languages), automated subtitle quality
checks becomes paramount. Being a manual creation process, subtitles can have errors such as missing transcriptions,
out-of-sync subtitle blocks with the audio and incorrect translations. Such erroneous subtitles result in an unpleasant
viewing experience and impact the viewership. Moreover, manual correction is laborious, highly costly and requires
expertise of audio and subtitle languages. A typical subtitle correction process consists of (1) linear watch of the
movie, (2) identification of time stamps associated with erroneous subtitle blocks, and (3) correcting procedure.
Among the three, time taken to watch the entire movie by a human expert is the most time consuming step. This
paper discusses the problem of missing transcription, where the subtitle blocks corresponding to some speech
segments in the DEC are non-existent. We present a solution to augment human correction process by automatically
identifying the timings associated with the non-transcribed dialogues in a language agnostic manner. The correction
step can then be performed by either human-in-the-loop mechanism or automatically using neural transcription
(speech-to-text in same language) and translation (text-to-text in different languages) engines. Our method uses a
language agnostic neural voice activity detector (VAD) and an audio classifier (AC) trained explicitly on DEC corpora
for better generalization. The method consists of three steps: first, we use VAD to identify the timings associated with
dialogues (predicted speech blocks). Second, we refine those timings using the AC module by removing the timings
associated with the leading and trailing non-speech segments identified as speech by VAD. Finally, we compare the
predicted dialogue timings to the dialogue timings present in the subtitle file (subtitle speech blocks) and flag the
missing transcriptions. We empirically demonstrate that the proposed method (a) reduces incorrect predicted missing
subtitle timings by 10%, (b) improves the predicted missing subtitle timings by 2.5%, (c) reduces false positive rate
(FPR) of overextending the predicted timings by 77%, and (d) improves the predicted speech block-level precision by
a 119% over VAD baseline on a human-annotated dataset of missing subtitle speech blocks.

Keywords: Digital Entertainment Content (DEC), Missing subtitles, Voice activity detection (VAD), Audio classifier
(AC), Deep learning, Audio processing

1 Introduction
Content localization is fundamental to DEC expansion
into newer territories and enhancement of viewing expe-
rience. Subtitling or creation of subtitles is a vital com-
ponent of content localization. Subtitles are composed of
the dialogues and their associated timings, known as sub-
title speech blocks and plot pertinent non-speech sounds
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along with their timings, known as captions. We infer the
timings associated without dialogues or with captions as
subtitle non-speech blocks. Subtitling is a manual pro-
cess which includes linear watch of a title, identification
of timestamps associated with dialogues and transcription
of the dialogues followed by translation into the target
language. This process results in errors such as missing
transcriptions (missing subtitle speech blocks), out-of-
sync subtitle blocks with the audio and incorrect trans-
lations. These erroneous subtitles result in an unpleasant
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viewing experience and negatively affect the viewership.
This paper focuses on the missing subtitle blocks error
that significantly affects the subtitle quality. Based on data
collected as per our internal Language Quality Program
(LQP), for a random subset of 100 subtitles submitted
to our system by third party linguistic experts, ≈ 1% of
them contain one or more missing subtitle speech blocks,
making it one of the largest problems related to subtitle
localization. Missing subtitle blocks occur due to (a) non-
transcribed foreign language spoken in a dialogue, (b)
human errors in creating the subtitles, and (c) inadequate
quality checks post the subtitle creation.
Catalog expansion andmulti-lingual nature of audio and

subtitle pairs require an automated and language agnos-
tic approach to detect missing subtitle blocks. Identifying
missing subtitle blocks is amanual process, which requires
a linear watch of the title by a linguistic expert who
identifies the timestamps and fills the missing text. Iden-
tification of timestamps contributes for the greatest time
(≈ 90%) in the process. Also, there exists multiple subti-
tles and audio tracks across several languages for a given
title. Therefore, missing subtitle block detection is a costly
and time consuming process. Hence, we propose an auto-
mated solution to identify the timestamps associated with
the missing subtitle speech blocks using a language agnos-
tic voice activity detection (VAD) and audio classification
(AC) model. The language agnostic characteristic of VAD
removes the dependency on a linguistic expert and signif-
icantly reduces the time taken for missing block detection
in the titles by reducing manual touch points. Once the
missing timings are identified, we can either use an Auto-
mated Speech Recognition (ASR) engine or a linguistic
expert/creative director to transcribe and translate the
audio corresponding only to the missing timestamps.
For a given DEC title, we detect missing subtitle blocks

by identifying the time stamps associated with speech
segments in the audio and matching them with the time
stamps present in the respective subtitle file. A given
DEC title can be localized across multiple languages and
can contain some dialogues spoken in a language which
is different from its native locale. Hence, we use a lan-
guage agnostic VAD to identify timings associated with
dialogues. However, a typical VAD model can lead to
various false positive (FP) cases such as a) contextual back-
ground noises like traffic noises, crowd noises, and music,
and (b) atypical speech patterns like whispering, shouting,
singing, and electronic voices. To reduce the number of
falsely identified missing blocks, we fine tune the VAD’s
predicted timings using an audio classification model. We
evaluate the performance of the missing subtitle block
detector on a synthetic and a human annotated corpora
consisting of missing subtitle speech blocks.
The main contributions of this paper are as follows:

first, we propose a language agnostic approach for missing

subtitle block detection using VAD and AC models. Our
approach alleviates the dependencies on language reliant
systems such as automatic speech recognition (ASR) and
text translation models for this task. Second, we use a
VAD model explicitly trained on DEC corpus, enhancing
the robustness of the proposed method to various back-
ground noises present in DEC titles. Third, we present
a baseline solution using the neural VAD model. Fourth,
despite its robustness, the VAD system potentially iden-
tifies certain sounds as human speech. The effect of such
false positives is reduced by our multiclass AC model,
which identifies 121 categories of sounds and is trained
on DEC and open source corpora. Finally, we show that
our model results in (a) 10% reduction in incorrect pre-
dicted missing subtitle timings, (b) 2.5% improvement in
identifying the correct locations of missing subtitles on
real-world dataset, (c) 77% reduction in false positive rate
(FPR) of overextending the predicted speech timings, and
(d) 119% improvement in the predicted speech block-level
precision over a VAD baseline on a real-world human-
annotated dataset of missing subtitle speech blocks.

2 Related works
In this section, we briefly discuss the literature related to
voice activity detection and audio classification as they
form the key components of our proposed method.

2.1 Voice activity detection
Recently, there has been tremendous progress in deep
learning for sequences, especially for VAD inDEC.Mateju
et al. [1] used a deep neural network trained on noise aug-
mented dataset along with smoothing of the output for
speech activity detection in movies. Jang et al. [2] used
a 2 layered DNN with MFCC as the input feature for
VAD in movies. Zhang et al. [3] used boosted deep neural
network bDNN that generated multiple predictions from
different contexts of a single frame by only one DNN and
then aggregated the predictions for a better prediction of
the frame. Hwang [4] used ensemble of DNNs. Kang et
al. [4] used multi task learning (MTL) with DNN to esti-
mate clean features from noisy features as well as VAD
probabilities.

2.2 Audio category classification
Audio classification predicts the audio tags in an audio
clip. Convolutional neural networks (CNNs) have been
used [5] to predict the tags of audio recordings. CNN-
based systems have achieved state-of-the-art performance
in several DCASE challenge tasks including acoustic scene
classification [6] and sound event detection [7]. A mile-
stone for audio pattern recognition was the release of
AudioSet [8], a dataset containing over 5000 h of audio
recordings with 527 sound classes. Several CNN based
models have been proposed for large scale audio classifi-
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cation [9–13]; however, pretrained audio neural network
or PANN [14] is a VGGish [15] CNN-based model that
achieves the state-of-the-art result for Audioset classifica-
tion task. In the next section, we present the approach to
detect the missing subtitle speech blocks.

3 Methodology
The proposed approach to identifymissing subtitle speech
blocks involves two steps: (1) identification of speech and
non-speech duration using VAD and (2) improvement
of these duration through removal of false positive cases
using ACmodel. In this section, first, we describe the VAD
and AC model architectures; second, the datasets used
to train and validate them; third, comparison with their
corresponding state-of-the-art models which justifies our
architectural design choices; and fourth, the method for
missing subtitle detection using these models.

3.1 Voice activity detection model (VAD)
A VAD model trained on domain specific DEC dataset
consisting of several languages and background noises
results in better generalization and language agnostic
characteristic compared to the models trained on non-
DEC focused datasets [16]. Therefore, we use an in-house
developed gated recurrent unit (GRU) [17, 18] based VAD
trained on a proprietary DEC dataset (DEC-1100). This
dataset consists of 1100 proprietary videos (≈ 450 h) along
with their subtitles spanning 9 languages and 5+ gen-
res (Action, Comedy, Documentary, Drama, Animation,
etc.) making it one of the largest DEC-based dataset used
to train the VAD model. Table 1 presents the language
distribution of the dataset.

3.1.1 Train, validation, and test set creation
To create the training set, we divide the videos into 800
milliseconds (ms) non-overlapping clips and label them
into speech and non-speech using the timing informa-
tion in the subtitles. This results in 1.1 M speech and
non-speech clips respectively. Similarly, the validation set
consists of 0.1 M speech and non-speech clips respec-
tively. The test set consists of human validated 18k and
27k speech and non-speech clips respectively. It is curated
from 33 movies which are not part of the training and
validation sets (DEC-1100).
We use the value of 800 ms for two reasons. First, a

human speech block in a timed-text file should persist on
the screen for a minimum duration between 5/6th of a

Table 1 DEC-1100 video distribution by language, where the
language code is identified using ISO-639 [19] (639-1)
nomenclature

Language code en de hi ja ko fr te ta es

Percentage 68 1 13 13 2 1 1 1 1

second to one second, as recommended by several indus-
try standard guidelines [20]. These guidelines are based
on the studies conducted on the reading speed of viewers.
Second, disambiguation of a clip below 500ms into speech
and non-speech is difficult for human evaluators based on
our manual inspection of clips.

3.1.2 VADmodel
The network diagram of the VAD model is shown in
the Fig. 1. The model is a modification of the LSTM-
based VAD model described in [18]. It consists of two
parallel bidirectional GRUs each containing two layers of
128 dimension each. The outputs of the GRUs are time
weighted, concatenated, and passed through two fully
connected (FC) layers of 128 and 2 dimensions respec-
tively, followed by a softmax. The model takes a one
dimensional audio sequence of length 800 ms sampled
at 32 kHz as input, generates time-frequency based fea-
tures, and returns the probability of speech. The feature
extraction module converts the audio clip in two feature
maps namely, the magnitude Short-term Fourier trans-
form (STFT) with 54 time bins and 128 frequency bins
and the frequency-based 128 dimensional reassigned fre-
quency or instantaneous frequencies (IF) [21] with 54
time bins. IFs were proposed as a feature by Longbiao
et al. and Iain et al. [22, 23] and have shown to improve
VADs performance. The magnitude STFT and IFs are cal-
culated using a 25 ms window (800 samples) and 10 ms
(320 samples) hop length.

3.1.3 Results
The GRU-based VAD either outperforms or performs at-
par with several state-of-the-art neural models such as
temporal convolution network (TCN) [24], convolutional
and self attention (STNET) [25] transformer encoder-
based network [26], VGG-net based time distributed
CNN (CNNTD) [16], raw audio waveform based CLDNN
[27], and webRTC VAD [28] in terms of area under curve
(AUC), precision, recall, and F-scores. Table 2 presents
the results for various VAD models trained on DEC-1100
dataset and tested on DEC-based human-annotated test
set. We now describe our audio classification model.
Neural VAD model has a false positive rate of ≈ 15% and

tags sounds such as songs and unintelligible human sounds
like sighs, grunts, laughs, and cry as human speech. There-
fore, we use the AC model to remove these false positives,
which is described in the following subsection.

3.2 Audio classification model (AC)
We trained a generic audio classifier (AC) to detect pres-
ence of captions and the audio events falsely classified
as speech by the VAD model. This model is trained on
an audio event dataset consisting of 121 different human
annotated sound event clips from DEC-1100 dataset,
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Fig. 1 Network architecture of our GRU based VAD model. The model uses 800 ms audio signal sampled at 32 kHz as input, extracts magnitude
(STFT) and Instantaneous Frequency (IF) spectrograms using feature extraction module. These two spectrograms are then normalized using Batch
Normalization (BN) and passed through two parallel two layered Bi-GRU module. The outputs of the GRUs are time averaged, concatenated and
passed through linear layer (128 dimension) followed by a Parametric ReLU (PReLU), Batch Normalization (BN), linear layer (2 dimensional) and a
softmax to generate probability of speech and non-speech

1800 videos from another internal proprietary repository
(known as DEC-1800), and two publicly available datasets
namely, FSDKaggle2019 [29] and Google Audioset [8].
We now describe the training and testing dataset creation
process.

3.2.1 Train, validation, and test set creation
We use the time duration of captions from DEC-1100
and DEC-1800 to create the multi-class dataset. We cat-
egorize these sounds into 121 categories. The categories
includes human sounds (grunts, sigh, laugh, cough, etc.),
music and instrument related sounds (chant, song, back-
ground music, jingle, etc.), animal sounds (bark, meow,
etc.), machine sounds (traffic, gunshots, etc.) and other
environmental sounds (wind, waves, etc.). The categories
are outlined below:
applause, bang, bark, beep,

blare, bleat, breathe heavily,
burp, buzz, chant, chatter, cheer,
chime, chirp, clank, clap, clatter,
clear throat, click, clink, cluck,
coo, cough, crack, crackle, crash,
creak, croak, cry, dial, ding,
door_or_drawer_open_or_close, drill,
echo, engine, exclaim, exhale,
explosion, fart, flapping, footstep,
gasp, groan, growl, grumble, grunt,
gunfire, helicopter, hiccup, hiss,
honk, howl, hum, inhale_or_exhale,
instrument-play, jingle, knock,
laugh, meow, moan, moo, mosquito,
muffle, music, mutter, neigh, noise,
not_a_caption, oink, others, pant,
pop, quack, rain,rattle, revving,
ring, roar, rumble, rustle, scoff,
scream, screech, shatter, shiver, sigh,
silence, siren, sizzle, snap, snarl,
sneeze, sniff, snore, snort, sob,

song, spit, squawk, squeak, squeal,
static, talk, thud, tick, toll, tone,
traffic, trill, type, water run,
waves,whimper, whine, whirr, whisper,
whistle, whoop_or_whoosh, wind, yell,
yelp, others, not_a_caption, silence.
Finally, we extract the audio segments from their cor-

responding caption timings present in the subtitle file.
Similarly, we extract the segments from the two public
datasets with the above mentioned categories. We divide
the segments from both public and proprietary datasets
into 2 s clips with 50% overlap between consecutive clips.
We choose a duration of 2 s due to two reasons: First,
90% of the captions duration in DEC-1100 and DEC-1800
are smaller than 2.3 s. Second, several sounds such as
‘instrument-play’, ‘songs’, ‘chant’,‘echo’ etc., require longer
time duration for classification as compared to VAD. The
distribution of audio clip-label pair in the resulting dataset
is as follows: (a) DEC-1100: 51,337, (b) DEC-1800: 90,333,
(c) FSDKaggle2019: 1,51,989, and (d) Google Audioset:
9354.
Further, we perform human annotation where each clip

was tagged by 2 annotators to minimize the human error.
We retain the clips which had agreement between the

Table 2 Measures compared with various VAD models trained
on DEC-1100 dataset and tested on DEC-based human
annotated test set

Model name Accuracy AUC Precision Recall F-score

CLDNN 0.852 0.915 0.877 0.852 0.854

CNNTD 0.866 0.947 0.876 0.866 0.867

GRU 0.871 0.951 0.887 0.871 0.872

STNET 0.863 0.940 0.863 0.863 0.861

TCN 0.875 0.900 0.887 0.875 0.876

WebRTC 0.615 - 0.757 0.615 0.597
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two annotators resulting in 200,000 clips sampled at 48
kHz. We extract log scaled mel-STFT of the clips with
128 bins and 134 time frames using a window size of 25
ms (1200 samples) and hop length of 15 ms (720 sam-
ples). We use 80% of this dataset for training, 10% for
validation and remaining for testing purpose. However,
we observe a data imbalance of 7500x between the sam-
ples of largest and smallest category. Hence, we use an
approach similar to Spec-Augment [30] for synthesizing
the training samples of the imbalanced classes using the
following four techniques: First, time warping of spectro-
gram by a factor between 0.8 and 1.2 of the spectrogram’s
time bins. Second, time and frequency stretching by a ran-
dom factor between 0.8 and 1.2 of the spectrogram’s time
and frequency bins. Third, global spectrogram magnitude
shift in both positive and negative directions by a ran-
dom factor between 0.05 and 0.1 of the mean amplitude
and, fourth, introducing time-frequency masking by ran-
dom masking 20% continuous time and frequency bins.
This process results in 1.5M training samples across 121
classes.

3.2.2 ACmodel
The network diagram of the AC model is shown in the
Fig. 2. The AC is a VGGish model known as CNNTD
[16] that consists of 4 convolutional blocks of 2 layers
each followed by temporal pooling (TP) and two FC lay-
ers followed by a softmax over 121 categories. We explore
two variants of the VGGish model: (a) CNNTD-large:
with 13 M parameters and (b) CNNTD-small with 2.9M
parameters as shown in the Fig. 3.

3.2.3 Results
We compare the models against PANNs [14], ResNeXt
[31], and GRU-based [32, 33] models. Comparison results
for these methods can be found in the Table 3.We observe
that CNNTD-largemodel results in the best AUC, average
recall, and top3 accuracy among all the models. Hence,
we use CNNTD-large model as our AC model to be used
as a component of missing subtitle detector. In the fol-
lowing subsection, we describe the approach to detect
missing subtitle speech blocks using the GRU based VAD
and VGGish CNNTD-large AC model.

3.3 Missing subtitle block detection using VAD and AC
models

Our proposed method consists of 3 stages, as depicted
in the Fig. 4. First, we obtain the timings of speech/non-
speech segments or blocks from VAD and AC models
independently. Second, we merge the two timings and
remove the false positives of VAD. Finally, we compare
the predicted timings with the timings in the subtitle file
and identify the positions of missing speech in the file. We
now describe the timing generation process using the two
models.

3.3.1 VAD inference
The VAD inference consists of six steps: First, we extract
audio from the video and divide it into 800 ms clips
with 90% overlap between consecutive clips. Second, we
use VAD model to obtain the probability of speech for
each 800 ms clip. Third, due to overlap of 90% between
clips, we assign the probability of first 800 ms clip to first
80 ms segment, assign the probability of second 800
ms clip to second 80 ms segment and so on. Fourth,
to filter spurious probabilities, we smooth the result-
ing probability vector using a moving average win-
dow of length 35. Fifth, we join the consecutive 80
ms segments having probability > 0.5 to form speech
blocks and obtain their timings. Finally, we combine
the consecutive speech blocks where end of the for-
mer and start of the latter segment is less than 300
ms to obtain final VAD speech blocks. We merged
the blocks that are < 300 ms apart because signifi-
cant pauses associated with commas, blanks, punctua-
tions are around 300 ms. We chose the window length
and the probability threshold through a hyperparame-
ter tuning step. The VAD inference steps are depicted in
the Fig. 5.

3.3.2 AC Inference
The AC inference consists of 4 steps: First, we divide the
extracted audio into 2 s clips without overlap. Second, we
obtain the probability of various categories from the AC
model for a given clip. Third, we identify top-K (K = 3) cat-
egories and consider the clip as non-speech if it contains
any of the following with a probability p ≥ 0.6: ‘music’,

Fig. 2 Network architecture of our Audio Classification model. The network takes in 2 s audio clips sampled at 48 kHz as input and extracts log mel
spectrogram as input. The spectrogram is passed as an input to the VGGish network consisting of 4 convolutional blocks. Each block consists of
conv2D-BatchNorm(BN)-PReLU-conv2D-BN-PReLU and a 2 ×2 MaxPool2D layer. Following the blocks, we pool along the temporal axis and reshape
the input into a 2D array. This input is passed through two fully connected layers of sizes 512 (with a dropout of 0.5) and 121 respectively. Finally, we
perform a softmax on 121 categories
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Fig. 3 CNNTD-small and CNNTD-large model architectures

‘song’, ‘instrument-play’, ‘groan’, ‘inhale_or_exhale’, ‘sigh’,
‘clear throat’, ‘breathe heavily’, ‘grunt’, ‘cough’, ‘gasp,’ and
‘exhale’. These categories were chosen on the basis of most
frequent captions present in DEC-1100 and DEC-1800.
We make a simplifying assumption about other categories
and consider the rest as speech. Finally, we combine the
consecutive speech segments to form AC speech blocks
and obtain their timings. AC inference steps are depicted
in the Fig. 5.

3.3.3 Combining the predictions
We create two binary arrays of length equal to the length
of the audio in milliseconds (ms) using the predictions of
the above two steps respectively. Since the VAD and AC
models work at different granularity, we use 1 ms as a
scale for the final array to enable easier extrapolation and
merging. We extrapolate the predictions of VAD and AC
models to ms level and fill the arrays with ‘1’ at speech
locations and rest with ‘0’. Subsequently, we perform a

Table 3 Performance comparison of various audio classification methods on human labeled test set

Model Accuracy AUC Precision Recall F-score Average recall Top3 accuracy

GRU 54.7% 0.972 53.8% 54.7% 53.7% 63.7% 76.1%

ResNeXt 63.8% 0.984 63.4% 63.8% 63.3% 73.1% 83.4%

CNNTD-small 67.4% 0.9867 66.7% 67.4% 66.8% 74.8% 85.9%

CNNTD-large 71.8% 0.9876 70.9% 71.8% 71.0% 77.1% 88.5%

PANNs 73.22% 0.9546 72.75% 73.22% 72.88% 58.31% 88.41%
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Fig. 4 Proposed method for combined VAD and AC inference and the algorithm to identify missing subtitle blocks. Consider the dialogue at the
start which consists of a caption (Simon Breathes) and speech following it. However, this dialogue is missing from the subtitle file. To identify the
true speech timings, we divide the audio in 800 ms (with 90% overlap) and 2 s clips (with no overlap) and pass them to VAD and AC models
respectively. Following the VAD and AC timing generation step for the clips, we perform a logical AND between the timings and generate the
refined predicted speech blocks. VAD can potentially identify the caption (Simon Breathes) as a speech block. The time duration associated with the
caption is identified by the AC model and is removed from the VAD’s timing to generate the correct timings. We then compare the timings of
predicted refined speech block to the timings present in the subtitle blocks and predict the missing subtitle blocks

logical AND operation between the two arrays. Finally, we
obtain the timings of speech and non-speech blocks by
combining the consecutive predictions.

3.3.4 Identification ofmissing blocks
We compute the overlap between every predicted speech
block’s timings with the speech block’s timings in the sub-
title file. We consider a predicted speech block ‘covered’,
if it overlaps with a subtitle speech block for more than
t = 800 ms. During inference, if a predicted speech block
is not covered by any subtitle speech block, we consider
the block as missing from the subtitle file. In the following
section, we outline the datasets, metrics and comparison
results on two DEC based missing subtitle block datasets.

4 Experiments and results
In this section, we present the datasets, metrics, hyper-
parameter tuning and results of our experiments. We use

VAD model as the baseline to benchmark the proposed
method. Further, we also compare against the speech tim-
ings obtained from the proprietary language dependent
neural ASR model similar to model used by Kaldi ASR
[34, 35].

4.1 Datasets
Owing to lack of publicly available datasets on the prob-
lem, we use two proprietary datasets in our evaluations.
First, we create a synthetic dataset of missing subtitles
from 50 proprietary videos sampled from Amazon Orig-
inals. These videos consists of synced subtitles in English
language. To create the dataset, we randomly remove
10% of the subtitle speech blocks and treat them as
missing subtitle blocks. Second, we use dataset of 430
incorrectly synced DEC video-subtitle pairs that contains
missing subtitle blocks obtained through our internal Lan-
guage Quality Program. We used human validation to
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Fig. 5 Predicted subtitle block generation steps from VAD and AC models

Fig. 6 The figure depicting subtitle speech blocks in peach (overlaid on audio track) in the middle, predicted speech blocks in blue at the top and
subtitle text at the bottom. The figure highlights several output cases of our algorithm: a the coverage of predicted speech blocks (blue) with the
subtitle speech blocks (peach), b the subtitle non-speech block, missing subtitle speech block (in light gray) and predicted speech block that
correctly predicts the missing subtitle location but overlaps with the non-speech segment as well, c our algorithm is unable to predict the missing
speech block, d our algorithm makes a prediction with coverage < tms and hence fails to detect the speech block, and e the algorithm falsely
identifies a non-speech region as speech
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Table 4 Analysis on synthetic dataset

Segment level metric VAD VAD + AC ASR

Coverage between predicted speech to reference missing speech sections 81.8 79.37 74.21

Coverage between predicted speech to reference non-speech sections 15.04 12.42 26.93

identify 354 missing speech blocks with time duration
> 500 ms.

4.2 Metrics
We use two metrics to evaluate the performance of
the models: (1) subtitle block duration based metric—
coverage—and (2) subtitle block detection based
metrics—false positive rate (FPR), precision, and recall.
While duration-based metric provide the effectiveness
of identifying the correct timings of missing blocks,
the block level metrics identifies the effectiveness in
identifying the missing blocks themselves. Coverage
[36] is defined as the ratio of intersection duration of
the hypothesis segment with reference segment and the
duration of reference segment.

4.2.1 Coverage
We calculate the coverage metric across two terms: First,
between the predicted speech blocks (hypothesis) with
the missing speech blocks in the subtitle file (reference).
We term predicted speech blocks with intersection t >

800 ms with the reference missing speech blocks as cor-
rectly predicted missing speech blocks (Fig. 6a,b). On the
other hand, incorrectly predicted speech blocks have a
intersection t > 800 ms with non-speech blocks and are
without intersection with the missing speech blocks in
the subtitle file (Fig. 6e). Second, for every correctly pre-
dicted missing speech block (hypothesis) we compute its
intersection with neighboring non-speech blocks in the
subtitle file (reference). The first value indicates the effec-
tiveness of method to correctly predict the time duration
of the missing subtitle blocks. The second value highlights
the bleeding of predicted missing speech time duration
into non-speech regions.

4.2.2 FPR, precision, and recall
These metrics quantify the efficacy of the method in
detecting missing speech blocks. First, we compute the
FPR that quantifies the percentage of correctly predicted
missing speech blocks that over-extends to non-speech
blocks of the subtitle file. The FPR is computed in two
steps: first, we identify the number of correctly predicted

missing speech blocks that also intersects with the neigh-
boring non-speech subtitle blocks, and, second, we take
their ratio with the total number of non-speech subtitle
blocks. Next, we compute the precision as the ratio of the
number of correctly predicted missing speech blocks to
the total number of predicted speech blocks. Finally, we
compute the recall as the ratio of the number of correctly
predicted speech blocks to the total number of missing
subtitle blocks.

4.3 Comparison
In this section, we present the duration based and block-
level based analysis on our synthetic and real-world miss-
ing subtitle datasets.

4.3.1 Analysis on synthetic dataset
Table 4 presents the coverage percentages of using: (a)
VAD baseline, (b) VAD + AC, and (c) proprietary ASR
for determining the missing subtitle blocks. For the VAD
baseline and proprietary ASR, a procedure similar to
Section 3.3 was followed to flag the missing subtitle
blocks. This included forming speech segments using the
predicted probabilities and calculating overlap with the
subtitle speech blocks to flag the missing segments. We
observe that the VAD baseline model results in ≈ 82%
coverage with reference missing subtitle blocks. However,
predicted speech coverage with reference non-speech
blocks from the subtitle file is close to 15%. This hap-
pens as VAD falsely identifies some non intelligible human
sounds and music categories as human voice. Using the
AC model, we are able to bring the predicted speech cov-
erage with reference non-speech blocks down by 2.5%
from the VAD baseline, but at the cost of 2% reduc-
tion in coverage with reference missing subtitle blocks.
The ASR system which was not trained on DEC dataset
results in very high predicted speech coverage (≈ 27%)
with reference non-speech blocks.

4.3.2 Analysis on human annotated dataset
From Table 5, we observe that VAD + AC model outper-
forms VAD baseline and ASR in terms of coverage. The
ASR system has low coverage with the reference missing

Table 5 Analysis on human annotated dataset

Segment level metric VAD VAD + AC ASR

Coverage between predicted speech to reference missing speech sections 72.15 74.91 60.53

Coverage between predicted speech to reference non-speech sections 45.22 35.7 39.3
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Table 6 Block-level analysis on human annotated dataset. ↓: lower is better and ↑: higher is better
Threshold (t in ms)

FPR ↓ Precision ↑ Recall ↑
VAD VAD +AC % Reduction VAD VAD + AC % Improvement VAD VAD + AC % Improvement

300 0.214 0.106 50.467 0.277 0.438 58.123 0.712 0.69 − 3.090

500 0.195 0.072 63.077 0.298 0.552 85.235 0.707 0.667 − 5.658

800 0.169 0.039 76.923 0.334 0.732 119.162 0.702 0.631 − 10.114

1000 0.149 0.03 79.866 0.369 0.819 121.951 0.695 0.597 − 14.101

1200 0.134 0.024 82.090 0.398 0.853 114.322 0.687 0.558 − 18.777

subtitle blocks mainly due the presence of noise in the
video clips. The VAD + AC model model significantly
reduces the percentage of predicted speech coverage with
reference non-speech blocks (≈ 10%) as compared to the
VAD baseline approach and improves upon the predicted
speech coverage with reference missing speech blocks (by
≈2.5%). The large value of predicted speech coverage with
reference non-speech blocks is mainly due to (a) incor-
rect timing annotation and (b) songs being identified as
speech by all three models, as verified through a manual
inspection of the falsely predicted speech segments.
Table 6 presents the block-level performance of the

baseline VADmodel and our proposed VAD+ACmethod
on the human annotated dataset as detection threshold t is
varied while predicting the missing-subtitle blocks. Here,
we do not compare ASR performance as VAD and VAD
+ AC models are empirically observed to perform better
than ASR system. We observe that our proposed VAD +
AC model outperforms the VAD baseline by a significant
margin in terms of FPR and Precision. Results indicate
that as the detection threshold increases, the FPR value
of both the VAD and VAD + AC models reduces signifi-
cantly as the models become more confident in predicting
the missing subtitle blocks. The FPR value of VAD + AC
model is much lower than VAD baseline as AC model
reduces the effect of incorrect predictions of VAD. At
t = 800 ms which is the input duration for VAD, the VAD
+ AC results in ≈ 77% reduction in FPR.
Similarly, VAD + AC significantly outperforms the VAD

baseline in terms of precision. At t = 800 ms, the VAD
+ AC model results in 119% increase in precision as
compared to its VAD counterpart by removing the false
detections. However, the VAD + AC model results in a
10% reduction in recall at t = 800 ms which is marginal
reduction as compared to VAD baseline. This reduction
occurs as AC model has the potential to remove certain
true speech segments present in VAD due to its input
length threshold of 2 seconds.

5 Conclusions
We proposed two automated language-agnostic methods
for missing subtitle detection. We showed that a VAD
can be suitably used for detecting audio segments having

a missing subtitle blocks. Further, conjugating the VAD
model with an AC model improves the detection by effec-
tively reducing the false positive cases of VAD. We pre-
sented a performance comparison on two DEC missing
subtitle blocks datasets and showed that our proposed
method works significantly well for the task at hand. Our
proposed method is language agnostic and achieves an
true coverage of 75% on a human-annotated dataset and a
configurable block-level precision of up to 0.85. The pro-
posed approach can also be reasonably applied to other
VAD methods proposed for various applications apart
frommissing subtitle detection. Since ourmethod reduces
the false-positives of the VAD model, it can be extended
to other use-cases such as speech identification or subti-
tle drift detection to reduce the false-positive cases of the
VAD model.
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