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Abstract 

Automated audio captioning is a cross-modal translation task that aims to generate natural language descriptions 
for given audio clips. This task has received increasing attention with the release of freely available datasets in recent 
years. The problem has been addressed predominantly with deep learning techniques. Numerous approaches have 
been proposed, such as investigating different neural network architectures, exploiting auxiliary information such as 
keywords or sentence information to guide caption generation, and employing different training strategies, which 
have greatly facilitated the development of this field. In this paper, we present a comprehensive review of the pub-
lished contributions in automated audio captioning, from a variety of existing approaches to evaluation metrics and 
datasets. We also discuss open challenges and envisage possible future research directions.
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1  Introduction
Sound is ubiquitous in our daily lives. It carries a wealth 
of information about the environment, from sound 
scenes to individual events happening around us. For 
most people, the ability to perceive and understand the 
everyday sounds around us is taken for granted. However, 
mining helpful information from sounds is a challenging 
task for machines. With the development of machine 
learning, the field of machine listening has attracted 
increasing attention, with significant progress made in 
recent years, in areas such as audio tagging (AT) [1–5], 
sound event detection (SED) [6–8], and acoustic scene 
classification (ASC) [9, 10]. However, in these areas, the 
focus has been mostly on identifying acoustic scenes or 
events in an audio clip, rather than considering relation-
ships between the audio events and acoustic scenes.

Automated audio captioning (AAC) aims at describing 
the content of an audio clip using natural language, which 

is a cross-modal translation task at the intersection of 
audio signal processing and natural language processing 
(NLP) [11]. Compared with automatic speech recogni-
tion (ASR), audio captioning focuses only on the environ-
mental sounds and ignores the voice content that may be 
present in an audio clip. Compared with other popular 
audio-related tasks such as AT, SED, and ASC, audio cap-
tioning requires not only determining what audio events 
are present in the audio clip, but also describing these 
audio events using natural language, which allows the 
relationships between the audio events and the content 
of the audio clip to be summarized. An example caption 
may be “a person was walking on a sidewalk adjacent to a 
school where children were playing on the playground”1 
which describes the scenes and sound events given an 
audio clip. Generally speaking, audio captions are one-
sentence descriptions of the predominant audio events 
and audio scenes occurring in the audio clips, where the 
detailed information may be included, such as the spa-
tial-temporal relationships between the audio events and 
scenes, and the physical properties of sound objects and 
the acoustic environment.
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Audio captioning has practical potential for vari-
ous applications such as helping the hearing-impaired 
to understand environmental sounds and analyzing 
sounds for video-based security surveillance systems. In 
addition, audio captioning can be used for multimedia 
retrieval [12, 13] in areas including education, film pro-
duction, and web searching.

Unlike image and video captioning, which have been 
widely studied for almost a decade, audio captioning is 
a relatively new task that has been studied since 2017 
[11]. In the past 3 years, this field has received increas-
ing attention due to the release of freely available data-
sets and the organization of a task in DCASE2 Challenges 
from 2020 to 2022. A number of papers about audio cap-
tioning have been published, with deep learning being 
a popular method. Specifically, the encoder-decoder 
framework [14] has been adopted as a standard recipe for 
solving this cross-modal translation task. In this method, 
the encoder extracts audio features from the input audio 
clips, and the decoder generates captions based on the 
extracted audio features. Analyzing audio largely depends 
on obtaining robust audio features. Different kinds of 
neural networks, such as recurrent neural networks 
(RNNs) [15], convolutional neural networks (CNNs) [16], 
and Transformers [17], have been used as the encoders to 
learn feature representations. For the decoder, RNNs and 
Transformers are usually employed, inspired by works 
in NLP. In addition to the encoder-decoder framework, 
auxiliary information such as keywords or sentence 
information [18, 19], attention-based approaches [11, 20], 
and different training strategies [21–23] have been pro-
posed to improve the performance of captioning systems. 

However, there is still a large gap between achieved 
results and human-level performance [20].

To the best of our knowledge, no survey papers on 
audio captioning have been published so far. In this 
paper, we aim to provide a comprehensive overview 
of audio captioning with the hope of stimulating novel 
research ideas. Articles published up to April 2022 in 
the literature are considered in our survey. The encoder-
decoder framework has been a standard recipe for AAC 
systems; therefore, we develop a taxonomy of acoustic 
encoding and text decoding approaches.

This paper is organized as follows. Section  2 intro-
duces the preliminaries of audio captioning. In Sections 3 
and 4, we discuss acoustic encoding and text decod-
ing approaches, respectively. Auxiliary information is 
discussed in Section  5. We discuss training strategies 
adopted in the literature in Section  6. Furthermore, we 
review popular evaluation metrics and main datasets in 
Section 7 and Section 8, respectively. Finally, we discuss 
some open challenges and future research directions in 
Section 9 and briefly conclude this paper in Section 10.

2 � Preliminaries of audio captioning
Existing methods for audio captioning are built pre-
dominantly on an encoder-decoder architecture where 
the captions are generated in an auto-regressive manner 
using deep learning techniques. We, therefore, take the 
popular encoder-decoder architecture as an example to 
introduce the preliminaries of an audio captioning sys-
tem. Figure 1 shows the pipeline of an AAC system based 
on the encoder-decoder architecture.

Suppose we have a raw waveform of an input audio 
clip. Human-engineered features are usually extracted 
from the waveform as input representations for the audio 
encoder. Assume here that mel-spectrogram is used as 

Fig. 1  Overview of an encoder-decoder-based AAC system, where the input is the waveform of an audio clip and the output is a natural language 
sentence describing the content of the input audio clip

2  http://​dcase.​commu​nity/
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the input representation, denoted by x, with a shape of 
R
T×F , where T is the number of time frames and F is the 

number of mel bins. The audio encoder takes the mel-
spectrogram x as input and produces the encoded audio 
features h, which could be a single vector of shape RC or 
a vector sequence of shape RT ′×C where C is the dimen-
sion of the audio feature and T ′ is the number of feature 
vectors, depending on the type of the encoder and the 
pooling method used for learning the encoded audio fea-
tures. This process can be formulated as follows:

where θe are the model parameters of the encoder (Enc). 
More discussions about how the features are learned are 
given in Section 3.

After getting the encoded audio feature h, the decoder 
generates a sentence S = {w1, ...,wN } , where wn is a word 
and N is the number of words in the sentence. The decod-
ing process can be formulated as follows:

where θd are the model parameters of the decoder (Dec). 
Typically, the sentence is generated from the left (i.e., the 
first word) to the right (i.e., the final word) in an auto-
regressive manner. That is, at time step t, the decoder 
predicts a posterior probability over the vocabulary, 
given the encoded audio feature h, a start token w0 , and 
previously generated words w1 to wt−1 . Mathematically,

where w0 is a starting word of the sentence. After obtain-
ing the word probability p(wt |h,w0, ...,wt−1) , the word wt 
can be sampled by different decoding methods, such as 
greedy decoding or beam decoding [24]. The generation 
process is terminated when a stop token is generated or a 
maximum number of generation steps is reached.

3 � Acoustic encoding
Analyzing the content of an audio clip largely depends on 
obtaining an effective feature representation for it, which 
is the aim of the encoder in an AAC system. The time 
domain waveforms are lengthy 1-D signals and it is chal-
lenging for machines to directly identify sound events or 
sound scenes from raw waveforms [25]. Current popular 
approaches for acoustic encoding consist of two steps, 
first extracting input representations, which are often 
hand-crafted features, such as spectrograms from the 
audio clip, and then passing them into a neural network 
to learn encoded compact audio features. In this section, 
we first discuss popular hand-crafted features used in 
literature, then audio encoding approaches, focusing on 
those based on deep neural networks.

(1)h = Encθe (x)

(2)S = Decθd (h)

(3)p(wt |h,w0, ...,wt−1) = Decθd (h,w0, ...,wt−1),

3.1 � Hand‑crafted features
It is challenging for machines to directly understand an 
audio clip from its time domain representation. Hand-
crafted features, inspired by the human auditory system, 
have been widely used as sound representations for years 
[25]. In deep learning methods, these hand-crafted fea-
tures are used as input representations to the neural net-
works to obtain encoded audio features. Time-frequency 
representations, such as spectrograms, are probably the 
most popular ones. To obtain a spectrogram, an audio 
signal is first split into short frames of length at around 
20–60 ms, as these short-time segments can be regarded 
as quasi-stationary [25]. Each time frame is shifted with 
a fixed time step. Then, a window function is applied at 
each frame to enforce continuity and avoid spectral leak-
age at the frame boundaries [26]. The short-time Fourier 
transform (STFT) is calculated for each time frame to get 
the spectrogram, a 2-D representation whose horizon-
tal axis is time and vertical axis is frequency, the value at 
each point of the spectrogram represents the magnitude 
at a specific time and frequency. Inspired by the selectiv-
ity of human auditory system to different frequencies, 
the frequency axis of a spectrogram may be converted 
to different scales, resulting in representations such as 
mel-spectrogram and log mel-spectrogram [25]. The log 
mel-spectrogram generally leads to better performance 
when compared with other input representations in deep 
learning-based methods for audio-related tasks [27–29]; 
therefore, it is mainly used as the input representation in 
the literature. In addition, mel-frequency cepstral coef-
ficients (MFCCs) were used in some early works [20, 
30]. MFCCs are calculated by applying a discrete cosine 
transform (DCT) on log mel-spectrograms. Compared 
with time-frequency representations, MFCCs contain 
less information and are only able to estimate the global 
spectral shape of an audio clip [25]; thus, MFCCs are 
rarely used in recent works.

3.2 � Neural networks
3.2.1 � RNNs
RNNs are designed to process sequential data with vari-
able lengths [15]. Audio is time series signal; therefore, 
RNNs are naturally adopted as encoders in initial works 
[11, 30]. In a simple recipe, an RNN is used to model 
temporal relationships between the inputs, and the hid-
den states of the last layer of the RNN are regarded as the 
audio feature sequences, which are then fed into the text 
decoder for caption generation. Figure 2 shows the dia-
gram of an RNN audio encoder. Drossos et  al. [11] uti-
lized a three-layered bi-directional gated recurrent unit 
(GRU) network [31] as the encoder. Furthermore, unlike 
using multi-layer RNNs, Xu et al. [19] and Wu et al. [29] 
used a single-layered uni-directional GRU network while 
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Ikawa et al. [30] used a single-layered bi-directional long-
short term memory (LSTM) network [32]. The encoded 
audio features output by RNNs usually have thousands of 
time steps, and Nguyen et al. [33] argued that the length 
of the captions is significantly less than the length of the 
encoded audio features, making the captioning models 
difficult to learn the correspondence between words and 
audio features. They proposed a temporal sub-sampling 
method to sub-sample the learned features between the 
RNN layers and showed that the temporal sub-sampling 
of audio features could be beneficial for audio captioning 
methods.

The main advantages of employing RNNs as encoders 
are their simplicity and their ability to process sequential 
data. However, using RNNs alone as the encoder is not 
found to give strong performance [20]. The reason might 
be that inputs are usually long sequences, and RNNs may 
not be able to effectively model long-range time depend-
encies. In addition, getting a global audio feature from 
long hidden states also leads to excessive compression of 
information, making it difficult for the language decoder 
to generate fine-grained descriptions.

3.2.2 � CNNs
CNNs have been applied with great success to the field 
of computer vision (CV) [16]. In recent years, CNNs 
have been adapted to audio-related tasks and show pow-
erful ability in extracting robust audio patterns [27, 28]. 
Figure  3 shows the diagram of a 10-layer CNN audio 
encoder that is popularly used in the literature [34, 35].

Many CNN models pre-trained on large audio data-
sets have been published. Most works directly employ 
pre-trained CNN models as the audio encoder. VGG-like 
CNNs [34, 35] and ResNets [36–38] are popular choices 
as these networks perform well on audio-related tasks 
such as audio tagging and sound event detection [27]. 
In these works, CNNs treat the input spectrograms as 
1-channel images and model local dependencies within 
the spectrograms. Moreover, 1-D CNN is also incorpo-
rated to exploit temporal patterns. For example, Eren 
et  al. [39] and Han et  al. [37] used Wavegram-Logmel-
CNN adapted from pre-trained audio neural networks 
(PANNs) [27]. The Wavegram-Logmel-CNN takes both 
raw waveform and spectrogram as inputs, which are 
processed using 1-D convolution and 2-D convolution, 
respectively. The outputs of 1-D convolutional layers 
and those of 2-D convolutional layers are combined in 
deep layers. Tran et al. [40] also proposed to utilize 1-D 
and 2-D convolutions for extracting temporal and time-
frequency information. However, they only used spec-
trogram as input and reshape it for 1-D convolution. In 
summary, the use of 1-D convolution requires increased 
computation overhead, but offers only small performance 
improvement. The output feature maps of the convolu-
tional blocks are generally in three dimensions, time, fre-
quency, and channels. To obtain encoded audio features, 

Fig. 2  Diagram of an RNN audio encoder for acoustic encoding. The 
RNN encoder aims at modeling temporal relationships within the 
input representation. The encoded audio features usually have the 
same number of time frames as the input representation and interact 
with the decoder through a pooling or attention mechanism

Fig. 3  Diagram of a 10-layer CNN audio encoder. The input 
representation is first processed via four convolutional blocks and 
pooling layers, where each block consists of two convolutional 
layers. The feature maps output by the last convolutional block are 
then averaged along the frequency axis and fed into a two-layer 
multi-layer perceptron (MLP) to obtain encoded audio features
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some methods use a global pooling along the time and 
frequency axis to obtain fixed-sized features [39], while 
others keep the time axis and apply pooling operation 
along the frequency axis to get a feature sequence [35, 
36].

In summary, CNNs outperform RNNs and are now 
the dominant approach for audio encoding. The main 
advantages of CNNs are that they are invariant to time 
shift and good at modeling local dependencies within the 
spectrograms. However, CNNs have limited receptive 
fields and modeling long-range time dependencies for 
long audio signals needs a deep CNN.

3.2.3 � CRNNs
Motivated by the demand for modeling the local and 
long-range dependencies simultaneously, convolutional 
recurrent neural networks (CRNNs) [41], a combina-
tion of CNNs and RNNs, have also been applied as audio 
encoders. In a CRNN, RNN layers are introduced after the 
CNN layers to model the temporal relationship between 
extracted CNN features. Kim et  al. [20] proposed a top-
down multi-scale encoder where the features are extracted 
from two layers of the VGGish network [28], that is, a fully 
connected layer for extracting the high-level semantic fea-
tures and a convolutional layer for extracting the mid-level 
features. Those features are then encoded by a two-layer 
bi-directional LSTM network where the semantic features 
are injected in the second layer. Takeuchi et al. [42] and Xu 
et al. [43] both adopted a similar CRNN encoder without 
using multi-level features. Xu et  al. [44] compared CNN 
and CRNN encoders and showed that a CRNN encoder 
outperformed a CNN encoder when the encoders are 
trained from scratch but the CRNN encoder brought little 
improvement when pre-training was applied. In summary, 
CRNNs need more computation than CNNs but offer lim-
ited improvement [44].

3.2.4 � Other approaches
Transformers and their variants that are built on self-
attention mechanism have been probably the most popu-
lar models in the fields of NLP and CV since 2017 [17, 
45, 46]. Self-attention-based encoders are also employed 
in recent works in audio captioning. Koizumi et al. [18] 
introduce a self-attention block after CNN layers in the 
encoder to learn the temporal relationship between CNN 
features. Mei et  al. [47] proposed the Audio Captioning 
Transformer (ACT), where the encoder is a convolution-
free Transformer that directly models the relationships 
between the patches of the spectrogram. Figure 4 shows 
the diagram of the Transformer-based audio encoder in 
ACT. More details about the Transformer and self-atten-
tion will be introduced in Section 4.2.2. ACT shows com-
parable performance with CNN-based methods while 

it may need more data for pre-training to obtain good 
performance. In addition to simply adding self-attention 
layers after convolutional layers, convolution and self-
attention can be combined as in [48] by leveraging a 
convolution-augmented Transformer (Conformer) [49] 
to take advantage of their respective strengths. However, 
the Conformer encoder did not outperform the CNN 
encoders. The reason might be that they did not pre-train 
the Conformer encoder on a large-scale audio dataset.

In summary, various neural network architectures 
have been investigated as the audio encoder in order to 
obtain robust audio representations. CNNs are prob-
ably the most popular audio encoders and have achieved 
state-of-the-art performance. Early works adopted RNNs 
as encoders, but the trend has shifted from RNNs to 
CNNs. Recently, novel Transformer-based architectures 
have received increasing attention and have shown com-
petitive performance in learning robust audio features 
as compared with the CNN encoders; however, they 
typically require more data for training to achieve similar 
performance, in comparison to the CNN networks [47].

4 � Text decoding
The aim of the text decoder is to generate a caption given 
the audio features from the encoder. Existing works 
adopt an auto-regressive method for text generation, 

Fig. 4  Diagram of the Transformer-based audio encoder. The input 
spectrogram is first split into small patches. These patches are then 
projected into 1-D embeddings through a linear layer, where a 
positional embedding is further added to each patch embedding to 
capture position information. The resulting embeddings are then fed 
into the Transformer blocks to obtain the encoded audio features
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where each word in the caption is predicted based on the 
condition of the audio features extracted by the encoder 
and previously predicted words by the decoder. In addi-
tion to the main decoder block, a word embedding layer 
is used before the main decoder block to embed each 
input word into a fixed-dimension vector, so that discrete 
words can be processed by the network. In this section, 
we first introduce popular methods for obtaining word 
embeddings and then discuss the main approaches for 
text decoding.

4.1 � Word embeddings
A simple method to obtain word vectors is to represent 
each word as a one-hot vector, in which the element 
whose position corresponds to the index of the word 
in the vocabulary is set to one, while the remaining ele-
ments are set to zeros. This is called one-hot encoding. If 
the vocabulary is large, the dimension of the one-hot vec-
tor can be high. Hence, this method may suffer from the 
curse of dimensionality and the loss of semantic infor-
mation [50]. Word embedding methods have become 
popular in recent years. Word embeddings are vectors of 
fixed-dimension, obtained by neural networks trained on 
large-scale text corpora. Semantically similar words are 
close to each other in the embedding space, while dis-
similar words are far away from each other [51]. Exam-
ples of pre-trained word embeddings include Word2Vec 
[51], GloVe [52], and fastText [53], which are widely used 
in existing audio captioning works [18, 20, 34, 39, 43].

Recently, large-scale pre-trained Transform-based lan-
guage models [54, 55] have shown powerful ability in 
language modeling thanks to the use of the self-atten-
tion mechanism. Weck et  al. [56] employed BERT [54] 
to obtain word embeddings. They compared the effect 
of different pre-trained models on obtaining the word 
embeddings and found that the BERT model leads to the 
best performance in obtaining word embeddings, while 
other models, such as Word2Vec and GloVe, provide 
slight improvement as compared to randomly initialized 
word embeddings.

In summary, word embeddings are semantic vector 
representations of words. They are generally stored in 
a matrix with the shape of RV×d , where V is the size of 
the vocabulary and d is the dimension of the word vector. 
They can be retrieved using the indices of the words in 
the vocabulary.

4.2 � Neural networks
4.2.1 � RNNs
Sentences are also sequential data composed by discrete 
words; thus, RNNs are popularly employed as the lan-
guage decoder. Figure  5 shows a diagram of the RNN-
based language decoder. At each time step, the hidden 

state of the RNN is projected into a probability distribu-
tion along the vocabulary through a linear layer with a 
softmax activation function, and a word can be predicted 
accordingly.

Drossos et  al. [11] proposed a 2-layer GRU network 
as the decoder in their initial work. Many subsequent 
works have adopted single-layer RNNs, either GRU or 
LSTM networks [20, 30, 33, 36, 57]. The main differ-
ences among these works are on how the audio features 
generated by the encoder are fused with the decoder. In 
a simple recipe, a global audio feature representation is 
obtained by applying mean pooling on the audio feature 
sequence extracted by the encoder, which is then used as 
the initial hidden state of the RNN decoder [19, 29] or is 
injected to the RNN decoder at each time step [33, 39]. 
This simple mean pooling method for getting a global 
audio representation is widely used in audio tagging task 
to detect what audio events are present in the whole 
audio clip [27]. However, this method does not consider 
the relationships between audio features, and thus, it is 
unable to capture the fine-grained information about 
audio events. These fine-grained information could be 
important for caption generation. Attention mechanism 
has been employed to overcome this problem [11]. When 
generating a word at each time step, the RNN decoder 
can attend to the whole audio feature sequence and place 
more weights on the informative audio features. Thus, 
the global audio representation at each time step is a dif-
ferent combination of the whole audio feature sequence. 
In addition, to exploit previously generated words, Ye 
et al. [36] introduced another attention module to attend 
to previously generated words at each time step.

In summary, RNNs with attention show reasonable 
performance in audio captioning and are widely used [36, 
43]. The main disadvantage of RNNs is that they may be 

Fig. 5  Diagram of an RNN-based language model. The RNN 
decoder generates the sentence from the left (i.e., the first word) 
to the right (i.e., the final word) in an auto-regressive manner, given 
the audio feature sequence generated from the encoder and 
previously generated words by the decoder. A start token “<s>” is 
fed into the RNN at the first time step to start the generation, while 
the generation process is terminated when a stop token “</s>” is 
generated
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struggling to capture long-range dependencies between 
the generated words. Fortunately, audio captions are usu-
ally short in length; thus, RNN decoders do not need to 
model very long-range dependencies.

4.2.2 � Transformers
Since Vaswani et al. [17] proposed the Transformer net-
work in 2017, the self-attention mechanism, which is the 
core of Transformer, has quickly become the basic build-
ing block in large language models. Transformer-based 
models such as BERT [54], GPT [55], and BART [58] out-
perform RNNs in language modeling and dominate most 
of the tasks in the field of NLP. Transformer-based mod-
els have also been employed in audio captioning works 
recently and achieved state-of-the-art performance.

Transformers are built on the self-attention mecha-
nism. The self-attention module takes a sequence of 
N inputs and returns  N outputs, allowing each input 
directly interacts with others within the input sequence 
and finds out which they should pay more attention 
to. This makes it easier to model long range and global 
dependencies within the sequence, as compared with 
RNNs. Concretely, given an input sequence, the self-
attention module first transforms the inputs into three 
representations, query vectors Q, key vectors K, and 
value vectors V  by three learnable matrices. For each 
input, a scaled dot-product is first calculated between 
its query with respect to all keys to obtain the attention 
weights. After that, the attention weights are first con-
verted to probabilities by a softmax function and then 
multiplied with each value and summed together to get 
the output. This can be formulated as:

where dk is a scaling factor. In addition, this computa-
tion can be parallelized for all inputs through matrix 
multiplication, and the training of Transformer could 
be more efficient than that of RNNs. The Transformer 
decoder is generally employed as the language decoder 
and has a stack of blocks, each of which consists of a 
masked self-attention module, a cross-attention module, 
and a feed-forward layer module. Figure  6 shows a dia-
gram of the Transformer-based language decoder. The 
audio feature sequence obtained from the encoder inter-
acts with the decoder through the cross-attention mod-
ule, where K and V are derived from the audio features, 
while Q is obtained from the output of the masked self-
attention module. Through these two attention modules, 
each word in the sequence can attend to the previously 

(4)Attn(Q,K ,V ) = Softmax(
QKT

dk
)V .

generated words and all the audio features, which may 
facilitate the model to capture the temporal relationships 
between audio events.

Due to the limited data available in audio caption-
ing, many works use shallow Transformer decoders [34, 
35, 37, 47], usually only two blocks, unlike in NLP tasks 
where very deep Transformers are often used [54, 58]. 
Some modifications to the standard Transformer archi-
tecture have also been investigated. For example, Xiao 
et  al. [59] introduced an attention-free Transformer 
decoder to reduce computation overhead, which they 
claimed could better capture local information within 
audio features.

In summary, Transformer-based decoders show state-
of-the-art performance in audio captioning and are com-
putationally more efficient than RNN-based decoders 
during training.

5 � Auxiliary information
In addition to the standard encoder-decoder architec-
ture, researchers have investigated the use of auxiliary 
information such as keywords or sentence information to 

Fig. 6  Diagram of a Transformer-based language model. When 
generating a word at each time step, the masked multi-head 
attention module attends to the previously generated words 
to exploit contextual information. The output of the masked 
self-attention module is then fused with the audio feature sequence 
from the encoder in the cross-attention module
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guide caption generation. In this section, we discuss the 
auxiliary information used in the literature.

Audio signals have variable lengths and sound events 
can occur over arbitrary time frames, making direct map-
ping audio signals to sentences challenging. Furthermore, 
each sound event can be described with different words, 
which may lead to the word-selection indeterminacy 
problem [18]. To improve caption generation, keywords 
are widely employed. To obtain keywords, Kim et al. [20] 
retrieve the most similar training audio clip from Audio-
Set, the largest dataset for audio tagging available so far, 
and convert audio tagging labels of the retrieved audio 
clip into keywords. They then align these keywords with 
the audio features via an attention module and feed the 
output into the decoder. Some datasets may not have cor-
responding label information for each audio clip, and in 
this case, researchers first extract keywords or tags from 
human-annotated captions according to some rules such 
as frequency of the words and part-of-speech of the 
words [18, 34, 37, 57, 60]. Different methods were investi-
gated to make use of the keywords. Cakir et al. [57] intro-
duce a keyword decoder to estimate keywords of an audio 
clip and jointly train the keyword decoder with the audio 
captioning model. Chen et al. [34] extract keywords from 
captions and pre-train the audio encoder with an audio 
tagging task to enhance the ability of the encoder to learn 
robust audio patterns. Koizumi et al. [18] employ a key-
word estimation branch after the encoder, combining the 
keywords with audio features before passing them to the 
language decoder. Ye et al. [36] utilize multi-scale features 
extracted by a CNN encoder for keyword prediction. 
However, some researchers found that keywords might 
not really improve the system performance in some situ-
ations. Takeuchi et al. [42] found that keywords may not 
work well when the model was trained from scratch. Ye 
et  al. [36] claimed their model did not converge when 
only using keyword information. The accuracy of the key-
words could be a bottleneck as wrong keywords might 
adversely impact on the captioning performance.

Sentence information has also been investigated. Ikawa 
et  al. [30] introduce a “specificity” term to measure the 
output text based on the amount of information it car-
ries. The model is trained to generate captions whose 
“specificity” is close to ground truth captions. Simi-
larly, Xu et al. [19] introduce a sentence loss to generate 
captions closer to their ground truths in the sentence 
embedding space, employing a pre-trained language 
model BERT [54] to get the sentence embeddings.

Although different auxiliary information has been used 
to improve the caption generation process, these meth-
ods have not brought significant improvements and they 

may not work well for all datasets. In the DCASE chal-
lenge 2021, most teams still used the standard encoder-
decoder model without using auxiliary information and 
still achieved promising results [21, 35]. How to improve 
the AAC system with the auxiliary information still needs 
more investigation.

6 � Training strategies
Supervised training with a cross-entropy (CE) loss is a 
standard recipe for training an audio captioning model. 
The main drawback of this setting is that it may cause 
“exposure bias” due to the discrepancy between training 
and testing [61]. Reinforcement learning has been intro-
duced to solve this problem and directly optimize evalu-
ation metrics. In addition, transfer learning has been 
widely used to overcome the data scarcity problem. In 
this section, we discuss the popular training strategies 
used in the literature.

6.1 � Cross‑entropy training
The cross-entropy loss with maximum likelihood estima-
tion (MLE) is widely used for training audio captioning 
models. During training, this approach adopts a “teacher-
forcing” strategy [61]. That is, the objective of training 
is to minimize the negative log-likelihood (equivalent to 
maximizing the log-likelihood) of current ground truth 
word given previous ground truth words at each time 
step. The cross-entropy loss can be formulated as follows:

where yt is the ground truth word at time step t, T is the 
length of the ground truth caption, x is the input audio 
clip, and θ are the parameters of the audio captioning 
model.

Models trained via the cross-entropy loss can generate 
syntactically correct sentences and achieve high scores 
in terms of the evaluation metrics [35]. However, there 
are also some disadvantages. First, the “teacher forcing” 
strategy brings the problem known as “exposure bias” 
[61], that is, each word to be predicted is conditioned 
on previous ground truth words in the training stage, 
while it is conditioned on previous output words in the 
test stage. This discrepancy leads to error accumulation 
during text generation in the test stage. Second, models 
tend to generate generic and simple captions even though 
each audio clip has multiple diverse human-annotated 
captions in the training set [62]. This is because the MLE 
training tends to encourage the use of highly frequent 
words appearing in the ground truth captions.

(5)LCE(θ) = −
1

T

T
∑

t=1

log p(yt |y1:t−1, x, θ)
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6.2 � Reinforcement learning
Xu et al. [43] employ a reinforcement learning approach 
to solve the “exposure bias” problem and directly opti-
mize the non-differentiable evaluation metrics. In a 
reinforcement learning setting, the captioning model is 
regarded as an agent and a policy is determined by the 
model’s parameters. The agent executes an action at each 
time step to sample a word according to the policy. Once 
a sentence is generated, the agent receives a reward of the 
generated sentence. The goal of training is to optimize 
the model to maximize the expected reward that could 
be any evaluation metrics. This can be formalized as min-
imizing negative expected reward:

where ws is a sampled caption from the model, r is the 
reward of the sampled caption, and θ are the model 
parameters. The caption can be sampled via Monte-Carlo 
sampling [63]; however, it is computationally expensive. 
Another computationally efficient method, self-critical 
sequence training (SCST) [61], is generally employed. 
SCST employs the reward of a sentence sampled by 
greedy search as baseline and thus avoids learning an 
estimate of expected future rewards. The expected gradi-
ent with respect to a single sample caption ws ∼ pθ can 
be approximated as:

where r(ŵ) is the reward of a caption generated by the 
current model using a greedy search.

Reinforcement learning could substantially improve 
the scores of the evaluation metrics, although it is 
used to optimize only one metric. However, Mei et  al. 
[35] found that reinforcement learning may impact 
adversely on the quality of generated captions by intro-
ducing repetitive words and incorrect syntax. This also 
implies that existing evaluation metrics may not corre-
late well with human judgements.

6.3 � Transfer learning
Availability of audio captioning datasets is limited due 
to the challenging and time-consuming process in 
data collection and annotation [64, 65]. To overcome 
the data scarcity problem, transfer learning is widely 
adopted. In the encoder of the captioning system, 
pre-trained audio neural networks, such as VGGish 
[28] and PANNs [27], are widely used to initialize 
the parameters of encoders [35–37, 66, 67]. Xu et  al. 
[44] investigated the impact of pre-training on audio 

(6)LRL(θ) = −Ews∼pθ [r(w
s)],

(7)∇θLRL(θ) ≈ −(r(ws)− r(ŵ))∇θ log pθ (w
s),

captioning performance. They show that audio encod-
ers pre-trained with an audio tagging task give the best 
performance. Weck et  al. [56] compare four off-the-
shelf audio networks. In all the cases, pre-trained audio 
encoders substantially improve the performance of 
the audio captioning system. In the language decoder, 
although a lot of pre-trained Transformer-based lan-
guage models have been released in recent years, most 
of those models cannot be directly used as the language 
decoder, since the decoder needs to interact with audio 
features from the encoder via a cross-attention mod-
ule. Koizumi et al. [68] utilize GPT-2 [55] to get word 
embeddings. Gontier et  al. [69] fine-tune BART [58] 
conditioned on the pre-trained audio embeddings and 
tags to generate captions and achieve state-of-the-art 
performance. To leverage pre-trained BERT [54], Liu 
et  al. [70] investigate the addition of cross-attention 
layers with randomly initialized weights in the pre-
trained BERT models as the decoder and demonstrate 
the efficacy of the pre-trained BERT models for audio 
captioning.

In summary, pre-trained audio encoders have proved 
to be effective to get robust audio features and over-
come the data scarcity problem, while how to incor-
porate existing large pre-trained language models 
into an audio captioning system still needs further 
investigation.

6.4 � Other approaches
Contrastive learning has been a popular training method 
in CV tasks [71, 72], Liu et al. [23] and Chen et al. [73] 
both investigated using contrastive training to learn bet-
ter alignment between audio and text. Specifically, an 
audio clip and its paired caption are regarded as a positive 
pair while audio clips with other non-paired captions are 
regarded as negative pairs. A contrastive loss is combined 
with the original cross-entropy loss to encourage the 
model to maximize the similarity of the embeddings from 
the positive pairs while minimizing the similarity of the 
embeddings from the negative pairs. Koh et al. [66] also 
proposed an auxiliary objective aiming at maximizing the 
similarity between latent space formed by audio features 
obtained by the encoder and the latent space formed by 
text features obtained by the decoder. Berg et al. [22] pre-
sented a continual learning approach for continuously 
adapting an audio captioning method to new unseen gen-
eral audio signals without forgetting learned information. 
Mei et  al. [62] argued that an audio captioning system 
should have the ability to generate diverse captions for a 
given audio clip or across similar audio clips like human 
beings. They proposed an adversarial training framework 
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based on a generative adversarial network (GAN) [74] 
to encourage the diversity of audio captioning systems. 
In addition, because ASR and AAC share similarities in 
translating sound into natural language, Narisetty et  al. 
[75] proposed approaches for end-to-end joint modeling 
of speech recognition and audio captioning tasks.

A brief overview of the published audio captioning 
methods is shown in Table  1, which contains the type 
of deep neural networks used to encode audio infor-
mation, the language models used to generate cap-
tions, and the key aspects of these methods in the final 
column.

7 � Evaluation metrics
Evaluating audio captions is a challenging and subjective 
task, because an audio clip can correspond to several cor-
rect captions that may use different words and grammar 
and/or describe different parts of the audio clip. Existing 
works adopt the same evaluation metrics used in image 
captioning, where most of these metrics are borrowed 
from NLP tasks such as machine translation and sum-
marization, and the remaining are designed specifically 
for image captioning. The automatic evaluation metrics 
compare the machine-generated captions with human-
annotated references where the number of references for 

Table 1  An overview of published methods for audio captioning

Reference Year Audio encoder Text decoder Key aspects

Drossos et al. [11] 2017 RNN RNN Attention

Wu et al. [29] 2019 RNN RNN N\A

Xu et al. [19] 2019 RNN RNN Sentence similarity loss

Ikawa et al. [30] 2019 RNN RNN “Specificity” term

Kim et al. [20] 2019 CNN(VGGish)+RNN RNN Multi-scale features, semantic attention

Nguyen et al. [33] 2020 RNN RNN Temporal subsampling

Cakir et al. [57] 2020 RNN RNN Multi-task learning (keywords)

Perez-Castanos et al. [76] 2020 CNN RNN Attention

Chen et al. [34] 2020 CNN Transformer Pre-trained encoder

Xu et al. [43] 2020 CRNN RNN Reinforcement learning

Takeuchi et al. [42] 2020 CNN+RNN RNN Keywords, sentence length estimation

Tran et al. [40] 2020 CNN Transformer 1-D and 2-D CNN

Eren et al. [39] 2020 CNN(PANNs)+RNN RNN Keywords

Koizumi et al. [18] 2020 CNN(VGGish)+Transformer Transformer Keywords

Koizumi et al. [68] 2020 CNN(VGGish) GPT-2+Transformer GPT-2, similar captions retrieval

Xu et a. [44] 2021 CNN\CRNN RNN Attention, transfer learning

Mei et al. [35] 2021 CNN(PANNs) Transformer Transfer learning, reinforcement learning

Mei et al. [47] 2021 Transformer Transformer Full transformer network

Han et al. [37] 2021 CNN(PANNs) Transformer Weakly supervised pre-training, keywords

Ye et al. [36] 2021 CNN(PANNs) RNN Keywords, attention

Gontier et al. [69] 2021 CNN(VGGish) BART​ YAMNet tags, BART​

Narisetty et al. [48] 2021 CNN(PANNs)+Conformer Transformer+RNN ASR techniques

Liu et al. [23] 2021 CNN(PANNs) Transformer Contrastive learning

Won et al. [77] 2021 CNN(PANNs) Transformer Transfer learning

Berg et al. [22] 2021 CNN Transformer Continual learning

Weck et al. [56] 2021 CNN(VGGish,YAMNet,OpenL3,COALA) Transformer Transfer learning

Mei et al. [62] 2021 CNN(PANNs) Transformer GAN, diversity

Xiao et al. [59] 2022 CNN Transformer Attention-free Transformer

Liu et al. [70] 2022 CNN(PANNs) BERT Transfer learning, BERT

Chen et al. [73] 2022 CNN Transformer Transfer learning, contrastive learning

Koh et al. [66] 2022 CNN(PANNs)+Transformer Transformer Transfer learning, regularization

Narisetty et al. [75] 2022 Transformer Transformer Joint modeling of ASR and AAC​
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each audio clip may vary across different datasets. The 
number of parallel references will influence the evalu-
ation results. Generally, more reference captions are 
favored to reduce the evaluation bias [78]. In this section, 
we first introduce the conventional rule-based metrics 
and then discuss some novel model-based metrics.

7.1 � Conventional evaluation metrics
BLEU:  BLEU (BiLingual Evaluation Understudy) [79] is 
originally designed to measure the quality of machine-
generated sentences for machine translation systems. 
BLEU calculates modified n-gram precision for n up to 
four: the counts for n-grams in candidate sentence are 
first collected and clipped by their corresponding maxi-
mum count in references, and the clipped counts are 
then summed and divided by the total number of candi-
date n-grams, where the n-gram is a window consisting 
of n consecutive words. The modified n-gram precisions 
are averaged with uniform weights to account for both 
adequacy and fluency, where 1-gram matches account for 
adequacy while longer n-gram matches account for flu-
ency. As precision tends to give short sentences higher 
scores, a brevity penalty is introduced to penalize short 
sentences.
ROUGE:  ROUGE (Recall-Oriented Understudy for 

Gisting Evaluation) [80] includes a set of metrics pro-
posed to measure the quality of a machine-generated 
summary [80]. ROUGE-L which is widely used in image 
and audio captioning is based on the matching of the 
longest common subsequence between a candidate and 
a reference caption. ROUGE-L first counts the length of 
the longest common subsequence between a candidate 
and a reference, which is then divided by the total lengths 
of the candidate and reference to get precision and recall 
respectively. An F-measure combining precision and 
recall is then calculated as the score of ROUGE-L, which 
favors recall more.
METEOR: METEOR (Metric for Evaluation of Trans-

lation with Explicit ORdering) [81] is also a metric to 
evaluate machine translation systems. METEOR calcu-
lates unigram precision and unigram recall based on an 
explicit word-to-word matching in terms of their surface 
forms, stemmed forms, and meanings between a can-
didate and one or more references. An F-mean placing 
most of the weight on recall is then computed. To take 
into account longer matches, unigrams that are in adja-
cent positions in candidate and references are grouped 
into chunks, a penalty based on chunks is introduced and 
combined with F-mean to give the final METEOR score.
CIDEr: CIDEr (Consensus-based Image Description 

Evaluation) [82] is an automatic consensus metric for 
evaluating image description quality. CIDEr also repre-
sents sentences using n-grams presented in them, where 

each n-gram is weighted by the term frequency inverse 
document frequency (TF-IDF) weights because n-grams 
that commonly occur in a dataset are likely to be non-
informative. CIDEr computes the cosine similarity of 
weighted n-grams between candidate and references, 
which accounts for both precision and recall. Similar to 
BLEU, CIDEr considers higher order n-grams (up to four) 
to capture grammatical properties and richer semantics.
SPICE: SPICE (Semantic Propositional Image Caption 

Evaluation) [83] is an image captioning evaluation metric 
based on semantic content matching. SPICE parses both 
candidate and references into scene graphs in which the 
objects, attributes, and relations are encoded. An F-score 
is then calculated based on the matching of tuples 
extracted from the candidate and reference scene graphs. 
SPICE ignores the properties of grammar and fluency of 
sentences but only focuses on semantic matching.
SPIDEr:  SPIDEr [84] is proposed for evaluating image 

captions and used as the official ranking metric in the 
automatic audio captioning task in DCASE Challenge. 
SPIDEr is the average of SPICE and CIDEr: the SPICE 
score ensures captions are semantically faithful to the 
content, while the CIDEr score ensures captions are syn-
tactically fluent.

7.2 � Model‑based metrics
BERTScore: BERTScore [85] is an evaluation metric for 
text generation tasks. Unlike conventional metrics which 
almost all rely on surface-form similarity, BERTScore uti-
lizes pre-trained BERT [54] contextual embeddings that 
can capture semantic similarity, distant dependencies, 
and ordering. After getting contextual embedding of each 
token through BERT, BERTScore measures the similarity 
of each token between candidate and references through 
cosine similarity where each token is matched to the most 
similar token in the other sentences. The matched token 
pairs are used to calculate a precision, a recall, and an F1 
measure. Importance weighting with inverse document 
frequency is also introduced to weight rare words more.
SentenceBERT: SentenceBERT [86] is not essentially an 

evaluation metric but a modification of the pre-trained 
BERT model [54]. The SentenceBERT model can be used 
to obtain fixed-sized sentence embeddings for input cap-
tions. The sentence embeddings are then used to calcu-
late a similarity score, such as cosine similarity, Euclidean 
distance, or other similarities, between candidate and ref-
erence captions. Compared with BERTScore that meas-
ures the similarity in token level, SentenceBERT can be 
used for audio captioning for similarity comparison in 
sentence level.
FENSE: FENSE (Fluency ENhanced Sentence-bert 

Evaluation) [87] is a model-based evaluation metric spe-
cifically proposed for audio captioning. FENSE utilizes 



Page 12 of 18Mei et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:26 

the Sentence-BERT to derive sentence embeddings for 
candidate and reference captions and calculates its aver-
age cosine similarity score. To capture grammar issues 
like repeated words or phrases and incomplete sentences, 
FENSE uses a separate pre-trained error detector to penalize 
the Sentence-BERT scores when fluency issues are detected.

In summary, conventional rule-based metrics are 
widely used to evaluate the performance of audio cap-
tioning systems. Most of these metrics focus on n-gram 
or sub-sequence-based matching between the generated 
and reference captions. CIDEr and SPICE, proposed for 
image captioning, have shown a better correlation with 
human judgements in captioning tasks than those bor-
rowed from NLP tasks [82, 84]. However, some authors 
have shown that these metrics still cannot resemble 
human judgment well [87, 88]. Model-based metrics have 
received increasing attention and shown better correla-
tion with human judgements in NLP tasks, but they have 
not been widely used in captioning tasks so far. We intro-
duce them here to encourage research effort for develop-
ing novel metrics for audio captioning.

8 � Datasets
The release of high-quality audio captioning datasets has 
greatly promoted the development of this area. Almost 
all existing datasets (except one) are collections of single-
sentence English captions; however, these datasets dif-
fer in many aspects such as the number of audio clips, 
the number of captions per audio clip, and the length of 
each audio clip. These different characteristics will affect 
the design and the performance of the audio captioning 
model. We describe the details of existing datasets in this 
section. To better understand the datasets, we then use 
the consensus score of previously introduced metrics to 
evaluate these datasets.

8.1 � Dataset description
AudioCaps: AudioCaps [20] is the largest audio caption-
ing dataset so far. All the audio clips are 10-s long and 
are sourced from AudioSet, a large-scale audio event 
dataset [1]. The audio clips are selected by following some 
selection qualifications that ensure the chosen audio clips 
are balanced with respect to the ground truth annota-
tions (tags) in the original dataset and diverse in terms of 
content. The audio clips are annotated by crowdworkers 
through Amazon Mechanical Turk (AMT), and annota-
tors are provided with an audio clip with corresponding 
word hints and video hints and are required to write a nat-
ural language description with the provided information.

The official release of AudioCaps contains 51k audio 
clips and is divided into a training set, a validation set, 
and a test set. Each audio clip in the training set con-
tains one corresponding human-annotated caption while 

those in the validation set and test set contain five corre-
sponding captions. Audio clips in AudioSet are not freely 
available but can be extracted from YouTube videos. It is 
worth noting that some audio clips might be no longer 
downloadable; thus, the number of downloadable audio 
clips might be different from the official release of Audio-
Caps. The statistics in Table 2 are reported based on the 
official release version of AudioCaps.
Clotho: Clotho [64] is the dataset used for official rank-

ing of the submitted systems in task 6 (Automated Audio 
Captioning) of DCASE challenges in 2020 and 2021. All 
the audio clips are sourced from the online platform Free-
sound [89] and are ranging almost uniformly from 15 to 
30 s. Annotators are employed through AMT for crowd-
sourcing the captions. During the annotation process, 
only the audio signal was provided to the annotators, with 
no additional information such as word or video hints 
(different from AudioCaps), to avoid introducing biases.

The latest Clotho v2 published a development set con-
taining three subsets. There are 3839 audio clips in the 
training set and 1045 audio clips in the validation and 
evaluation sets, respectively. Each audio clip contains five 
human-annotated captions, ranging from 8 to 20 words 
long. In the DCASE challenges, all three of these pub-
lished sets can be used to train the models, while the final 
performance is evaluated using a preserved testing split 
by the organizers. For reporting results for conference 
or journal papers, performances are assessed using the 
published evaluation set and some authors may include 
the validation set into training since the validation set is 
added in Clotho v2. As a result, the model performance 
reported on Clotho may not all be on the same ground.
MACS:  MACS (Multi-Annotator Captioned Sound-

scapes) [65] consists of audio clips from the development set 
of the TAU Urban Acoustic Scenes 2019 dataset [90]. The 
audio clips are all 10-s long recorded from three acoustic 
scenes (airport, public square, and park) and are annotated 
by students. The annotation process contains two stages. 
Given a list of ten classes and an audio clip, the annotators 
are first required to select the audio events presented in an 
audio clip from the given class list. Afterwards, the annota-
tors are required to write a description of the audio clip.

MACS contains 3930 audio clips without being split 
into subsets. The number of captions per audio clip varies 
in the dataset. Most audio clips have five corresponding 
human-annotated captions, while some of them may only 
have two, three, or four.
AudioCaption:  AudioCaption is a domain-specific 

Mandarin-annotated audio captioning dataset. Two 
scene-specific sets have been published: one for the hos-
pital scene [29] and another for the car scene [19]. The 
hospital-scene set contains 3707 audio clips with three 
captions per clip while the car-scene set contains 3602 
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audio clips with five captions per clip. All the audio clips 
are annotated by native Mandarin speakers.

8.2 � Dataset evaluation
Since all the datasets mentioned above are annotated 
under different protocols, they show different charac-
teristics such as the number of captions per audio clip, 

caption lengths, and sample variance in multi-reference 
captions. We believe these characteristics will influ-
ence the design and performance of audio captioning 
models. To better understand the datasets, we evaluate 
three English-annotated datasets from different aspects. 
Table 3 reports the performance of some surveyed methods 
on two main datasets, AudioCaps and Clotho, for which 

Table 2  An overview of English-annotated datasets

Dataset # of audios # of captions per audio Audio duration Vocab size Avg caption lengths

AudioCaps 51308 1, 5 10 s 5066 8.79

Clotho 5929 5 15–30 s 4365 11.33

MACS 3930 2, 3 ,4, 5 10 s 2776 9.24

Table 3  Performances of some surveyed audio captioning methods on two main datasets. Scores are taken from the respective 
papers. Only single model performance is considered. Compared to Clotho v1, Clotho v2 introduces new audio clips into the training 
set and a new validation set, while retaining the same evaluation set. Some methods merge the new validation set into the training 
set, these methods are still evaluated using the same evaluation set. We report these results separately

Highest scores for each split are shown in bold

Dataset Method Year BLEU1 BLEU2 METEOR CIDEr SPICE SPIDEr

AudioCaps Kim et al. [20] 2019 0.614 0.446 0.203 0.593 0.144 0.369

Koizumi et al. [68] 2020 0.638 0.458 0.199 0.603 0.139 0.371

Eren et al. [39] 2020 0.710 0.490 0.290 0.750 - -

Xu et al. [44] 2021 0.655 0.476 0.229 0.660 0.168 0.414

Mei et al. [47] 2021 0.647 0.488 0.222 0.679 0.160 0.420

Gontier et al. [69] 2021 0.699 0.523 0.241 0.753 0.176 0.465
Liu et al. [70] 2022 0.671 0.498 0.232 0.667 0.172 0.420

Clotho v1 Drossos et al. [64] 2019 0.420 0.140 0.090 0.100 - -

Cakir et al. [57] 2020 0.409 0.156 0.088 0.107 0.040 0.074

Nguyen et al. [33] 2020 0.417 0.154 0.089 0.093 0.040 0.067

Perez-Castanos 
[38]

2020 0.469 0.265 0.136 0.214 0.086 0.150

Tran et al. [40] 2020 0.489 0.303 0.143 0.268 0.095 0.182

Takeuchi et al. 
[42]

2020 0.512 0.325 0.145 0.290 0.089 0.190

Koizumi et al. [18] 2020 0.521 0.309 0.149 0.258 0.097 0.178

Chen et al. [34] 2020 0.534 0.343 0.160 0.346 0.108 0.227

Xu et al. [43] 2020 0.561 0.341 0.162 0.338 0.108 0.223

Eren et al. [39] 2020 0.590 0.350 0.220 0.280 - -

Xu et al. [44] 2021 0.556 0.363 0.169 0.377 0.115 0.246
Koh et al. [66] 2022 0.551 0.369 0.165 0.380 0.111 0.246

Clotho v2 Narisetty et al. 
[48]

2021 0.536 0.341 0.160 0.346 0.108 0.227

Won et al. [77] 2021 0.564 0.376 0.177 0.441 0.128 0.285

Ye et al. [36] 2021 0.577 - 0.174 0.419 0.119 0.269

Han et al. [37] 2021 0.585 0.392 0.177 0.474 0.130 0.302
Clotho v2 + val  
set

Narisetty et al.[48] 2021 0.541 0.346 0.161 0.362 0.110 0.236

Liu et al. [23] 2021 0.553 0.349 0.168 0.368 0.115 0.242

Mei et al. [35] 2021 0.561 0.374 0.171 0.426 0.124 0.275

Chen et al. [73] 2022 0.572 0.379 0.171 0.407 0.119 0.263

Xiao et al. [59] 2022 0.578 0.387 0.177 0.434 0.122 0.278
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some methods listed in Table 1, such as [11, 19, 30], are 
not considered as they were not evaluated on these two 
datasets. Table  2 summarizes the datasets with some 
basic statistics. In addition, we use a consensus score [78] 
to represent the agreement among the parallel reference  
captions for the same audio clip, and the results are shown 
in Table 4. The consensus score c among n parallel refer-
ence captions R = {ri}

n
i=1 for an audio clip is defined as:

where ri is the ith caption and the metric can be anyone 
mentioned above. Since the number of references are 
varied among different datasets, we report the consen-
sus score of AudioCaps using the validation and test sets, 
Clotho using the training set, and MACS using all the 
audio clips having five reference captions.

As the consensus scores are computed among the 
human-annotated captions, they can be also regarded as 
upper bound human-level performance on each dataset. 
As can be seen from Table  4, the consensus scores on 
AudioCaps and Clotho are close to each other except 
that the SentenceBERT score on AudioCaps is clearly 
higher than that of Clotho. Surprisingly, the consensus 
scores on MACS are lower than the other two datasets 
while only the SentenceBERT is close to them. This may 
reveal that the human-annotated captions in MACS are 
more diverse than the other two, and SentenceBERT 
can better capture semantic relevance between diverse 
captions. The consensus scores can be regarded as a 
measure of the dataset quality to some extent.

9 � Challenges and future directions
Many deep learning-based methods have been proposed 
to improve automated audio captioning systems, and this 
task has seen rapid progress in recent years. However, 
there is still a large gap between the performance of the 
resulting systems and human-level performance. In this 
section, we discuss challenges remaining in this area and 
envisage possible future research directions.

9.1 � Data
There are two main challenges about data for audio cap-
tioning. First, the data scarcity problem is still a main 
challenge. Existing datasets are limited in size. The 

(8)c =
1

n

n
∑

i=1

metric(ri,R\ri)

collection of an audio captioning dataset is time con-
suming, and it is hard to control the quality of human-
annotated captions. Han et al. [37] collect weakly labeled 
dataset from online available sources to pre-train the 
AAC model and show that more training data (even 
weakly labeled) can greatly improve the system perfor-
mance. This reveals that we can make use of audio clips 
available online with their weakly labeled text description 
to learn more robust audio-text representation, such as 
CLIP [91] in computer vision.

Second, existing datasets usually do not cover all pos-
sible real-life scenarios, and thus, audio captioning mod-
els cannot generalize well to different contexts. Martin 
et  al. [65] investigate dataset bias of existing datasets 
from a lexical perspective. The bias problem still needs 
more investigation, e.g., how it will influence the model 
performance.

9.2 � Model and training strategies
Existing AAC methods all follow the encoder-decoder 
paradigm and generate sentences in an auto-regressive 
manner. These two techniques have been the standard 
recipe for audio captioning models. Nonetheless, novel 
methods should be investigated in future research. For 
example, BERT-like architectures which fuse acoustic 
and textual modalities in early stage can be a replace-
ment for the encoder-decoder paradigm, and work 
well in image captioning [92, 93]. Non-auto-regressive 
language models could reduce the inference time by 
generating all words in parallel [94], which might be 
a worthwhile research direction as it offers computa-
tional advantages, despite the fact that it under-per-
forms the auto-regressive models in terms of captioning 
accuracy.

For the training strategies, the standard cross-
entropy loss brings the problem of “exposure bias” 
and tends to generate simple and generic captions. 
Although reinforcement learning is introduced to 
solve this problem, it may adversely affect the quality 
of generated captions. A promising line of research 
is to design new objective functions or add human 
feedback in a reinforcement learning setting to solve 
these problems. In addition, it requires more inves-
tigation on how to make use of learned knowledge in 
large pre-trained language models to improve caption 
generation.

Table 4  Consensus scores of English-annotated datasets

 BLEU1 BLEU2 BLEU3 BLEU4 ROUGE-L METEOR CIDEr SPICE SPIDEr BERTScore SentenceBERT

AudioCaps 0.65 0.48 0.37 0.29 0.49 0.28 0.90 0.21 0.56 0.52 0.64

Clotho 0.65 0.49 0.38 0.31 0.50 0.30 0.86 0.23 0.54 0.54 0.53

MACS 0.49 0.28 0.16 0.08 0.32 0.18 0.21 0.13 0.17 0.24 0.52
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9.3 � Evaluation
The performance of audio captioning systems is generally 
assessed by objective evaluation metrics, since the human 
evaluation can be time consuming and expensive. As dis-
cussed at the end of Section  7, existing objective metrics 
may not correlate well with human judgements [35, 87, 88], 
and none of them is designed specifically for audio caption-
ing. Future work is expected to figure out to what extent 
the existing objective metrics correlate with human judge-
ments and to develop more reliable evaluation metrics.

9.4 � Diversity and stylized captions
As argued in [95], a good captioning model should generate 
sentences that possess three properties: fidelity, i.e., the gen-
erated captions should reflect the audio content faithfully; 
naturalness, i.e., the captions should not be identified as 
machine-generated; diversity, i.e., the sentences should have 
rich and varied expressions, reflecting how different people 
would describe an audio clip in different ways. However, 
many existing approaches only consider semantic fidelity. 
Further research should be conducted to improve the other 
two properties. In addition, stylized captioning systems, 
which can generate outputs suitable for different audiences 
such as kids, could be a worthwhile research direction.

9.5 � Other potential directions
There are also other potential directions for audio cap-
tioning. For example, temporal information of the sound 
events is not well used in existing works. Future work 
could investigate the use of information related to activi-
ties and timing information of sound events to generate 
more accurate captions. Information from other modali-
ties could be also employed to train the audio captioning 
models, such as using audio-visual captioning methods 
[96, 97]. In addition, audio captioning can be potentially 
linked with other audio-language multi-modal tasks, 
such as audio-text retrieval [12, 98], audio question 
answering [99], text-based audio generation [100], and 
text-based audio source separation [101].

10 � Conclusion
Audio captioning is a fast developing task involving both 
audio signal processing and natural language processing. 
In this paper, we have reviewed published audio caption-
ing methods from the perspective of audio encoding 
and text decoding. We discussed auxiliary information 
employed to guide the caption generation, and training 
strategies adopted in the literature. In addition, the main 
evaluation metrics and datasets are reviewed. We briefly 
outlined challenges and potential research directions in 
this area. We hope this survey can serve as a compre-
hensive introduction to audio captioning and encourage 
novel ideas for future research.

Abbreviations
AT: Audio tagging; SED: Sound event detection; ASC: Acoustic scene classifica-
tion; AAC​: Automated audio captioning; NLP: Natural language processing; 
ASR: Automatic speech recognition; RNN: Recurrent neural network; CNN: 
Convolutional neural network; STFT: Short-time Fourier transformer; MFCCs: 
Mel-frequency cepstral coefficients; DCT: Discrete cosine transform; GRU​
: Gated recurrent unit; LSTM: Long-short term memory; CV: Computer vision; 
CRNN: Convolutional recurrent neural network; MLP: Multi-layer perceptron; 
CE: Cross-entropy; MLE: Maximum likelihood estimation; GAN: Generative 
adversarial network.

Acknowledgements
The authors acknowledge the insightful comments provided by the Associate 
Editor and the anonymous reviewers, which have added much to the clarity of 
the paper. For the purpose of open access, the authors have applied a creative 
commons attribution (CC BY) license to any author accepted manuscript 
version arising.

Authors’ contributions
XM was a major contributor in writing the manuscript. XL summarized chal-
lenges and future work. MDP and WW substantially revised the manuscript. 
The authors read and approved the final manuscript.

Funding
This work is partly supported by a Newton Institutional Links Award from the 
British Council, titled “Automated Captioning of Image and Audio for Visually 
and Hearing Impaired” (Grant number 623805725), a grant from the Engineering 
and Physical Sciences Research Council (EPSRC) with number EP/T019751/1, and a 
Research Scholarship from the China Scholarship Council (CSC) No.202006470010.

Availability of data and materials
The datasets analyzed during this article are available on the Internet.

Declarations

Competing interests
WW is an editorial board member of the EURASIP Journal on Audio Speech 
and Music Processing and also a guest editor of the special issue “Recent 
Advances in Computational Sound Scene Analysis”; other authors declare that 
they have no competing interests.

Received: 14 April 2022   Accepted: 8 September 2022

References
	 1.	 J.F. Gemmeke, D.P.W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R.C. 

Moore, M. Plakal, M. Ritter, in IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP). Audio Set: an ontology and 
human-labeled dataset for audio events (New Orleans, 2017)

	 2.	 Y. Xu, Q. Huang, W. Wang, P. Foster, S. Sigtia, P.J.B. Jackson, M.D. Plumbley, 
Unsupervised feature learning based on deep models for environmen-
tal audio tagging. IEEE/ACM Trans. Audio Speech Lang. Process. 25(6), 
1230 (2017). https://​doi.​org/​10.​1109/​TASLP.​2017.​26905​63

	 3.	 Q. Kong, C. Yu, Y. Xu, T. Iqbal, W. Wang, M.D. Plumbley, Weakly labelled 
AudioSet tagging with attention neural networks. IEEE/ACM Trans. 
Audio Speech Lang. Process. 27(11), 1791 (2019). https://​doi.​org/​10.​
1109/​TASLP.​2019.​29309​13

	 4.	 H. Wang, Y. Zou, D. Chong, W. Wang, Modeling label dependencies for 
audio tagging with graph convolutional network. IEEE Signal Process. 
Lett. 27, 1560 (2020). https://​doi.​org/​10.​1109/​LSP.​2020.​30197​02

	 5.	 Y. Xu, Q. Kong, Q. Huang, W. Wang, M.D. Plumbley, in Proc. IEEE Inter-
national Joint Conference on Neural Networks (IJCNN). Convolutional 
gated recurrent neural network incorporating spatial features for audio 
tagging (2017)

	 6.	 Q. Kong, Y. Xu, I. Sobieraj, W. Wang, M.D. Plumbley, Sound event detec-
tion and time-frequency segmentation from weakly labelled data. IEEE/
ACM Trans. Audio Speech Lang. Process. 27(4), 777 (2019). https://​doi.​
org/​10.​1109/​TASLP.​2019.​28952​54

https://doi.org/10.1109/TASLP.2017.2690563
https://doi.org/10.1109/TASLP.2019.2930913
https://doi.org/10.1109/TASLP.2019.2930913
https://doi.org/10.1109/LSP.2020.3019702
https://doi.org/10.1109/TASLP.2019.2895254
https://doi.org/10.1109/TASLP.2019.2895254


Page 16 of 18Mei et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:26 

	 7.	 Q. Kong, Y. Xu, W. Wang, M.D. Plumbley, Sound event detection of 
weakly labelled data with CNN-transformer and automatic threshold 
optimization. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 2450 
(2020). https://​doi.​org/​10.​1109/​TASLP.​2020.​30147​37

	 8.	 A. Mesaros, T. Heittola, T. Virtanen, M.D. Plumbley, Sound event detec-
tion: a tutorial. IEEE Signal Process. Mag. 38(5), 67 (2021)

	 9.	 D. Barchiesi, D. Giannoulis, D. Stowell, M.D. Plumbley, Acoustic scene 
classification: classifying environments from the sounds they produce. 
IEEE Signal Process. Mag. 32(3), 16 (2015)

	 10.	 H. Wang, Y. Zou, W. Wang, in Interspeech. SpecAugment++: a hidden 
space data augmentation method for acoustic scene classification 
(ISCA, 2021), pp. 551-555

	 11.	 K. Drossos, S. Adavanne, T. Virtanen, in 2017 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WASPAA). Automated 
audio captioning with recurrent neural networks (IEEE, 2017), pp. 
374-378

	 12.	 A.S. Koepke, A.M. Oncescu, J. Henriques, Z. Akata, S. Albanie, Audio 
retrieval with natural language queries: a benchmark study (IEEE Trans, 
Multimed, 2022)

	 13.	 X. Mei, X. Liu, J. Sun, M.D. Plumbley, W. Wang, On metric learning for 
audio-text cross-modal retrieval. arXiv preprint arXiv:​2203.​15537 (2022)

	 14.	 I. Sutskever, O. Vinyals, Q.V. Le, in Proceedings of the 27th International 
Conference on Neural Information Processing Systems, NIPS’14. Sequence 
to sequence learning with neural networks (MIT Press, Cambridge, 
2014), p. 3104-3112

	 15.	 D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by 
back-propagating errors. Nature 323(6088), 533 (1986)

	 16.	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436 
(2015)

	 17.	 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, 
Ł. Kaiser, I. Polosukhin, in Advances in Neural Information Processing 
Systems. Attention is all you need (2017), pp. 5998-6008

	 18.	 Y. Koizumi, R. Masumura, K. Nishida, M. Yasuda, S. Saito, in INTERSPEECH. 
A transformer-based audio captioning model with keyword estimation 
(ISCA, 2020), pp. 1977-1981

	 19.	 X. Xu, H. Dinkel, M. Wu, K. Yu, in 2021 12th International Symposium on 
Chinese Spoken Language Processing (ISCSLP). Audio caption in a car 
setting with a sentence-level loss (IEEE, 2021), pp. 1-5

	 20.	 C.D. Kim, B. Kim, H. Lee, G. Kim, in Proceedings of the 2019 Conference of 
the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. AudioCaps: generating captions for 
audios in the wild (2019), pp. 119-32

	 21.	 X. Xu, Z. Xie, M. Wu, K. Yu, The SJTU system for DCASE2021 Challenge 
Task 6: audio captioning based on encoder pre-training and reinforce-
ment learning. Tech. rep., DCASE2021 Challenge (2021)

	 22.	 J. Berg, K. Drossos, in Proceedings of the 6th Detection and Classification 
of Acoustic Scenes and Events 2021 Workshop (DCASE2021). Continual 
learning for automated audio captioning using the learning without 
forgetting approach (Barcelona, 2021), pp. 140-144

	 23.	 X. Liu, Q. Huang, X. Mei, T. Ko, H. Tang, M.D. Plumbley, W. Wang, in 
Proceedings of the 6th Detection and Classification of Acoustic Scenes and 
Events 2021 Workshop (DCASE2021). CL4AC: a contrastive loss for audio 
captioning (Barcelona, 2021), pp. 196-200

	 24.	 A. Graves, Sequence transduction with recurrent neural networks. arXiv 
preprint arXiv:​1211.​3711 (2012)

	 25.	 T. Virtanen, M.D. Plumbley, D. Ellis, Computational analysis of sound 
scenes and events (Springer, 2018)

	 26.	 F. Harris, On the use of windows for harmonic analysis with the discrete 
Fourier transform. Proc. IEEE. 66(1), 51 (1978). https://​doi.​org/​10.​1109/​
PROC.​1978.​10837

	 27.	 Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, M.D. Plumbley, PANNs: large-
scale pretrained audio neural networks for audio pattern recognition. 
IEEE/ACM Trans. Audio Speech Lang. Process. 28, 2880 (2020)

	 28.	 S. Hershey, S. Chaudhuri, D.P. Ellis, J.F. Gemmeke, A. Jansen, R.C. Moore, 
M. Plakal, D. Platt, R.A. Saurous, B. Seybold, et al., in 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 
CNN architectures for large-scale audio classification (IEEE, 2017),  
pp. 131-135

	 29.	 M. Wu, H. Dinkel, K. Yu, in ICASSP 2019-2019 IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP). Audio caption: listen 
and tell (IEEE, 2019), pp. 830-834

	 30.	 S. Ikawa, K. Kashino, in Proceedings of the Detection and Classification of 
Acoustic Scenes and Events 2019 Workshop (DCASE2019). Neural audio 
captioning based on conditional sequence-to-sequence model (New 
York University, New York, 2019), pp. 99-103

	 31.	 J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated 
recurrent neural networks on sequence modeling. arXiv preprint arXiv:​
1412.​3555 (2014)

	 32.	 S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Com-
put. 9(8), 1735 (1997)

	 33.	 K. Nguyen, K. Drossos, T. Virtanen, in Proceedings of the Detection and 
Classification of Acoustic Scenes and Events 2020 Workshop (DCASE2020). 
Temporal sub-sampling of audio feature sequences for automated 
audio captioning (Tokyo, 2020), pp. 110-114

	 34.	 K. Chen, Y. Wu, Z. Wang, X. Zhang, F. Nian, S. Li, X. Shao, in Proceedings 
of the Detection and Classification of Acoustic Scenes and Events 2020 
Workshop (DCASE2020). Audio captioning based on transformer and 
pre-trained CNN (Tokyo, 2020), pp. 21-25

	 35.	 X. Mei, Q. Huang, X. Liu, G. Chen, J. Wu, Y. Wu, J. ZHAO, S. Li, T. Ko, H. 
Tang, X. Shao, M.D. Plumbley, W. Wang, in Proceedings of the 6th Detec-
tion and Classification of Acoustic Scenes and Events 2021 Workshop 
(DCASE2021). An encoder-decoder based audio captioning system with 
transfer and reinforcement learning (Barcelona, 2021), pp. 206-210

	 36.	 Z. Ye, H. Wang, D. Yang, Y. Zou, in Proceedings of the 6th Detection and 
Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021). 
Improving the performance of automated audio captioning via inte-
grating the acoustic and semantic information (Barcelona, 2021), pp. 
40-44

	 37.	 Q. Han, W. Yuan, D. Liu, X. Li, Z. Yang, in Proceedings of the 6th Detec-
tion and Classification of Acoustic Scenes and Events 2021 Workshop 
(DCASE2021). Automated audio captioning with weakly supervised 
pre-training and word selection methods (Barcelona, 2021), pp. 6-10

	 38.	 S. Perez-Castanos, J. Naranjo-Alcazar, P. Zuccarello, M. Cobos, in Proceed-
ings of the Detection and Classification of Acoustic Scenes and Events 2020 
Workshop (DCASE2020). Listen carefully and tell: an audio captioning 
system based on residual learning and gammatone audio representa-
tion (Tokyo, 2020), pp. 150-154

	 39.	 A.Ö. Eren, M. Sert, in 2020 IEEE International Symposium on Multimedia 
(ISM). Audio captioning based on combined audio and semantic 
embeddings (IEEE, 2020), pp. 41-48

	 40.	 A. Tran, K. Drossos, T. Virtanen, WaveTransformer: a novel architecture 
for audio captioning based on learning temporal and time-frequency 
information. arXiv preprint arXiv:​2010.​11098 (2020)

	 41.	 B. Shi, X. Bai, C. Yao, An end-to-end trainable neural network for image-
based sequence recognition and its application to scene text recogni-
tion. IEEE Trans. Pattern. Anal. Mach. Intell. 39(11), 2298 (2016)

	 42.	 D. Takeuchi, Y. Koizumi, Y. Ohishi, N. Harada, K. Kashino, in Proceedings 
of the Detection and Classification of Acoustic Scenes and Events 2020 
Workshop (DCASE2020). Effects of word-frequency based pre- and post-
processings for audio captioning (Tokyo, 2020), pp. 190-194

	 43.	 X. Xu, H. Dinkel, M. Wu, K. Yu, in Proceedings of the Detection and Clas-
sification of Acoustic Scenes and Events Workshop (DCASE). A CRNN-GRU 
based reinforcement learning approach to audio captioning (2020), pp. 
225-229

	 44.	 X. Xu, H. Dinkel, M. Wu, Z. Xie, K. Yu, in ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 
(IEEE, 2021), pp. 905-909

	 45.	 A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. 
Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, 
N. Houlsby, in International Conference on Learning Representations. An 
image is worth 16x16 words: Transformers for image recognition at 
scale (2021)

	 46.	 H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, in 
International Conference on Machine Learning. Training data-efficient 
image Transformers & distillation through attention (PMLR, 2021), pp. 
10,347-10,357

	 47.	 X. Mei, X. Liu, Q. Huang, M.D. Plumbley, W. Wang, in Proceedings of the 
6th Detection and Classification of Acoustic Scenes and Events 2021 Work-
shop (DCASE2021). Audio captioning transformer (Barcelona, 2021), pp. 
211-215

	 48.	 C.P. Narisetty, T. Hayashi, R. Ishizaki, S. Watanabe, K. Takeda, in Proceed-
ings of the 6th Detection and Classification of Acoustic Scenes and Events 

https://doi.org/10.1109/TASLP.2020.3014737
http://arxiv.org/abs/2203.15537
http://arxiv.org/abs/1211.3711
https://doi.org/10.1109/PROC.1978.10837
https://doi.org/10.1109/PROC.1978.10837
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/2010.11098


Page 17 of 18Mei et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:26 	

2021 Workshop (DCASE2021). Leveraging state-of-the-art ASR tech-
niques to audio captioning (Barcelona, 2021), pp. 160-164

	 49.	 A. Gulati, J. Qin, C.C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, 
Z. Zhang, Y. Wu, R. Pang, in INTERSPEECH. Conformer: convolution-
augmented Transformer for speech recognition (ISCA, 2020), pp. 
5036–5040

	 50.	 D. Jurafsky, J.H. Martin, Speech and Language Processing, 2nd edn. 
(Prentice-Hall Inc, USA, 2009)

	 51.	 T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, in Advances in 
Neural Information Processing Systems. Distributed representations of 
words and phrases and their compositionality (2013), pp. 3111–3119

	 52.	 J. Pennington, R. Socher, C.D. Manning, in Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP). 
GloVe: global vectors for word representation (2014), pp. 1532-1543

	 53.	 T. Mikolov, É. Grave, P. Bojanowski, C. Puhrsch, A. Joulin, in Proceedings of 
the Eleventh International Conference on Language Resources and Evalua-
tion (LREC 2018). Advances in pre-training distributed word representa-
tions (2018)

	 54.	 J. Devlin, M.W. Chang, K. Lee, K. Toutanova, in Proceedings of the 2019 
Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and 
Short Papers). BERT: pre-training of deep bidirectional transformers for 
language understanding (2019), pp. 4171-4186

	 55.	 A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., Language 
models are unsupervised multitask learners. OpenAI blog. 1(8), 9 (2019)

	 56.	 B. Weck, X. Favory, K. Drossos, X. Serra, in Proceedings of the 6th Detec-
tion and Classification of Acoustic Scenes and Events 2021 Workshop 
(DCASE2021). Evaluating off-the-shelf machine listening and natural 
language models for automated audio captioning (Barcelona, 2021), 
pp. 60-64

	 57.	 E. Çakır, K. Drossos, T. Virtanen, in Proceedings of the Detection and 
Classification of Acoustic Scenes and Events 2020 Workshop (DCASE2020). 
Multi-task regularization based on infrequent classes for audio caption-
ing (Tokyo, 2020), pp. 6-10

	 58.	 M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. 
Stoyanov, L. Zettlemoyer, in Proceedings of the 58th Annual Meeting of 
the Association for Computational Linguistics. BART: denoising sequence-
to-sequence pre-training for natural language generation, translation, 
and comprehension (2020), pp. 7871-7880

	 59.	 F. Xiao, J. Guan, H. Lan, Q. Zhu, W. Wang, Local information assisted 
attention-free decoder for audio captioning. IEEE Signal Process. Lett. 
29, 1604 (2022). https://​doi.​org/​10.​1109/​LSP.​2022.​31895​36

	 60.	 X. Mei, X. Liu, H. Liu, J. Sun, M.D. Plumbley, W. Wang, Automated audio 
captioning with keywords guidance. Tech. rep., DCASE2022 Challenge 
(2022)

	 61.	 S.J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, V. Goel, in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition. Self-critical 
sequence training for image captioning (2017), pp. 7008-7024

	 62.	 X. Mei, X. Liu, J. Sun, M.D. Plumbley, W. Wang, in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP) (2022), Diverse 
audio captioning via adversarial training. pp. 8882-8886. https://​doi.​
org/​10.​1109/​ICASS​P43922.​2022.​97468​94

	 63.	 R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (A Brad-
ford Book, Cambridge, 2018)

	 64.	 K. Drossos, S. Lipping, T. Virtanen, in IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP). Clotho: an audio cap-
tioning dataset (IEEE, 2020), pp. 736-740

	 65.	 I. Martin, A. Mesaros, in Proceedings of the 6th Detection and Classification 
of Acoustic Scenes and Events 2021 Workshop (DCASE2021). Diversity and 
bias in audio captioning datasets (Barcelona, 2021), pp. 90-94

	 66.	 A. Koh, X. Fuzhao, C.E. Siong, in IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). Automated audio captioning 
using transfer learning and reconstruction latent space similarity regu-
larization (2022), pp. 7722-7726. https://​doi.​org/​10.​1109/​ICASS​P43922.​
2022.​97476​76

	 67.	 H.H. Wu, P. Seetharaman, K. Kumar, J.P. Bello, in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). Wav2CLIP: 
learning robust audio representations from clip (2022), pp. 4563-4567. 
https://​doi.​org/​10.​1109/​ICASS​P43922.​2022.​97476​69

	 68.	 Y. Koizumi, Y. Ohishi, D. Niizumi, D. Takeuchi, M. Yasuda, Audio Cap-
tioning using Pre-Trained Large-Scale Language Model Guided by 

Audio-based Similar Caption Retrieval. arXiv preprint arXiv:​2012.​07331 
(2020)

	 69.	 F. Gontier, R. Serizel, C. Cerisara, in Proceedings of the 6th Detection and 
Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021). 
Automated audio captioning by fine-tuning BART with audioset tags 
(Barcelona, 2021), pp. 170-174

	 70.	 X. Liu, X. Mei, Q. Huang, J. Sun, J. Zhao, H. Liu, M.D. Plumbley, V. Kılıç, W. 
Wang, Leveraging pre-trained BERT for audio captioning. arXiv preprint 
arXiv:​2203.​02838 (2022)

	 71.	 T. Chen, S. Kornblith, M. Norouzi, G. Hinton, in International Conference 
on Machine Learning. A simple framework for contrastive learning of 
visual representations (PMLR, 2020), pp. 1597-1607

	 72.	 K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, in Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

	 73.	 C. Chen, N. Hou, Y. Hu, H. Zou, X. Qi, E.S. Chng, Interactive audio-text 
representation for automated audio captioning with contrastive learn-
ing. arXiv preprint arXiv:​2203.​15526 (2022)

	 74.	 L. Yu, W. Zhang, J. Wang, Y. Yu, in Proceedings of the AAAI Conference on 
Artificial Intelligence, vol. 31. SeqGAN: sequence generative adversarial 
nets with policy gradient (2017)

	 75.	 C. Narisetty, E. Tsunoo, X. Chang, Y. Kashiwagi, M. Hentschel, S. Watan-
abe, in IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). Joint speech recognition and audio captioning (2022), 
pp. 7892-7896. https://​doi.​org/​10.​1109/​ICASS​P43922.​2022.​97466​01

	 76.	 S. Perez-Castanos, J. Naranjo-Alcazar, P. Zuccarello, M. Cobos, in Proceed-
ings of the Detection and Classification of Acoustic Scenes and Events 2020 
Workshop (DCASE2020) (Tokyo, 2020), pp. 150-154

	 77.	 H. Won, B. Kim, I.Y. Kwak, C. Lim, in Proceedings of the 6th Detection and 
Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021). 
Transfer learning followed by transformer for automated audio caption-
ing (Barcelona, 2021), pp. 221-225

	 78.	 W. Zhu, X. Wang, P. Narayana, K. Sone, S. Basu, W.Y. Wang, in Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language 
Processing (EMNLP). Towards understanding sample variance in visually 
grounded language generation: evaluations and observations (2020), 
pp. 8806-8811

	 79.	 K. Papineni, S. Roukos, T. Ward, W.J. Zhu, in Proceedings of the 40th 
Annual Meeting of the Association for Computational Linguistics. BLEU: 
a method for automatic evaluation of machine translation (2002), pp. 
311-318

	 80.	 C.Y. Lin, in Text Summarization Branches Out. Rouge: a package for 
automatic evaluation of summaries (Association for Computational 
Linguistics, 2004), pp. 74-81

	 81.	 S. Banerjee, A. Lavie, METEOR: an automatic metric for MT evaluation 
with improved correlation with human judgments. Intrinsic and extrin-
sic evaluation measures for machine translation and/or summarization 
(2005) pp. 65-72

	 82.	 R. Vedantam, C. Lawrence Zitnick, D. Parikh, in Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition. CIDEr: 
consensus-based image description evaluation (2015), pp. 4566-4575

	 83.	 P. Anderson, B. Fernando, M. Johnson, S. Gould, in European Conference 
on Computer Vision. SPICE: semantic propositional image caption evalu-
ation (Springer, 2016), pp. 382-398

	 84.	 S. Liu, Z. Zhu, N. Ye, S. Guadarrama, K. Murphy, in Proceedings of the IEEE 
International Conference on Computer Vision. Improved image caption-
ing via policy gradient optimization of SPIDEr (2017), pp. 873-881

	 85.	 T. Zhang, V. Kishore, F. Wu, K.Q. Weinberger, Y. Artzi, in International 
Conference on Learning Representations (2020)

	 86.	 N. Reimers, I. Gurevych, N. Reimers, I. Gurevych, N. Thakur, N. Reimers, 
J. Daxenberger, I. Gurevych, N. Reimers, I. Gurevych, et al., in Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language 
Processing. Sentence-BERT: sentence embeddings using Siamese BERT-
networks (Association for Computational Linguistics, 2019)

	 87.	 Z. Zhou, Z. Zhang, X. Xu, Z. Xie, M. Wu, K.Q. Zhu, in IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). Can audio 
captions be evaluated with image caption metrics? (2022), pp. 981-985

	 88.	 J. Novikova, O. Dušek, A. Cercas Curry, V. Rieser, in Proceedings of the 
Conference on Empirical Methods in Natural Language Processing. Why we 
need new evaluation metrics for NLG (Association for Computational 
Linguistics, Copenhagen, 2017), pp. 2241-2252. https://​doi.​org/​10.​
18653/​v1/​D17-​1238

https://doi.org/10.1109/LSP.2022.3189536
https://doi.org/10.1109/ICASSP43922.2022.9746894
https://doi.org/10.1109/ICASSP43922.2022.9746894
https://doi.org/10.1109/ICASSP43922.2022.9747676
https://doi.org/10.1109/ICASSP43922.2022.9747676
https://doi.org/10.1109/ICASSP43922.2022.9747669
http://arxiv.org/abs/2012.07331
http://arxiv.org/abs/2203.02838
http://arxiv.org/abs/2203.15526
https://doi.org/10.1109/ICASSP43922.2022.9746601
https://doi.org/10.18653/v1/D17-1238
https://doi.org/10.18653/v1/D17-1238


Page 18 of 18Mei et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:26 

	 89.	 F. Font, G. Roma, X. Serra, in Proceedings of the 21st ACM International 
Conference on Multimedia. Freesound technical demo (2013), pp. 411-412

	 90.	 A. Mesaros, T. Heittola, T. Virtanen, in Proceedings of the Detection and 
Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018). 
A multi-device dataset for urban acoustic scene classification (2018), 
pp. 9-13

	 91.	 A. Radford, J.W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, 
A. Askell, P. Mishkin, J. Clark, et al., in International Conference on Machine 
Learning. Learning transferable visual models from natural language 
supervision (PMLR, 2021), pp. 8748-8763

	 92.	 L. Zhou, H. Palangi, L. Zhang, H. Hu, J. Corso, J. Gao, in Proceedings of the 
AAAI Conference on Artificial Intelligence, vol. 34. Unified vision-language 
pre-training for image captioning and VQA (2020), pp. 13,041-13,049

	 93.	 X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu, L. Dong, F. 
Wei, et al., in European Conference on Computer Vision. OSCAR: object-
semantics aligned pre-training for vision-language tasks (Springer, 
2020), pp. 121-137

	 94.	 J. Gao, X. Meng, S. Wang, X. Li, S. Wang, S. Ma, W. Gao, Masked non-
autoregressive image captioning. arXiv preprint arXiv:​1906.​00717 (2019)

	 95.	 B. Dai, S. Fidler, R. Urtasun, D. Lin, in Proceedings of the IEEE International 
Conference on Computer Vision. Towards diverse and natural image 
descriptions via a conditional gan (2017), pp. 2970-2979

	 96.	 Y. Tian, C. Guan, J. Goodman, M. Moore, C. Xu, An attempt towards 
interpretable audio-visual video captioning. arXiv:​1812.​02872 (2018)

	 97.	 V. Iashin, E. Rahtu, in British Machine Vision Conference (BMVC). A better 
use of audio-visual cues: dense video captioning with bi-modal Trans-
former. ArXiv abs/2005.08271 (2020)

	 98.	 X. Mei, X. Liu, H. Liu, J. Sun, M.D. Plumbley, W. Wang, Language-based audio 
retrieval with pre-trained models. Tech. rep., DCASE2022 Challenge (2022)

	 99.	 H.M. Fayek, J. Johnson, Temporal reasoning via audio question answer-
ing. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 2283 (2020)

	100.	 X. Liu, T. Iqbal, J. Zhao, Q. Huang, M.D. Plumbley, W. Wang, in IEEE 31st 
International Workshop on Machine Learning for Signal Processing (MLSP). 
Conditional sound generation using neural discrete time-frequency 
representation learning (2021) p. 1–6

	101.	 X. Liu, H. Liu, Q. Kong, X. Mei, J. Zhao, Q. Huang, M.D. Plumbley, W. Wang, 
Separate what you describe: language-queried audio source separa-
tion. arXiv:​2203.​15147 (2022)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1906.00717
http://arxiv.org/abs/1812.02872
http://arxiv.org/abs/2203.15147

	Automated audio captioning: an overview of recent progress and new challenges
	Abstract 
	1 Introduction
	2 Preliminaries of audio captioning
	3 Acoustic encoding
	3.1 Hand-crafted features
	3.2 Neural networks
	3.2.1 RNNs
	3.2.2 CNNs
	3.2.3 CRNNs
	3.2.4 Other approaches


	4 Text decoding
	4.1 Word embeddings
	4.2 Neural networks
	4.2.1 RNNs
	4.2.2 Transformers


	5 Auxiliary information
	6 Training strategies
	6.1 Cross-entropy training
	6.2 Reinforcement learning
	6.3 Transfer learning
	6.4 Other approaches

	7 Evaluation metrics
	7.1 Conventional evaluation metrics
	7.2 Model-based metrics

	8 Datasets
	8.1 Dataset description
	8.2 Dataset evaluation

	9 Challenges and future directions
	9.1 Data
	9.2 Model and training strategies
	9.3 Evaluation
	9.4 Diversity and stylized captions
	9.5 Other potential directions

	10 Conclusion
	Acknowledgements
	References


