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Abstract
Language recognition based on embedding aims to maximize inter-class variance and minimize intra-class variance.
Previous researches are limited to the training constraint of a single centroid, which cannot accurately describe the
overall geometric characteristics of the embedding space. In this paper, we propose a novel masked multi-center
angular margin (MMAM) loss method from the perspective of multiple centroids, resulting in a better overall
performance. Specifically, numerous global centers are used to jointly approximate entities of each class. To capture
the local neighbor relationship effectively, a small number of centers are adapted to construct the similarity
relationship between these centers and each entity. Furthermore, we use a new reverse label propagation algorithm
to adjust neighbor relations according to the ground truth labels to learn a discriminative metric space in the
classification process. Finally, an additive angular margin is added, which understands more discriminative language
embeddings by simultaneously enhancing intra-class compactness and inter-class discrepancy. Experiments are
conducted on the APSIPA 2017 Oriental Language Recognition (AP17-OLR) corpus. We compare the proposed
MMAMmethod with seven state-of-the-art baselines and verify that our method has 26.2% and 31.3% relative
improvements in the equal error rate (EER) and Cavg respectively in the full-length test (“full-length” means the
average duration of the utterances is longer than 5 s). Also, there are 31.2% and 29.3% relative improvements in the
3-s test and 14% and 14.8% relative improvements in the 1-s test.

Keywords: Spoken language recognition, Masked multi-center angular margin, Multi-center loss, Single-center loss,
ECAPA-TDNN neural network

1 Introduction
Language recognition (LR) is the task of automatically
identifying or verifying a language or languages being
spoken in a given speech utterance [1]. It plays an essen-
tial role in multilingual speech pre-processing, which
is typically followed by speech recognition systems and
automatic translation systems [2].
Generally speaking, there are two types of LR tasks:

close-set LR and open-set LR. Most current research
focuses on close-set LR, meaning that all test utterances
correspond to a target language. In other words, the lan-
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guage of the training set and the test set are the same.
However, the open-set LR means that the test utterances
are unlikely to be strictly restricted to a target language
but may also correspond to some unknown languages
[3]. This paper mainly improves the performance of the
former category.
Due to the similarity in research fields, recent advances

in automatic speech recognition and speaker recognition
based on single-center loss (SCL) have improved language
recognition applications. Single-center loss can be divided
into two types, that is, classification loss and metric loss.
The pioneering work of using the classification loss

is to learn the speaker embedding for speaker recogni-
tion [4–6]. Since then, popular methods train embeddings
using softmax classifiers [7–11]. Although the softmax
loss can learn separable embeddings, since it is not explic-
itly designed to optimize embedding similarity, it is not
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distinguishable enough. Therefore, the model trained by
softmax is usually combined with the back end of PLDA
[6, 12] to generate a scoring function [13, 14]. Wang
et al. [15] proposed angular softmax (A-softmax), using
cosine similarity as the logit input of the softmax layer
to solve this problem. Many studies have proven that A-
softmax is superior to softmax in speaker recognition [16–
19]. Additive margin variables AM-Softmax [15, 20] and
AAM-Softmax [21] have been proposed to increase the
variance between classes by introducing a cosine margin
penalty on the target logit, which has been well applied
due to their good performances [16–18]. However, train-
ing AM-Softmax and AAM-Softmax have proven to be
challenging because they are sensitive to the scale and the
marginal value of the loss function. To improve the perfor-
mance of AM-Softmax loss, Zhou et al. [22] proposed to
dynamically set the margin of each training sample differ-
ent from the cosine angle of that sample. Specifically, the
smaller the cosine angle, the greater the distance between
the training sample and the corresponding class in the
feature space, and the better the intra-class compactness.
The embedding learned from the classification loss is

only optimized for the separation between classes. Dif-
ferently, the metric loss is used to embed the speaker,
which not only expands the inter-class variance but also
reduces the intra-class variance [22]. Triplet loss [23, 24]
and contrast loss [25] optimize the embedding space by
minimizing the distance between feature pairs and the
same speaker and maximizing the distance between fea-
ture pairs and different speakers. However, these meth-
ods require careful attention to the choice of the couple
and triplet, which is time-consuming and performance-
sensitive. The generalized end-to-end (GE2E) loss [26] is
an enhanced contrast loss, which directly optimizes the
cosine distance between the speaker embedding and the
centroid, without the need for complicated sample selec-
tion such as triple loss [23, 24] and contrast loss [25]. This
metric loss also has the final classification layer, and the
extraction embedding also needs to be removed.
To sum up, the classification loss only optimizes the

distance between a sample and the center without con-
sidering the relationship between any two samples. On
the contrary, the metric loss only optimizes the distance
between two samples without considering the sample and
center relationship. In this paper, we employ the advan-
tages of both the classification loss and the metric loss and
propose to use the multi-center loss (MCL). More specif-
ically, given C classes, MCL designs K centers for each
class, so there are K · C centers. For a training sample,
we will get K positive centers and K · (C − 1) negative
centers, where “positive center” means a sample belongs
to a class, and correspondingly, “negative center” repre-
sents a sample does not belongs to a class. A similar
method was also studied in [27–29]. Deng et al. [27] is to

optimize the distance between the sample and one of the
pre-defined multi-centers without considering the other
centers. Although [28] optimizes the distance between
the sample and all the pre-defined centers, it only opti-
mizes the distance-weighted of all centers. Zhu et al. [29]
proposes a new proxy-based deep graph metric learn-
ing (ProxyGML) method for graph classification, which
uses fewer proxies but has better overall performances. As
[29] provides a good example of the optimization method,
we also use this method for our multi-center loss in this
paper. Moreover, Wang et al. [15], Wang et al. [20] and
Deng et al. [21] introduce an additional corner penalty
between the speaker embeddings and the centroid, which
reduces the distance of the class inner corners so that
the speaker embeddings belonging to the same speaker
are gathered closely around the centroid. Inspired by this,
we also penalize the distance between the sample and
the center cosine by increasing the margin. In summary,
based on MCL, the optimization method provided by
ProxyGML and additional corner penalties, we propose
maskedmulti-center angularmargin (MMAM) loss in this
paper. Our contributions are summarized as follows:

1. We propose to use multi-center loss to optimize the
cosine distance between the language embedding and
the corresponding multi-centers and optimize the
cosine distance between the multi-centers
simultaneously while taking advantage of both the
classification loss and the metric loss.

2. In addition, we added an additional angular margin
to the multi-center loss, which learns more
discriminative language embeddings by
simultaneously explicitly enhancing intra-class
compactness and inter-class differences.

3. Thirdly, we add a masking operation to the
multi-center loss, so that the network itself
adaptively selects the optimization method of
samples and multiple centroids.

4. The proposed masked multi-center angular margin
loss is evaluated by comparing it with seven
state-of-the-art baselines. Both its performance and
convergence speed far exceed those of the baselines.

5. The proposed MMAM loss can be readily applied to
various similar tasks, such as speaker verification and
speaker recognition. To the best of our knowledge,
we introduce the multi-center loss into language
recognition for the first time.

This paper is arranged as follows. In Section 2, we
review the GE2E loss [26], AM-Centroid loss [30], Soft-
max loss [7], AAM-Softmax loss [21], and DAM-Softmax
loss [22], Sub-center loss [27], and Softtriple loss [28],
which are the start-of-the-art types of loss used in LR
methods. In Section 3, we describe our MMAM loss.
We give experimental setup and experimental results in
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Sections 4 and 5, respectively. Finally, in Section 6, we
conclude this paper.

2 Baselines
Our MMAM loss is inspired by metric loss (e.g., GE2E
[26] and AM-Centroid [30]) and classification loss (e.g.,
Softmax [7], AAM-Softmax [21], and DAM-Softmax
[22]), as well as the newly popular MCL (e.g., Sub-center
[27] and Softtriple [28]).

2.1 Metric Loss
GE2E and AM-Centroid are two types of metric loss,
which serve as two baselines for our experiments.

2.1.1 GE2E
Let a batch consist of N languages and M utterances per
language. We use xij(1 ≤ i ≤ N , 1 ≤ j ≤ M) to denote the
language embedding extracted from language i utterance
j. In GE2E training, every utterance in the batch except
the query itself is used to form centroids. As a result, the
embedding centroids of sample k that belong to different
classes and the same class from the query are defined as
follows:

ck = 1
M

M∑

m=1
xk,m, (1)

c(−j)
k = 1

M − 1

M∑

m=1,m �=j
xk,m. (2)

The similarity matrix is defined as scaled cosine similar-
ity between the embeddings and all centroids:

Sij,k =
⎧
⎨

⎩
w · cos

(
θxij ,c

(−j)
k

)
+ b if i = k,

w · cos (θxij ,ck
) + b else,

(3)

where w, b are learnable parameters and θxij ,ck refers to
the angle between xij and ck . The final GE2E loss [26] is
defined as:

�G = − 1
N

∑

i,j
log

eSij,i
∑N

k=1 e
Sij,k

. (4)

2.1.2 AM-Centroid
Although GE2E loss promotes the embedding of language
k to be closer to its centroid ck than other centroids, there
is still a sizeable intra-class distance. If the included mar-
gin between each embedded language and its center of
mass is large, it will be penalized. After setting b = 0,
replacing w with a scalar value s, and adding the angle
margin m to the target angle, we get AM-Centroid [30]
from Eq. 3 as follows:

Sij,k =
⎧
⎨

⎩
s · cos

(
θxi,j ,c

(−j)
k

+ m
)

if i = k,

s · cos (θxi,j ,ck
)

else.
(5)

2.2 From softmax to angular softmax
This section mainly introduces the development process
of classification loss, and we choose Softmax [7], AAM-
Softmax [21], and DAM-Softmax [22] as three baselines
for subsequent experiments.

2.2.1 Softmax
The softmax loss consists of a softmax function fol-
lowed by a multi-class cross-entropy loss. Its basic form is
defined as:

�S = − 1
N

N∑

i=1
log

eW
T
yi xi+byi

∑C
j=1 e

WT
j xi+bj

, (6)

where N and C are the numbers of training samples and
the number of classes respectively, and xi and yi are the
feature representation of the ith sample and the target
class of the ith sample, respectively, and W and b are the
weight and bias of the last layer of the backbone network
respectively. This loss function only penalizes classifi-
cation errors and does not explicitly enforce intra-class
compactness and inter-class separation.

2.2.2 Angular softmax
By normalizing the weight and the input vector, the soft-
max loss can be re-expressed. The posterior probability
only depends on the cosine of the angle between the
weight and the input vector. The expression WT

yi xi + byi
in the numerator on the right-hand side of Eq. 6 can be
rewritten as:

‖Wyi‖‖xi‖cos(θyi) + byi . (7)

From Eq. 7, we normalize the weight vector to unit
norm, and discard the deviation term by setting ‖Wyi‖ =
1 ‖xi‖ = 1 and byi = 0, which leads to the so-called
angular softmax loss [15], defined as follows:

�A = − 1
N

N∑

i=1
log

ecos(θyi ,i)
∑C

j=1 ecos(θj,i)
. (8)

Equation 8 is just a rewrite of Eq. 6, which has the
same advantages and disadvantages as Eq. 6. To alleviate
this problem, the cosine margin m is added to Eq. 8. The
additive angular margin penalty is equal to the geodesic
distance margin penalty in the normalized hypersphere.
There are two types of additional corner penalties. One is
the penalty for corners in the angle range, and the other
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is for angles. The corresponding AM-Softmax [20] and
AAM-Softmax [21] loss formulas are:

�AM=− 1
N

N∑

i=1
log

es·(cos(θyi ,i)−m)

∑C
j �=yi e

s·(cos(θj,i)) + es·
(
cos

(
θyi ,i

)−m
) , (9)

�AAM=− 1
N

N∑

i=1
log

es·(cos(θyi ,i+m))

∑C
j �=yi e

s·(cos(θj,i)) + es·(cos(θyi ,i+m))
, (10)

where s is a fixed scale factor to prevent the gradient of the
training phase from being too small. The cosine marginm
is manually tuned and is usually larger than 0.

2.2.3 DAM-Softmax
In Eq. 9, the cosine margin m is a constant shared by all
training samples. However, the penalty scales for different
samples should be different. DAM-Softmax [22] is based
on the assumption that the smaller the cos(θ), the farther
the sample is from the corresponding class in the feature
space, and the marginm should be set larger to force com-
pactness within the class, so DAM-Softmax loss changes
marginm to:

mi = me(1−cos(θyi ))

λ
, (11)

wheremi is the cosine margin value of the ith sample, and
m is the essential margin value, and λ is the control factor
that controls the margin value range.

2.3 Multiple centroids
Multi-centroid loss is first proposed in the field of graph-
ics [27, 28]. Sub-center [27] and Softtriple [28] are two
types of the existing multi-center classification loss, which
serve as two baselines for subsequent experiments.

2.3.1 Sub-center
Assuming that each class hasK centers, then the similarity
between sample xi and class c can be defined as:

Si,c = max
k

xTi w
k
c . (12)

Sub-center loss [27] is designed to optimize the distance
between the sample and one of the pre-defined multi-
centers without considering the other centers. The loss is
defined as follows:

�Sub = −log
ecos(θi,yi+m)

es·(cos(θi,yi+m)) + ∑N
j=1,j �=yi e

s·(cos(θi,j)) , (13)

where θi,j = arccos
(
maxk

(
WT

jk xi
))

, and k ∈ {1, 2, . . . ,
K − 1,K}.

2.3.2 Softtriple
Softtriple loss [28] mainly considers the similarity dis-
tance between the sample and all centers by weighted
summation. Its main formulas are as follows:

Si,c =
∑

k

e
1
γ
xTi w

k
c

∑
k
e
1
γ
xTi wk

c
ex

T
i w

k
c , (14)

�Softtriple(xi) = −log
eλ(Si,c−δ)

eλ(Si,c−δ) + ∑
j �=yi e

λSi,c
, (15)

where λ is the weighted summation of the similarity
between the representative sample and all centers, and δ

is similar to the previous parameterm ∈ (0, 1).

3 The proposedmethod
3.1 Formulation
Our goal is to design a more discriminative feature
embedding by adjusting the network structure parame-
ters. Given the training set with C classes, a small batch
of B samples is randomly selected from the training set
as in usual batch training. Indicating that the embedding
vector of the ith data sample is xsi , and the correspond-
ing label is ysi , then the embedding output of the small
batch of samples extracted by the deep neural network
can be defined as S = {(

xs1, y
s
1
)
,
(
xs2, y

s
2
)
, . . . ,

(
xsB, ysB

)}
.

In addition, we assign K trainable centers to each class.
The value of K is preset, so it requires to find the opti-
mal value of K. The total number of central sets to be
trained is C · K . The central set can be expressed as C ={(
xc1, y

c
1
)
,
(
xc2, y

c
2
)
, . . . ,

(
xcC·K , y

c
C·K

)}
. In order to constrain

the similar relationship between the sample and the cen-
ter, we also represent the center label in the set C as a
one-hot label matrix Yc ∈ {0, 1}(C·K)×C with Yc

ij = 1 if
yci = j and Yc

ij = 0 else.

3.2 Masking of similar relationships
The basic idea behind MMAM loss is to ensure that each
data sample is close to its associated positive center and
away from its negative center. Given the embedding vector
{
xsi

}B
i=1 and all centers

{
xcj

}C·K
j=1

in the small batch pro-
cessing, we first construct the similarity matrix S between
the sample and the center, where S ∈ �B×(C·K) represents
the similarity between the sample and the center, which is
calculated by Eq. 12. Both xsi and xcj are normalized to be
the unit length, and thus Sij ∈[−1, 1].
Figure 1 illustrates the overall architecture of MMAM.

By generating a similarity matrix between the sample and
all the centers, the local relationship around each sample
can be further constructed into a series of similaritymatri-
ces, capturing the fine-grained neighborhood structure
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Fig. 1 The overall architecture diagram of our proposed MMAM. The input contains the samples in a mini-batch and all the centers, and the labels
include the samples and the pre-defined multi-center labels. Different colors represent different category labels. Multicolor samples indicate that
their neighboring centers influence their classification information

better, that is, the similarity matrix S in Fig. 1 can be trans-
formed into a series of sub-similarity matrices W, and
the optimization process changes from coarse-grained to
fine-grained. Our approach keeps themaximum value of p
in each row in S to construct a p-nearest neighbor (p-NN)
matrix. Since all centers are initialized randomly, directly
selecting the center closest to K for each sample may miss
many positive centers. These centers of the same cate-
gory cannot be updated at the same time in each iteration.
Therefore, we introduce a positive mask Spm to ensure
that all the positive centers of each sample are selected,
which can also be regarded as a kind of “soft” constraint
on the centers, and as shown in Fig. 1, a series of sub-
similarity matrices W encourages similar centers through
the guidance of reverse label propagation in subsection 3.3
close to their corresponding samples while keeping similar
centers close to each other.
The positive mask Spm is based on the label of the sam-

ple and the center, which essentially reflects the genuine
similarity between them:

Spmij =
{
1, if ysi = ycj ,
0, else. (16)

We calculate the index of the p-max value of each row
of (S + Spm) and store it in the set of p elements � ={
. . . , (i, j), . . .

}
. Then construct the sub-similarity matrix

to be represented by a sparse neighbor matrixW :

Wij =
{
Sij, if (i, j) ∈ �,
0, else, (17)

where W ∈ �B×(C·K). With the help of the positive mask
Spm, even if p is relatively small, all the positive centers of
each sample will participate in each sub-similarity matrix.
In detail, p is given by p = �r · C · K�, where a scale fac-
tor r ∈ (0, 1] is introduced to easily obtain sub-similarity
matrices of different scales.

3.3 Reverse label propagation
In subsection 3.2, the sub-similarity matrix W between
samples and centers has been constructed, and the sam-
ples and centers from the same category should be
close to each other [31]. In semi-supervised learning,
the idea behind traditional label propagation (LP) is to
infer unknown labels through manifold structure [32].
Zhu et al. [29] utilizes the known labels to adjust the
manifold structure using theproposed reverse label propaga-
tion (RLP) algorithm. Inspired by [29, 31, 32], we use the
known sample labels to guide the sub-similarity matrixW for
optimization.According to the LP idea, all the sub-similarity
matricesW are encoded as the predicted output Z.

Zs = WYc, (18)
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where Z ∈ �B×C . The pre-defined multi-center label
Y guides the sub-similarity matrix W to learn the dis-
tance between the positive center and the related sample,
reflecting how its neighboring center points guide the
sample’s classification information from the same cate-
gory to be close to each other. Specifically, in optimizing
the target through RLP, the positive center is close to the
relevant training sample, and the negative center will be
far away from the training sample.

3.4 Margin-based optimization
After introducing the previous two subsections, the sub-
similarity matrixW of the similarity matrix has been con-
structed. The relationshipZ between the positive and neg-
ative centers and the relevant samples has been designed.
Finally, the process of classification learning is analyzed.
Like the classification loss, the prediction output Z is first
converted into a prediction score P through the softmax
operation and then optimized with the ground-truth label.
In this way, each value in P that reflects the similarity
between the sample and the positive center or the negative
center will be increased or decreased. Because there are
manymasking terms in Z, the denominator in the softmax
function will be over-calculated, so it cannot be predicted
correctly. Therefore, we use a new mask softmax function
to prevent the mask value from affecting the prediction
score:

P(ỹsi = j | Xs
i ) = MijeZ

s
ij

C∑
j=1

MijeZ
s
ij

, (19)

where ỹsi indicates the prediction label of the ith sample xsi
in S, and Zij indicates the jth predictive element of the ith
sample, and maskM ∈ {0, 1}B×C is defined as follows:

Mij =
{
1, if Zij �= 0,
0, else. (20)

Cross-entropy loss is computed between the predicted
score and the ground-truth label for each sample. Its per-
formance can be improved when introducing a cosine
marginal penalty on the target logit to increase the vari-
ance between classes. Since the previous optimization
method for constructing the similarity matrix is similar
to ProxyGML, the difference between MMAM and Prox-
yGML is mainly in the optimization calculation method.
Therefore, unlike the classification-based optimization
calculation method in ProxyGML, we introduce an addi-
tional cosine marginal penalty to increase the between-
class variance and reduce the within-class variance, which
can be proved very effective by later experiments. After

adding the cosine marginal penalty, the calculation is as
follows:

�sMMAM =− 1
B

B∑

i=1

C∑

j=1
log

es·cos(θi,yi+m)

es·cos(θi,yi+m) + ∑N
j=1,j �=yi e

s·cos(θi,j) ,

(21)

where θi,j = arccos(P(ỹsi = j | xsi)). Also, we impose a
constraint on the center to ensure that similar centers are
very close and dissimilar centers are far away. Specifically,
we regard each center as the second type of sample and
other similar or different centers as positive and negative
centers. Repeating the above method, first construct the
total similarity matrix between the centers as:

Sci,j = (xci )
Txcj , (22)

where Sc ∈ �(C·K)×(C·K), and both xci and xcj are normal-
ized to unit length. Since the multi-center is initialized
randomly, we no longer construct the p-NN sub-matrix
for Sc. The scale factor r is set to 1. Then, according to the
RLP, the predicted output of the relationship between the
intermediates is as follows:

Zc = ScY c. (23)

The output Zc can also turn into a prediction score
through softmax:

P(ỹci = j | Xs
i ) = eZ

c
ij

C∑
j=1

eZ
c
ij

, (24)

where ỹci and Zij indicate the prediction label of the ith
center xci in C and the jth predictive element of the ith
center, respectively.
Similar to Eq. 21, we also introduce an additional cosine

marginal penalty and get Eq. 25.

�cMMAM = − 1
C · K

C·K∑

i=1

C∑

j=1
log

es·cos(θi,yi+m)

es·(cos(θi,yi+m)) + ∑N
j=1
j �=yi

es·(cos(θi,j))

(25)

Combining Eq. 21 and Eq. 25, respectively, representing
the MMAM loss between the sample and the center, and
the MMAM loss between the center and the center, our
final loss function is

�MMAM = �sMMAM + λ�cMMAM, (26)

where λ balances the loss between the sample and the cen-
ter and between the centers. Equation 26 can lead to more
discriminative language embeddings.
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The source code of computing all the loss functions
in this paper is available at https://github.com/hangxiu/
mmam_loss/.

4 Experimental setup
4.1 The dataset
The proposed MMAM loss model is evaluated on the
AP17-OLR dataset, which is for the second Oriental Lan-
guage Recognition Challenge [33, 34]. The dataset is com-
posed initially of Speechocean and Multilingual Minor
Language Automatic Speech Creation and Recognition
(M2ASR). There are 10 languages in the dataset, including
Kazakh in China (ka-cn), Tibetan in China (ti-cn), Uyghur
in China (uy-id), Cantonese in China Mainland and Hong
Kong (ct-cn), Mandarin in China (zh-cn), Indonesian in
Indonesia (id-id), Japanese in Japan (ja-jp), Russian in
Russia(ru-ru), Korean in Korea (ko-kr), and Vietnamese in
Vietnam(vi-vn) [35].
The dataset is divided into a train/dev part and a test

part. The number of speakers and total volume of each
language is shown in Table 1. For male and female speak-
ers, the volume of each speaker is balanced. There is no
overlap of speakers in the train/dev and test subsets. All
speech utterances are recorded via mobile phones with
a sampling rate of 16kHz and a sampling capacity of
16 bits. In the train/dev subset, there are approximately
10 hours of recordings of each language. This dataset
provides a full-length subset, including train-all, dev-
all, and test-all. Besides, it also provides two short-term
(short-duration audio segments) subsets, including train-
1s, train-3s, dev-1s, dev-3s, test-1s, and test-3s, which
are randomly selected from train-all, dev-all and test-all
according to duration.
Our system is evaluated on test-1s, test-3s, and test-

all, including 22,051, 19,999, and 22,051 utterances,

Table 1 AP17-OLR dataset

Language Train/dev Test

Speaker All utt. Speaker All utt.

ka-cn 86 4200 86 1800

ti-cn 34 11,100 34 1800

uy-id 353 5163 353 1800

ct-cn 24 7676 6 2556

zh-cn 24 7198 6 2400

id-id 24 7667 6 2557

ja-jp 24 7655 6 2548

ru-ru 24 7183 6 1800

ko-kr 24 7195 6 2398

vi-vn 24 7197 6 2396

respectively. In particular, we use the train and dev subsets
jointly as the training set.

4.2 Data augmentation
It is a well-known fact that neural networks benefit from
data augmentation that generates additional training sam-
ples. Therefore, we generate a total of 4 additional sam-
ples for each utterance. Specifically, our paper studies
two enhancement methods commonly used in speech
processing-additive noise and room impulse response
(RIR) simulation [36]. For additive noise, we use the
MUSAN corpus [37], which contains 60 hours of speech,
42 hours of music, and 6 hours of noise, such as dial
tone or environmental sounds. For the room impulse
response, we use the simulated RIR filter provided in [36].
In each training step, the noise and RIR filters are ran-
domly selected [38]. The type of enhancement used is
similar to [5, 39]. The recording is enhanced by one of the
following four methods:

1. RIR filters:We change the gain of the RIR filter to
produce a more diverse reverberation signal.

2. Speech: Randomly select three to seven recordings
from MUSAN, and then add a random
signal-to-noise ratio (SNR) from 13 to 20 decibels to
the original signal. The duration of the additive noise
is matched to the sampled period.

3. Music: A single music file is randomly selected from
MUSAN and added to the original signal, with a
signal-to-noise ratio ranging from 5 to 15 dB.

4. Noise: Background noise in MUSAN is added to the
recordings from 0 to 15 dB SNR.

4.3 Implementation details
4.3.1 Input features
We extract 80-dimensional logMel-filterbank energies for
each speech frame of width 25 ms and step 10 ms. The
training speech segment is set to 2 s, which generates a
spectrogram with the size of 200 × 80. Two-second ran-
dom crops of the log Mel-filterbank feature vectors are
normalized through cepstral mean subtraction, and no
voice activity detection is applied.

4.3.2 Training settings
Our implementation is based on the PyTorch frame-
work [40] and uses the Adam algorithm [41] to optimize
deep neural networks. λ is set to 0.3. We use the initial
learning rate 1e-3 decreasing by 5% every 5 epochs to
train Softmax, AAM-Softmax (m = 0.3), DAM-Softmax
(m = 0.3), GE2E, AM-Centroid (m = 0.3), Sub-center
(m = 0.3), Softtriple (m = 0.3), ProxyGML and our
MMAM (m = 0.3). The models trained by MMAM with
(m = 0.3) are respectively used as pre-trained models
to train MMAM with (m > 0.3) and the initial learning

https://github.com/hangxiu/mmam_loss/
https://github.com/hangxiu/mmam_loss/
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rate is changed to 1e−4. The minimum batch size of
all types of classification loss is set to 64. When train-
ing GE2E loss and AM-centroid loss, each batch contains
10 languages, and each language contains 6 speech frag-
ments, to roughly match the minimum batch size of the
classification loss.

4.3.3 Back-end
In the train/dev subset, the average vectors of a language
can model the language. The test utterance score in a
specific language can be the cosine distance between the
vector of the test utterance and the vector of the language
model generated by the train/dev subset. The formula is
as follows:

Score(Eavg ,Etest) = ETavg · Etest
‖Eavg‖‖Etest‖ , (27)

where Eavg is the enrollment utterance mean, and Etest is
the test utterance vector.

4.4 Evaluation metrics
As in LRE15 [33, 34], Cavg , minimum detection cost func-
tion (minDCF), detection error tradeoff (DET) curve, and
equal error rate (EER) [11] are used to evaluate the per-
formance of different loss systems. These metrics evaluate
the system from different perspectives, thereby provid-
ing more reliable analysis and conclusions of experimental
results. The pair-wise loss that constitutes the miss and
false alarm probability of a specific target/non-target lan-
guage pair is defined as:

C(Lt , Ln)=PTargetPMiss(Lt)+(1−PTarget)PFA(Lt , Ln), (28)

where Lt and Ln are the target and non-target languages,
respectively; PMiss and PFA are the missing and false alarm
probabilities, respectively. Ptarget is the prior probability
for the target language, which to 0.5 in the evaluation.Cavg
as the average of the above pair-wise performance:

Cavg = 1
N

⎧
⎨

⎩PTarget ·
∑

Li

PMiss(Lt)+

1
N − 1

∑

Lt

∑

Ln

[ (1 − PTarget)PFA(Lt , Ln)]

⎫
⎬

⎭ ,

(29)

where N is the number of languages.

4.5 The neural network architecture
The DNN architecture used to extract language embed-
ding is based on [42], with several modifications, as shown
in Fig. 2. The frame-level feature extraction layer first
passes through a layer of ordinary convolutional layer
(CNN). It then passes through the IM-TDNN-Block mod-
ule, which consists of 3 SE-Res2Block blocks, consisting
of a 1-frame background containing an extended con-
volution of the front and back dense layers. The first
dense layer can reduce the feature dimension, while the
second dense layer can restore the number of features
to the original size. Next is the SE-Block to scale each
channel. A skip connection covers the entire unit, and
these layers have parameters, including the number of fil-
ters, the filter size, and the expansion factor. Considering
the hierarchical nature of TDNN, these deeper features

Fig. 2 The neural network architecture
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are the most complex and closely related to language
relationships. However, based on the evidence in [43], we
believe that shallower feature mapping also contributes
to more robust language embedding. For each frame, the
network structure connects the output feature maps of
all SE-Res2Blocks blocks. Two unidirectional LSTM layers
with 512 neural units are used to capture the long-term
time dependence of the frame-level feature sequence.
The pooling layer based on the time attention mecha-
nism is further extended to the channel dimension, which
allows the network to pay more attention to language
characteristics that will not be activated at the same or
similar time. Using the weighted statistical pooling layer,
the speech-level feature vector is generated by calculating
the weighted mean and standard deviation of the input
feature sequence and gathering this statistical infor-
mation together. The last two fully connected layers
have 512 and 192 nodes, respectively, and project the

speech-level feature vectors into the 192-dimensional
language embedding.
We choose GELU [44] activation function or with-

out activation function and use batch normalization
[45] to accelerate training. Using the classification
loss (e.g., Softmax, AAM-Softmax, DAM-Softmax, Sub-
center, Softtriple, ProxyGML and our MMAM) to train
the DNN, another fully connected with ten nodes or
a multiple of them is attached to the last layer of
the structure as the classification layer. All LSTM lay-
ers use tanh as the activation function between them
and use the hard sigmoid as the activation func-
tion for recurrent steps. The early stop is also used
in training. When the loss of the test set does not
decrease in three consecutive periods, the training is
completed. In our experiments, we do not set the valida-
tion set separately and perform validation directly on the
test set, so there may be the risk of overfitting and the

Fig. 3 Experimental results with different numbers of centers (K) under four different scale factors (r)
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overall experimental results may be optimistic. However,
all the methods in this paper are optimized in this way, so
they are comparable. Particularly, we do not use the test
set to optimize the models with the loss, but only for the
termination condition.

5 Experimental results
5.1 Parameter analysis
To find the optimal system of the proposed method, the
parameters K and r in Section 3.2 and the parameter
m in Section 3.4 will be experimentally and theoretically
analyzed.

5.1.1 The number of initialization centers K
As described in Section 3.2, p is the number of opti-
mized similarities selected from the similarity matrix S.
The upper bound of p is C · K . From the perspective
of a network structure optimization, we hope to choose
a smaller p so that the network can adaptively select
appropriate optimization parameters. Therefore, the scale
factor r is introduced to directly select p at different scales.
In terms of experiments, we use the four representative

scales of r = 0.3, 0.5, 0.8, and 1.0 to conduct experiments
to explore the influence of the number of centers K, as
shown in 3. Figure 3a, d, and g illustrates the results of EER
on test-all, test-3 s, and test-1 s, respectively, and Fig. 3b,
e, and h illustrates the results of Cavg on test-all, test-3 s,
and test-1 s, respectively, and Fig. 3c, f, and i illustrate the
results ofminDCF on test-all, test-3 s, and test-1 s, respec-
tively. We see from Fig. 3 that among the four different
scale factors (r), when K = 3, the performance is the best,
confirming that the learned feature embedding can better
capture intra-class changes through an appropriate num-
ber of local cluster centers. When K is further increased,
the performance will decrease due to the overfitting when
the center is over-parameterized.
In order to better illustrate the advantages of MMAM

loss, the experimental results with different center num-
bers (K) under four different scale factors (r) of MMAM
and ProxyGML are shown in Table 2. It is obvious that in
all cases, MMAM is better than ProxyGML.

5.1.2 Scale factor r
We study the influence of the scale factor r whenK is fixed
at 3, and the margin m is fixed at 0.3. Figure 4a, b, and c
illustrates the experimental results on test-all, test-3 s, and
test-1 s, respectively. We see that when r = 0.4, the per-
formance is the best, that is, the values of EER, Cavg and
minDCF are the smallest, which shows that our proposed
MMAMcanmake the network select the similaritymatrix
adaptively.
Specifically, as can be seen from Section 3.2, the num-

ber of positive centers is fixed at K = 3, and the number of
negative centers is p − K , where p = �r · C · K�. On the

Fig. 4 Experimental results with different scale factors (r). The number
of centers K is fixed at 3, and the margin m is set at 0.3
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one hand, when r < 0.4, the similarity matrix optimized
by the network selection is too small, which leads to poor
performance. On the other hand, when r > 0.4, the sim-
ilarity matrix optimized by the network selection is too
large, and too many negative centers are introduced, also
leading to poor performance.
In order to better illustrate the advantages of MMAM

loss, the experimental results under different scale factors
(r) of MMAM and ProxyGML are shown in Table 3, with
the number of centers K fixed at 3. Also, it is obvious that
in all cases, MMAM is better than ProxyGML.

5.1.3 Classificationmarginm
Since the value of angular margin m has a great influence
on the recognition performance and the convergence of
the training process, we study different marginsmwhen K
is fixed at 3, and the scale factor r is fixed at 0.4. As shown
in Table 4, m increases by 0.05 each time, and the perfor-
mance reaches best when m = 0.5. When m is less than
0.5, the training is relatively stable, and the experimental
results do not change much. On the contrary, when m
is greater than 0.5, the training process cannot converge
well, resulting in poor results, especially when m is 0.8.
At this time, the performance of the system is equiva-
lent to that of the best baseline. Overall, when K = 3, r
= 0.4 and m = 0.5, the performance is the best. Differ-
ent angular margin penalty m has a fluctuating effect on
different evaluation metrics, which verifies that m has a

great impact on the recognition performance and training
process.

5.2 Comparison with different baselines
We compare the performance of the proposed MMAM
loss with seven different baselines from four aspects,
including the training epochs, the experimental results,
the DET curve, and the visual analysis with T-SNE.

5.2.1 The training epochs
The performances of the existing multi-center loss func-
tions, Sub-Center (Eq. (13)), Softtriple (Eq. (15)), and
MMAM (Eq. (4)), under test-all during the training pro-
cess are shown in Fig. 5. For the convenience of compari-
son, we only compare and display the three best K-valued
multi-center loss functions. From Fig. 5, we see that the
convergence speed of Sub-center is the same as that of
Softtriple, and their performances are similar. MMAM
has both the fastest convergence speed and best perfor-
mance. There is a segment between epochs 90 to 120
where the EER is almost stable for MMAM, which we
speculate is caused by the relative stability of the simi-
larity optimization between the selected samples and the
multi-center during this segment.

5.2.2 Comparison of performance
Table 5 shows the experimental results of seven differ-
ent baselines and our proposed MMAM. The first col-

Fig. 5MMAM converges faster with lower EER(%) values on AP17-OLR test-all
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umn “ID” marks each experiment’s ID. The experimental
results can be divided into three categories: Exp. 1–5 rep-
resent the baselines of the single-center loss; Exp. 6–7
represent the existing types of multi-center loss; Exp. 8–
9 represent our proposed MMAM loss with different m.
We use “SCL absolute improvement” and “SCL relative
improvement” respectively to denote the absolute and rel-
ative improvements of our MMAM compared with the
best experimental results for single-center loss (Exp. 1–5).
Correspondingly, we use “MCL absolute improvement”
and “MCL relative improvement” to respectively denote
the absolute and relative improvements of our MMAM
compared with the best experimental results for multi-
center loss (Exp. 6–7).
In Fig. 6, MMAM is compared with the existing multi-

center loss under different numbers of centers (K) and
four different scale factors (r = 0.3, 0.5, 0.8, 1.0). Figure 6a,

d, and g illustrates the results of EER on test-all, test-3 s,
and test-1 s, respectively. Figure 6b, e, and h illustrates the
results ofCavg on test-all, test-3 s, and test-1s, respectively.
Figure 6c, f, and i illustrates the results of minDCF on
test-all, test-3s, and test-1s, respectively. From Fig. 6, we
see that MMAM can significantly reduce EER, Cavg , and
minDCF, so it has better optimization than the existing
types of multi-center loss.

5.2.3 The DET curve
The DET curve is another popular method for evalu-
ating verification and identification systems. Compared
with Cavg , EER, and minDCF, the DET curve represents
the performance of all operating points, so it can more
comprehensively evaluate the systems. The DET curves
of various methods under different test conditions are
plotted in Fig. 7. Figure 7a, b, and c represents the results

Fig. 6 Comparison with the existing types of multi-center loss under different number of centers (K) and four different scale factors (r = 0.3, 0.5, 0.8,
1.0)
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Fig. 7 DET curves of various methods under different test conditions

Fig. 8 Language embeddings of the baselines are plotted by t-SNE, under test-1s on AP17-OLR. Each shape/color represents a different language. a
EER=11.35, Cavg=11.05,minDCF=11.09. b EER=10.17, Cavg=9.76,minDCF=10.04. c EER=9.44, Cavg=8.76,minDCF=9.09. d EER=14.23, Cavg=13.56,
minDCF=13.73. e EER=13.27, Cavg=12.12,minDCF=12.66. f EER=9.13, Cavg=8.69,minDCF=9.19. g EER=9.05, Cavg=8.54,minDCF=9.01
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Fig. 9 Language embeddings of our proposed method are plotted by t-SNE, under test-1s on AP17-OLR. Each shape/color represents a different
language. a EER=8.42, Cavg=7.93,minDCF=8.12. b EER=8.16, Cavg=7.60,minDCF=7.30. c EER=7.78, Cavg=7.28,minDCF=7.63

Fig. 10 Language embeddings of the baselines are plotted by t-SNE, under test-all on AP17-OLR. Each shape/color represents a different language.
a EER=4.15, Cavg=3.89,minDCF=3.92. b EER=1.83, Cavg=1.79,minDCF=1.92. c EER=2.16, Cavg=1.98,minDCF=2.01. d EER=3.60, Cavg=3.51,
minDCF=3.61. e EER=3.43, Cavg=3.26,minDCF=3.33. f EER=2.02, Cavg=1.84,minDCF=2.12. g EER=2.03, Cavg=1.87,minDCF=2.02
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of test-all, test-3 s, and test-1 s, respectively. As we can see
from the figure, the proposed MMAM exhibits the best
performance at most points.

5.2.4 Visual analysis with T-SNE
To understand the model’s ability to distinguish lan-
guages intuitively, we directly extract the embedding
representations of different models from the test set.
Since the visualization results of test-3 s and test-all are
almost the same, we only show the visualization results
of test-1 s and test-all on the AP17-OLR corpus. Then
we visualize the embedding representations through t-
SNE [46], which is a non-linear dimensionality reduc-
tion algorithm for visualizing high-dimensional data. To
facilitate the observation of the difference between our
proposed method and the baselines, we only list the visu-
alization diagrams with the optimal parameters studied in
Sections 5.1.1, 5.1.2, and 5.1.3. Similarly, the baselines also
use the optimal parameters.
Language embeddings of the baselines and our pro-

posed method under test-1s are plotted in Figs. 8 and 9,
respectively. For single-center classification loss, Fig. 8a,
b, and c represents the visual baselines of Eq. (6), Eq. (10),
and Eq. (11), respectively, and Fig. 8d and e represents
the visual baselines of Eq. (4) and Eq. (5), respectively.
For multi-center loss, Fig. 8f and g represents the visual
baselines of Eq. (13) and Eq. (15), respectively.
For our MMAM loss, Fig. 9a, b, and c represents the

visual results of Eq. (26). Also, language embeddings of
the baselines and our proposed method under test-all are
plotted in Figs. 10 and 11, respectively. It can be seen that
the visualizations of language embeddings by most of the
single-center losses are not as good as those by the multi-
center losses, and the multi-center losses do show traces
of different centers. Although some single-center losses
appear to distinguish all languages well compared with
multi-center losses, their EERs are significantly higher
than those of multi-center losses because scores and
thresholds across languages determine the EER.

5.3 Comparison with state-of-the-arts
Table 6 compares the results ofMMAMon the AP17-OLR
test set with the current state-of-the-art results in terms
of EER and Cavg . The first two lines are the two baselines
released by the organizers of the AP17-OLR challenge
[47]. LDA_HVS [48] uses a factorized hidden variabil-
ity subspace (FHVS) learning technique for the adap-
tation of BLSTM RNNs model structure. AFs_ivector
+ AFs_xvector + AFs_TDNN [49] refers to the respec-
tively established i-vector, x-vector and TDNN network-
based fusion system based on articulatory features
(AFs). Multi-head attention [50] represents the intro-
duction of a multi-head attention mechanism in the
self-attention network, assuming that each head can
capture different information to distinguish languages.
Wav2vec [51] uses Wav2vec 2.0 (a self-supervised frame-
work for speech representation learning) to extend the
self-supervised framework to speaker verification and
language recognition.
Compared with these systems released above, MMAM

shows obvious advantages under all test sets.

6 Conclusions and future work
The MMAM loss proposed in this paper has achieved the
most advanced language recognition performance on the
AP17-OLR corpus. The performance is improved by con-
straining the relationship between different centers and
samples and between different centers and adding addi-
tional corner margins to the loss. EER, Cavg , minDCF
are all greatly reduced. It is worth noting that in this
paper, we choose the best performing hyper-parameters
for all the methods based on the test set, which may risk
overfitting.
Our future work is to design other novel functions dif-

ferent from Eq. (26) that can make the network more
capable of identifying different languages. In theory, the
MMAM loss can be used for language recognition and
other classification tasks.

Fig. 11 Language embeddings of our proposed method are plotted by t-SNE, under test-all on AP17-OLR. Each shape/color represents a different
language. a EER=1.44, Cavg=1.31,minDCF=1.36. b EER=1.39, Cavg=1.39,minDCF=1.41. c EER=1.35, Cavg=1.23,minDCF=1.31
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