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MetaMGC: a music generation framework 
for concerts in metaverse
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Abstract 

In recent years, there has been a national craze for metaverse concerts. However, existing meta-universe concert 
efforts often focus on immersive visual experiences and lack consideration of the musical and aural experience. But for 
concerts, it is the beautiful music and the immersive listening experience that deserve the most attention. Therefore, 
enhancing intelligent and immersive musical experiences is essential for the further development of the metaverse. 
With this in mind, we propose a metaverse concert generation framework — from intelligent music generation to 
stereo conversion and sound field design for virtual concert stages. First, combining the ideas of reinforcement learn-
ing and value functions, the Transformer-XL music generation network is improved and used in training all the music 
in the POP909 dataset. Experiments show that both improved algorithms have advantages over the original method 
in terms of objective evaluation and subjective evaluation metrics. In addition, this paper validates a neural render-
ing method that can be used to generate spatial audio based on a binaural-integrated neural network with a fully 
convolutional technique. And the purely data-driven end-to-end model performs to be more reliable compared with 
traditional spatial audio generation methods such as HRTF. Finally, we propose a metadata-based audio rendering 
algorithm to simulate real-world acoustic environments.
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1  Introduction
With the global explosion of metaverse discussions and 
the huge impact of the New Crown epidemic on the 
offline music performance industry, the virtual world has 
emerged as an ideal stage for music concerts and festi-
vals. But the current metaverse concerts focused heavily 
on embodying the concept of virtual reality and the digi-
tal twin [1, 2]. Secondly, it still takes a long production 
line from the beginning of planning to hold a metaverse 
concert, which is contrary to the real-time nature of the 
metaverse.

The metaverse concert also contains technologies such 
as virtual stages, motion capture, and digital human. But 
these virtual performance-related fields are already very 

mature. And, by the nature of the concerts, it is the beau-
tiful music and immersive online listening that are more 
worthy of our attention.

In 2019, Danowski et al. proposed Connexion [3] which 
surrounds the audience with an eight-channel sound 
system that immerses the audience from all directions. 
More recently, PatchXR allows artists to turn a place into 
an instant music studio by providing spatial equivalents 
of a visual programming engine to create and perform 
music on a spatial level with sound building blocks [4]. 
The virtual reality concert of the Philharmonic Orchestra 
conducted by Esa-Pekka allowed the audience to move 
between each instrument group and even freely through 
the church [5], enabling an interactive experience.

However, most of the existing research works on 
metaverse-based sound field design for music composi-
tion have either considered only real-time music perfor-
mance online or immersive experience online, without 
addressing both real-time and intelligence in metaverse 
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concerts. Therefore, we propose a framework to effi-
ciently and intelligently implement music generation 
and immersive sound field twinning for concerts in the 
metaverse, namely MetaMGC (Music Generation Frame-
work for Concerts in Metaverse). It consists of three main 
parts: (1) a music generation part that enables impro-
vised accompaniment of a virtual orchestra for metaverse 
concerts; (2) a digital audio twin part that enables virtual 
sound field reconstruction for metaverse concerts [6]; 
and (3) an audio rendering part that realizes the virtual 
soundstage production of the metaverse concert.

For the three elements above, we investigate the Trans-
former-XL music generation model based on two meth-
ods: Monte Carlo search as well as deep reinforcement 
learning. Meanwhile, we propose a reward function to 
control the music generation-related rewards, which 
strengthens the constraints on the music theory knowl-
edge in the music generation network. In addition, this 
paper investigates an end-to-end neural network synthe-
sis method that simulates the differences caused by subtle 
effects on the final output signal through a temporal con-
volutional neural network module. We conducted exten-
sive experiments on the POP909 dataset [7] and HRFT 
data [8] to evaluate the effectiveness and generality of the 
proposed method.

To summarize, the main contributions are as follows:

•	 Optimization of Transformer-XL by Monte Carlo 
and DQN methods based on reinforcement learning.

•	 A value function-based music generation system to 
intelligently generate accompaniment.

•	 An end-to-end neural synthesis method capable of 
synthesizing natural and accurate binaural audio.

•	 A metadata-based audio rendering system and sound 
field reconstruction in UE4 [9].The audio rendering 
system is tested to be effective.

2 � Related work
2.1 � Automatic music generation
Eck et al. first used LSTM for music production, impro-
vising well-paced and structured blues music based on 
short recordings. In 2012, Boulanger et al. [10] proposed 
an RNN-RBM model that outperformed traditional 
models in generating polyphonic music from different 
datasets. In 2016, Google Brain’s Magenta team further 
improved the RNN’s ability to learn long-term structure 
by proposing the MelodyRNN model [11]. Hadjeres et al. 
proposed Anticipation-RNN that allowed user-defined 
positional constraints to be enforced [12]. Johnson et al.
proposed TP-LSTM-NADE and BALSTM incorporating 
a parallel set of weighted recurrent networks for poly-
phonic music prediction and composition [13].

With the development of deep learning techniques, 
powerful deep generative models such as VAE, GAN, and 
Transformer have gradually emerged. In 2015, Samuel 
et  al. first proposed the Variational Autoencoder (VAE) 
[14]. Roberts et al. proposed MusicVAE [15], a hierarchi-
cal VAE model that captures the long-term structure of 
polyphonic music with good interpolation and recon-
struction performance. Jia et al. [16] proposed a coupled 
latent variable model with a binary regularizer to imple-
ment improvised accompaniment generation. Yang et al. 
proposed a MidiNet [17] network based on GAN net-
works that can generate music bar after bar and proposed 
a new conditional mechanism to generate chord-based 
music. Yu et  al. proposed a sequence generation frame-
work, SeqGAN [18], which successfully applied RNN-
based GAN networks to the music generation process 
for the first time by combining reinforcement learning 
techniques. In 2018, Dong et al. proposed the MuseGAN 
model [19], which is considered to be the first model to 
generate multi-track polyphonic music.

More recently, Anna Huang et  al. successfully applied 
the Transformer technique for the first time [20]. Dona-
huel et  al. generated multiple instrument music using 
Transformer and proposed a pre-training technique based 
on migration learning [21]. Moreover, Huang et  al. pro-
posed a new music representation called REMI [22] and 
used the Transformer-XL sequence model [23] to gener-
ate popular piano music. The emergence of Transformer-
XL further optimized the original Transformer model.

2.2 � Binaural audio generation
The majority of existing binaural audio generation tech-
niques are based primarily on conventional digital signal 
processing (DSP). Head-related transfer functions are 
measured in a radio wave darkroom [24], while high-
quality 2-spatialization requires binaural recordings at 
different spatial locations over nearly 10k [25]. To gen-
erate binaural audio, DSP-based renderers typically per-
form a series of convolutions on the fractional impulse 
responses [26].

More recently, neural network techniques have 
gained attention in audio generation as a result of the 
success of neural networks in speech synthesis [27]. 
Current approaches to neural networks focus primarily 
on frequency domain models [28, 29], but the greater 
difficulty in modeling the long-term dependence of 
high-frequency audio signals has led to the long-term 
neglect of the original waveform model. With the suc-
cess of WaveNet proposed by Van Den Oord et al. [30], 
direct wave-to-wave modeling has received tremen-
dous attention and led to significant improvements in 
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speech enhancement [31], denoising [32], speech syn-
thesis [33] and music style translation [34].

The process of spatializing neural networks is now 
underway. A study by Gebru et  al. [35] showed that 
HRTF enables implicit learning of neural networks by 
training raw waveforms. Morgado et al. [36] worked on 
predicting spatial sounds conditioned on visual infor-
mation, but their work was limited to first-order bin-
aural channels and did not exhaustively model binaural 
effects. In closer comparison, a series of papers by Gao 
and Grauman [37] targeting 2.5D visual sound systems, 
in which binaural audio is generated conditionally 
using video frame embedding. Thus, the location of the 
sound source can be effectively determined.

3 � Approach
Our MetaMGC consists of three main systems(as is 
shown in Fig. 1): a value function-based music genera-
tion system, an end-to-end neural synthesis-based sys-
tem, and an audio rendering system. First, we trained 
the Transformer-XL music generation network by 
inputting the music MIDI dataset. The value function 
in reinforcement learning (Monte Carlo or DQN) is 
combined to improve the music generation network 
and generate the mono MIDI events of the generated 
music. To create a spatial immersion experience, we 
converted the input mono audio into spatial stereo 
audio using a neural network-based spatial audio twin 
system. Finally, we input the generated stereo audio 
into an audio rendering system and then presented it 
in a virtual reality stage by building a digital twin sound 
field. The result turned out to be the creation of a meta-
universe concert from intelligent music generation ren-
dered with immersive binaural audio.

3.1 � Music generation based on value functions
In this subsection, our music generation network based 
on the Transformer-XL network is presented, which 
transforms music theory rules into multiple reward 
functions to control the music generation process. This 
approach is to solve the optimal value function in rein-
forcement learning and makes the generated music more 
musical.

3.1.1 � Music theory reward mechanism
To enable the network model to learn music theory, we 
quantify music theory knowledge in the form of tex-
tual descriptions and present it in the form of a reward 
function to control music generation during the rein-
forcement learning process. The music theory reward 
mechanism is set up in two parts: a basic music theory 
reward (see Table 1) ,where Rm1(st:1, at) is to determine 
whether the 4 generated pitches are the same;Rm2(st:1, at) 
is to determine that the intervals of two adjacent notes 
in a piece of music should be no greater than an octave; 
and Rm3(st:1, at) is a predetermined range for the sound 
range. and a melody writing reward (see Table 2). In this 
mechanism, R denotes the total reward for the current 
time step t, and amax and amin are the highest and lowest 
notes set according to demand.

3.1.2 � Transformer‑XL with the Monte Carlo method
The Monte Carlo method uses time-step limited, com-
plete empirical trajectories and the resulting empirical 
information to derive the average reward for each state. 
In the case of an unknown environment, the intelligence 
samples are according to the strategy π . From the starting 
state, it executes this strategy T steps before reaching the 
termination state, thus obtaining an empirical trajectory 
and then calculating the cumulative future discounted 
rewards [38, 39].

Fig. 1  The MetaMGC network architecture
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The Monte Carlo method utilizes the average future dis-
counted cumulative reward G of the experience trajectory 
as the expectation of the state value:

If a large enough sample of empirical trajectories is pro-
cessed, it is possible to accurately estimate the expecta-
tion of following the policy in state s, known as the state 
value function vπ (s):

Since the Ppitch(probability of each note) at the time 
of generation is different, a greater probability of the 
selected note itself being in the probability distribution 
indicates that the note has a higher value. Thus, in combi-
nation with the music theory reward function, the pitch 
reward value G for each time step can be defined as:

(1)G = average(G1 + G2 + ...+ GT ).

(2)vπ (s) = Eπ [G | s] ∈ S.

(3)Gt =

3

i=1

Rmi(st:1, at)+

2

i−1

Rwi(st:1, at)+ Ppitch.

This way the optimal pitch trajectory is found by obtain-
ing the reward value Gt returned by the state at a certain 
moment.

3.1.3 � Transformer‑XL with DQN method
The DQN model consists of four parts (Fig.  2): (1) data 
preprocessing, which sends the processed data to the 
generative network for training; (2) outputting, which 
outputs the probability distribution of all event indexes 
through the Softmax layer after training the Trans-
former-XL network (12 layers, each containing 8 Multi-
head Attention layers and 12 Feedforward layers) and 
selecting the event index with the highest probability as 
the currently generated value; (3) the reward network, 
which includes the probability of the current generated 
number and the sum of multiple lemma rewards; (4) 
the DQN, which extracts all the indexes representing 
the pitch events from the generated sequence, combines 
the reward network to calculate the reward to train the 
Q network, controls the generated note sequence, and 
finally decodes the sequence to generate music.

Table 1  Basic music theory reward

Condition Meaning Reward

Rm1(st:1, at) at−1 = at , (if at−3 = at−2 = at−1) Pitch recurrence 4 times 0.9

at−1 �= at , (if at �= at) Pitch recurrence 3 times 0

Rm2(st:1, at) | at − at−1 |≤ 12 Intervals greater than an octave 0.1

| at − at−1 |> 12 Intervals less than an octave − 0.8

Rm3(st:1, at) at ∈ [amin , amax ] Within the set vocal range 0.1

at /∈ [amin , amax ] Not in the set vocal range − 0.8

Table 2  Melodic writing incentives: (a) melodic interval reward; and (b) melodic tone towards reward

(a) (b)

| at − at−1 | Rw1(st:1, at) Condition Meaning Rw2(st:1, at)

0 0.3 0 < at − at−1 < 4 Step-in ascending 0.5

1 0 −4 < at − at−1 < 0 Step-in descending 0.5

2 0.2 at − at−2 > 4 , −4 < at − at−1 < 0 Ascend in plunge, than descend in step 0.4

3 0.2 at − at−2 < 4 , 0 < at − at−1 < 4 Descend in plunge, than ascend in step 0.4

4 0.3 at − at−2 > 4 , 0 < at − at−1 < 4 Ascend in plunge, than ascend in step 0.1

5 0.4 at − at−2 < 4 , 04 < at − at−1 < 0 Descend in plunge, than descend in step 0.1

6 − 0.8 at − at−2 > 4 , at − at−1 > 4 Ascend in plunge, than ascend in plunge − 0.5

7 0.4 at − at−2 < 4 , at − at−1 < −4 Descend in plunge, than descend in plunge − 0.5

8 0.2 - - -

9 0.2 - - -

10 − 0.5 - - -

11 − 0.7 - - -

12 0.1 - - -
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The DQN method is a basic algorithm in deep rein-
forcement learning that makes the action value function 
Q(s, a, θ) converge to the optimal action value function 
Q∗(s, a) by training the parameters [40] .

Combine the probability of note generation to obtain the 
current total bonus value:

where

are the basic music theory rules bonus and the writing 
rules bonus, respectively.

Calculate the gradient derivation of the objective func-
tion with respect to the parameters of the Q-network and 
conversion to an unbiased estimate using:

(4)
RG

�A (s1∶t−1, at ) = Rm(s1∶t−1, at ) + Rw(s1∶t−1, at ) + Ppitch,

(5)

Rm(s1:t−1, at) =

3
∑

i=1

Rmi(s1:t−1, at)

and Rw(s1:t−1, at) =

3
∑

i=1

Rwi(s1:t−1, at)

(6)

∇L(�A) ≅

T
∑

i=1

Eat∼G�A (at ∣s1∶t−1 )

[

∑

ai∈A

∇
�A
logG

�A
(at ∣ s1∶t−1) ∗ R

G
�A (s1∶t−1, at )

]

.

Then update the Q network parameters:

Finally, the model is updated by training the Q-network 
so that the Transformer-XL music generation network 
learns the rules of basic music theory and melody writing 
rules for note constraints to obtain the optimal strategy.

3.2 � End‑to‑end binaural audio synthesis
Given the source and listener positions and orientations 
c1:T for each time step, the single-channel input signal 
x1:T is converted into a binaural signal. The final system is 
shown in Fig. 3.

We convert a single channel signal of length T: 
x1:T = (x1, ..., xT ) into binaural (stereo) signals 
y
(l)
1:T = (y

(l)
1 , ..., y

(l)
T ) and y(r)1:T = (y

(r)
1 , ..., y

(r)
T ) , with the for-

mer representing the left-ear signal and the latter repre-
senting the right-ear signal. xt , y(l)t  , and y(r)t  all represent 
the sample scalar of the audio at moment t. The conditional 
time signal c1:T represents the position and direction of the 
source and the listener. Our goal is to obtain the following 
function:

where � is the receptive domain in the time domain 
ct ∈ R14 containing the three-dimensional positions of 

(7)θA + a∇L(θA) → θA.

(8)
(

y
(l)
t , y

(r)
t

)

= f (xt−�:t | ct−�:t),

Fig. 2  Transformer-XL+DQN model
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the source and the listener (three values each) and the 
quaternions representing the directions (four values 
each).

3.2.1 � Neural time regularization
We estimate a neural distortion field 
ρ
(neural)
1:T = WarpNet(c1:T ) and add it to the geometric 

regularization above (see Fig. 3):

where σ (warp)(ρt−1, ρ̂t) = max(ρt−1,min(t, ρ̂t)) is the 
recursive activation function that ensures monotonicity 
and causality.

WarpNet is a shallow temporal convolutional net-
work with four layers and 64 channels per layer. We 
define the distorted signal ˆx1:T  as a linear interpolation 
of the source signal x1:T  at ⌊ρt⌋ and ⌈ρt⌉:

In practice two warp fields are generated, one for each 
of the two ears. We enforce the physical constraint using 
σ (warp) . min(t, ρ̂t) forces the tth element of the twisted 
field to be no larger than t itself to ensure causality while 
max(ρt−1, ·) implies that an element was twisted from 
ρt−1 to (t − 1) , then the next element at position t must 
be twisted from ρt−1 or the subsequent position, thus 
ensuring monotonicity. Therefore, compared with related 
methods such as deformable convolution and spatial 
transformer networks, the neural time regularization in 
this paper performs constrained regularization for input 
signals of arbitrary length as well as directly simulates the 
physical phenomena of sound.

(9)ρt = σ (warp)(ρt−1, ρ̂t), ρ̂t = ρ
(goem)
t + ρ

(neural)
t ,

(10)x̂t = (⌈ρt⌉ − ρt)x⌊ρt⌋ + (ρt − ⌊ρt⌋)x⌈ρt⌉

3.2.2 � Conditional superconvolution
Inspired by the DSP formulation, we predict the con-
volutional weights and biases of the input x1:T  of a 
given layer as a function of the conditional input c1:T  . 
Weights are generated from the conditional input c1:T 
containing physical information about the relationship 
between the sound source and the listener:

where H (W ) and H (b) are small convolutional hypernet-
works that receive c1:t as input and predict convolutional 
weights and biases as output, respectively. Thus, the 
input of the convolutional layer is not just a time series, 
and its weights and biases change over time.

3.2.3 � Phase reconstruction using L2‑loss
Using the L2-loss of the original waveform to train a 
generative audio model can lead to poor sound qual-
ity and signal distortion. Therefore, a fundamental 
problem of phase estimation of L2-loss on waveforms 
is analytically explained. A simple additional loss term 
can mitigate this problem.Define:

as the time domain L2-loss between the predicted audio 
signal y1:T and the target signal ŷ1: T  . Yk , Ŷk ∈ C denotes 
the kth frequency component of y1:T , and ŷ1: T  is in 
the Fourier frequency domain. The amplitude error and 
angular phase error of the kth frequency component are 
denoted as

(11)zt =

K
∑

k=1

[H (W )(c1:t)]:,:,k xt−k+1 +H (b)(c1:t),

(12)L2(y1:T , ŷ1:T ) =
∑

t

(yt , ŷt)
2

Fig. 3  End-to-end binaural audio synthesis system
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where | · | is the modulo operation of the complex 
numbers.

According to the Parseval theorem, we write the 
L2-loss in the time domain as the L2-loss in the complex 
frequency domain as follows:

Now, the distance | Yk − Ŷk | is denoted as ε.

Theorem 1  Define Ŷ ∈ C as a specified complex num-
ber and Y ∈ B

ε,Ŷ = {Y ∈ C :| Y − Ŷ |= ε} as any com-
plex number with distance ε from Ŷ  . The expected ampli-
tude error and the expected angular phase error with 
respect to Ŷ  are:

According to Theorem 1, we can analyze the expected 
amplitude error and phase error along the kth fre-
quency component. First, in the early stage of training, 
the expected amplitude error is low for higher energy 
signals, even with large L2-values. On the contrary, the 
phase is hardly optimized when the L2-loss is large. Sec-
ond, the expected amplitude error in all target energies 
decreases during the training process when the L2-loss 
decreases with time. In contrast, the improvement of the 
expected phase error is primarily for the high-energy 
components, while the phase accuracy is poor for the 
medium and low-energy components. Therefore, opti-
mizing the original waveform using the L2-loss in the 
time domain is not sufficient to achieve accurate phase 
reconstruction.

Due to the limited capacity of the model, the training 
data can usually only be fitted to L2-loss εmin. If this ε
min is too large, the amplitude of the signal is modeled 
well but has a large phase error. To overcome the short-
comings of time-domain L2-loss in phase optimization, 
we add an explicit phase term to the loss function:

where STFT (y1:T ) is the short-time Fourier transform of 
the audio signal y1:T .

(13)
L(amp)(Yk , Ŷk) = || Yk | − | Ŷk ||

L(phase)(Yk , Ŷk) =∠(Yk , Ŷk).

(14)L2(y1:T , ŷ1:T ) =
∑

t

| Yk − Ŷk |2 .

(15)

EY (L
(amp)(Y , Ŷ )) =

1

2𝜋
∣ Ŷ ∣ ∫

𝜋

−𝜋

∣∣
𝜀

∣ Ŷ ∣
+ ej𝜑 ∣ −1 ∣ d𝜑

and

EY (L
(phase)(Y , Ŷ )) =

1

2𝜋 ∫
𝜋

−𝜋

arccos

Re(
𝜀

∣Ŷ ∣
ej𝜑 + 1)

∣
𝜀

∣Ŷ ∣
+ ej𝜑 ∣

d𝜑.

(16)
L(y1∶T , ŷ1∶T ) = L2(y1∶T , ŷ1∶T ) + 𝜆L(phase)(STFT (y1∶T ), STFT (ŷ1∶T )),

3.3 � Audio rendering system
The sound quality produced at a concert can determine 
the success or failure of a real concert, whether it is pro-
duced directly by the instrument or by the amplifier. To 
improve this aspect in a virtual concert, we divide the 
metadata-based audio rendering into two separate parts 
that are independent of each other: environment sound 
rendering and location-dependent sound (object) ren-
dering. This is only an abstract logical distinction. In 
the actual rendering algorithm, ambient sound render-
ing is usually convolved with a post-reverberation tail, 
and location-dependent sound rendering handles direct 
sound and early reflections. The difference between these 
two components is whether their operation depends on 
the location of the sound source and the listener. For 
ambient sound rendering (i.e., the part that does not 
depend on the source location), our method sums the 
source signal and performs a single rendering. An over-
view of the algorithm is shown in the following Fig. 4.

Classify the elements of the audio to correspond to the 
metadata. Each audioFormatExtended in the metadata is 
regarded as a scene, the scene includes sub-scenes with 
an audio programme to correspond, and the audioCon-
tent in the scene is used as the scene audio library SAL.
SAL is classified as ancient and modern scenes, industrial 
scenes,nature-based scenes, and urban scenes.

The distinction described above is not used in some 
rendering algorithms. One method follows the rendering 
method based on the image source approach, where the 
reverberation tail is modeled with higher-order reflec-
tions with no ambient sound rendering and only posi-
tion-dependent rendering (i.e., each part of the rendering 
algorithm depends on the source and listener positions). 
Another method employs an air volume simulation-
based approach that requires only the source location 
and the listener location to inject the signal into another 
system where the source location and the listener loca-
tion are unknown, retrieving information from them. 
With our distinction, the air volume modeling-based 
approach is similar to the algorithm that performs only 
the ambient sound rendering, which suggests that adopt-
ing a co-processing mechanism is most suitable between 
different sound sources.

4 � Experiments
To evaluate our approach, we performed subjective and 
objective experiments for each of the two major models 
of metaverse concerts [41, 42]. In Section 4.1, we present 
our experiments and results for the effectiveness of our 
Transformer-XL music generation network controlled 
with Monte Carlo and DQN methods using the POP909 
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dataset [7]. The dataset was assembled by the Music X 
lab team at New York University in Shanghai in 2020 and 
contains a total of 909 popular music tracks from 462 
artists with a total duration of about 60 h. The experi-
mentally generated music was compared with the music 
generated by the original Transformer-XL network and 
two basic algorithms (Melody_LSTM and RL-tuner) to 
obtain objective and subjective scores.

In Section  4.2, we present experiments using the 
HRTF dataset as a control with a neural network-based 
synthesis dataset collected to verify the reliability of the 
pure data-driven end-to-end model, using the HRTF 
data of KEMAR No. 21 (Subject_003) from the CIPIC 
HRTF database. This CIPIC HRTF database includes 
high spatial resolution HRTF measurements for 45 dif-
ferent subjects, including KEMAR human models with 
small and large plumes. The HRTF data for each of these 
subjects included 2500 head-related impulse response 
measurements. These “standard” measurements were 
recorded at 25 different intermembrane polarity azi-
muths and 50 different intermembrane polarity eleva-
tions. Section  4.3 presents experiments using a sound 
field designed in UE4 combining digital twin and virtual 
reality technologies to achieve a virtual concert sound 
field simulation.

4.1 � Music generation experiments
4.1.1 � Training environment
The Transformer-XL generative network has been 
trained over 120 rounds.The pitches generated by the 
generative network were controlled by Monte Carlo 

and DQN methods. The Q-network was a 3-layer 256-
cell LSTM network with dropout = 0.5, using an Adam 
optimizer and a cross-entropy loss function due to the 
softmax output, which was trained over 120 rounds.

In the experiment, the Transformer-XL+MC method 
sampled 50 pitch event trajectories and generated 100 
music tracks over 100 cycles. The average reward value 
was 0.142. The Transformer-XL+DQN method sampled 
100 pitch event trajectories, with a final loss value of 
0.157 and an average reward value of 0.185.

4.1.2 � Objective evaluation
To demonstrate the effectiveness of the Transformer-
XL+MC method and the Transformer-XL+DQN 
method on Transformer-XL, the generated results of 
the three methods were compared with the original 
dataset and subsequently with the results generated by 
Melody_LSTM and RL-tuner methods. A total of 3 sets 
of 100 16-bar music clips were generated using each of 
the three methods to calculate seven metrics for objec-
tive evaluation against the music in the POP909 data-
set [43]. The results are given in Table  3. In addition, 
we randomly select a part of the generated result as an 
example and visualization, as shown in Fig. 5, our gen-
erated music consists of three instrument tracks.

The first four items reflect the complexity of the 
generated music. The range of the music generated by 
all three methods was controlled at about 3 octaves, a 
relatively stable range. The mean values of the number 
of different pitches were similar for the three meth-
ods but slightly higher for the Transformer-XL+DQN 

Fig. 4  Metadata-based audio rendering system
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method. The mean number of pitches played and the 
polyphony time step ratio hardly differed.

The latter three indicators reflect the goodness of 
the generated results. For the ratio of tones in tonality, 
both improved methods were significantly higher than 
the original method, Melody_LSTM and RL-tuner 
method. For pitch information entropy, both improved 
algorithms had lower values than the original method. 
For the first two bars of the rhythmic consistency, the 
two improved methods were basically equal and were 
improved for the original method as well as being close 
to the original data set.

The Transformer-XL+MC and Transformer-
XL+DQN methods generated music with better tonal-
ity, richer melodies, and more stable rhythms, which 
is a good improvement of the Transformer-XL gen-
eration network as well as Melody_LSTM method and 
RL-tuner method in objective terms.

4.1.3 � Subjective evaluation
Beautiful music possesses diversity, innovation, and flex-
ibility while taking into account theoretical support and 
artistic aesthetics [44]. In this experiment, a popular sub-
jective assessment experiment was conducted on music 
generated using the three methods examined so far. The 
subjects were divided into two groups: a non-professional 
group of 25 people consisting of music lovers who were 
not music students, and a professional group of 5 people 
consisting of testers with advanced musical education. 
Five pieces of music generated by the three methods were 
scored, with the professional group scoring the music-
related knowledge and the non-professional group scor-
ing the human ear. The test results are shown in Table 4.

The results in the table suggest that the Transformer-
XL+MC model and the Transformer-XL+DQN model 
outperformed the original model and two basic algo-
rithms in the subjective evaluation. In particular, the 

Table 3  Objective evaluation comparison of three methods

Metrics Transformer XL Transformer-
XL+MC

Transformer-
XL+DQN

POP909 Dataset Melody_LSTM RL-tuner

Sound range 39.25 37.12 39.09 53.04 37.46 53.04

Average of the number of different pitches 19.6 20.62 24.1 36.74 18.6 36.74

Average number of pitches played simultaneously 2.81 2.85 2.79 3.77 2.15 3.77

Retuning time step ratio 71.2% 72.7% 74.2% 74.9% 64.8% 74.9%

Ratio of tones in the tonality 49.3% 58.5% 61.05% 61.3% 40.5% 61.3%

Information entropy of pitch 2.73 2.68 2.63 2.82 2.91 2.82

Rhythmic consistency with the first two bars 94.3% 97.1% 97.3% 98.8% 81.3% 98.8%

Fig. 5  Part of the music score of the generated result
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music generated by the Transformer-XL+DQN model 
achieved the highest scores in all five metrics for both the 
non-professional and professional groups.

4.2 � Spatial audio generation experiments
4.2.1 � Data setup
A total of 2 h of paired mono and bi-mono data at 48 
kHz were recorded from eight different speakers (4 male 
and 4 female). The listener was a mannequin with binau-
ral microphones in the ears. Participants were asked to 
walk around the mannequin within a radius of 1.5 meters 
and to engage in an unscripted conversation with it. The 
location and orientation of the sound source and listener 
were tracked throughout the recording using an Opti-
Track system. Using a validation sequence and the last 2 
min of each participant as test data, and the remainder 
as training data, our model was trained 100 times on the 
Adam Optimizer.

4.2.2 � Objective evaluation
According to their audio waveforms, audio spectrum, 
and audio sound spectrogram,the mono audio, HRTF-
based and neural network-generated audio were analyzed 
separately .

For monaural audio waveforms, the intensities of the 
audio in the left and right ears were the same at each 
time point so that the brain did not have a stereo sen-
sation as when one human ear received audio with the 
same energy received by both ears. In contrast, the audio 
waveforms generated by HRTF and the audio waveforms 
generated by neural networks had different intensities 
for the left and right channels at the same point in time. 
Therefore, when the audio was received by both ears, the 

energy received by the left and right ears was different, 
and the brain produced a stereo sensation for the signal 
with different energy (Figs. 6 and 7).

The sound spectrum and the corresponding frequency 
spectrum (Fig. 8) show that the energy of the mono audio 
is concentrated between 0 and 2 kHz, with lower energy 
in the middle and high-frequency parts. The energy of the 
audio generated using HRTF was concentrated between 0 
and 2 kHz, with lower energy in the high-frequency part 
and enhanced energy in the middle frequency part (4 kHz 
to 5 kHz) as compared with mono audio. The energy in 
the low-frequency part decreased compared to the mono 
audio energy. The energy of the neural network-based 
generated audio was mainly concentrated between 0 and 
2 kHz, lower in the high-frequency part, and enhanced 
in the middle frequency part (4 kHz to 5 kHz) as com-
pared to the mono audio. The overall energy of each 
frequency band was slightly increased; the energy of the 
low-frequency bands was decreased compared with the 
mono audio, and the energy of the low-frequency bands 
was decreased more than that of the HRTF-based audio.

4.2.3 � Subjective evaluation
We used 27 testers with stereo music experience in this 
experiment to obtain the statistical results shown in 
Table 5 and visualized in Fig. 9.

The generated music showed overall higher scoring 
results and overall better music generation. The bin-
aural_neural generated by the neural network was sig-
nificantly more comfortable than the binaural_hrtf_003 
generated by the traditional method of the head-related 
transfer function HRTF, with significant improvement in 
the four measures of fullness, intimacy, roundness, and 

Table 4  Subjective evaluation results of human ear assessment in the (a) non-professional groups and (b) professional groups

Metrics Transformer XL Transformer-XL+MC Transformer-
XL+DQN

Melody_LSTM RL tuner

(a)

  Harmony level 3.848 3.856 4.152 3.643 3.689

  Melodic and smooth 3.832 4.016 4.208 3.256 3.314

  Pleasing to the ear 3.72 3.784 4.04 3.105 3.287

  Structural integrity 3.696 3.952 4.088 2.94 3.051

  Define the style 3.816 3.926 4.2 3.023 3.125

  Overall Score 4.016 3.912 4.136 3.193 3.293

(b)

  Overall Evaluation 3.84 4.04 4.32 3.13 3.26

  Harmonic direction 3.72 3.8 4.24 2.88 2.94

  Melodic direction 3.64 3.88 4.12 3.25 3.34

  Rhythm Type 3.44 3.64 4.16 3.17 3.21

  Tone solidity 4.12 4.12 4.16 2.94 3.34

  Overall Score 3.752 3.896 4.2 3.074 3.218



Page 11 of 15Jin et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:31 	

brightness. However, there was no significant improve-
ment in the performance of clarity using the neural net-
work method, which failed to retain more information 
about the original song; there were still some phase and 
energy errors that needed to be improved. Combining 

the other four dimensions, the audio clips generated by 
the neural network were considered to have high clar-
ity, good naturalness, wide range, low distortion in the 
pathway, low noise, good transient response, and suffi-
cient reverberation.

Fig. 6  Sound waveform of a mono audio, b HRTF-based audio, and c neural network-generated audio

Fig. 7  Sound spectrum of a mono audio, b HRTF-based audio, and c neural network-generated audio
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4.3 � Virtual concert soundstage design
The designed virtual soundstage included 12 speakers: 
four top left, right front and rear speakers, two right rear 
and left rear speakers, two left and right surround sound 
field speakers, three left, center, and right speakers, and 
one subwoofer, as shown in Fig. 10. The top left and right 
front and rear speakers of the virtual soundstage used the 
same full-range design and were placed according to the 

main listening seat. The right rear speaker and left rear 
speaker increased the intensity of the listening experi-
ence by further positioning the sound, placing them 
behind the seating area at an angle of 135◦ to 150◦ to the 
center. The left surrounds sound field speakers and right 
surround sound field speakers played a role in creating a 
realistic sense of space and providing ambient sound. The 
two are arranged in the seat position slightly behind the 

Fig. 8  Sound spectrogram of a mono audio, b HRTF-based audio, and c neural network-generated audio

Table 5  Subjective evaluation score

Brightness Comfort Plumpness Intimacy Roundness Clarity Balance Stereo effect Total score

binaural_neural 7.6 7.8 7.2 7.4 7.2 7.6 7.1 7.3 58.2
binaural_hrtf_003 7.2 7.0 6.7 7.0 6.9 7.6 6.8 7.1 56.1

Fig. 9  Results of subjective evaluation
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area and form a certain angle, preferably just above the 
ear height. The left, center, and right speakers assisted the 
music with the change of stage lighting. The subwoofer 
emitted the strongest bass, thus adding power to the 
music.

The 12 speaker placements designed in the UE4 vir-
tual stage allowed each speaker to emit a different sound, 
each with its independent source, forming a new front, 
surround, and ceiling sound channel. Thus the external 
surround sound brought an immersive sound experience.

5 � Conclusion and future work
In this paper, we have proposed a framework for meta-
universe music generation from intelligent music gen-
eration and spatial audio twinning. Through subjective 
evaluation and objective experiments on The results 
of subjective evaluation and objective experiments 
on POP909 and HTRF datasets show that MetaMGC 
achieves superior results in both music generation and 
digital audio twinning.

However, although the model makes a good contribu-
tion to generating musical compositions, it is still not 
perfect. An important characteristic of live concerts 
is that listeners can feel and immerse themselves in the 
emotion and atmosphere conveyed by the music at close 
range [45], while our model only improves on the musi-
cality of the music. Therefore, a music generation model 
that generates emotionally rich music is a better choice 

[46]. In subsequent experiments, we will also consider 
adding emotional expression factors to the digital audio 
twin system to make the meta-universe concert intelli-
gent music generation framework closer to realistic emo-
tion-rich live concert scenarios.
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