
Lluís et al. 
EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:33  
https://doi.org/10.1186/s13636-022-00265-4

EMPIRICAL RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Open Access

Points2Sound: from mono to binaural audio 
using 3D point cloud scenes
Francesc Lluís*, Vasileios Chatziioannou and Alex Hofmann 

Abstract 

For immersive applications, the generation of binaural sound that matches its visual counterpart is crucial to bring 
meaningful experiences to people in a virtual environment. Recent studies have shown the possibility of using neural 
networks for synthesizing binaural audio from mono audio by using 2D visual information as guidance. Extending 
this approach by guiding the audio with 3D visual information and operating in the waveform domain may allow for 
a more accurate auralization of a virtual audio scene. We propose Points2Sound, a multi-modal deep learning model 
which generates a binaural version from mono audio using 3D point cloud scenes. Specifically, Points2Sound consists 
of a vision network and an audio network. The vision network uses 3D sparse convolutions to extract a visual feature 
from the point cloud scene. Then, the visual feature conditions the audio network, which operates in the waveform 
domain, to synthesize the binaural version. Results show that 3D visual information can successfully guide multi-
modal deep learning models for the task of binaural synthesis. We also investigate how 3D point cloud attributes, 
learning objectives, different reverberant conditions, and several types of mono mixture signals affect the binaural 
audio synthesis performance of Points2Sound for the different numbers of sound sources present in the scene.
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1  Introduction
People perceive the world through multiple senses that 
jointly collaborate to understand the environment. While 
visual stimuli are important for spatial cognition, audi-
tory stimuli are particularly critical. For example, being 
capable of hearing instantly from all angles helps people 
orient themselves in space and influences their visual 
attention [1, 2]. As auditory stimuli are received by both 
ears, our brain locates sound sources in space by compar-
ing the sound that our ears receive. This process, known 
as binaural hearing, relies mainly on two acoustic cues: 
interaural time difference (ITD) and interaural level dif-
ference (ILD). ITD is the difference in the arrival time 
of a sound between the ears and ILD is the difference 
in sound intensity. In the median plane, i.e., the vertical 
plane between the ears, ITD and ILD are both small, and 

we rely on spectral cues to locate sources [3]. All such 
acoustic cues can be described by the head-related trans-
fer function (HRTF), which encodes the sound distortion 
caused by geometries of the head and the torso [4].

In immersive applications, the generation of accurate 
binaural acoustic cues that match the visual counterpart 
is key to providing people with meaningful experiences 
in the virtual environment. These acoustic cues, ITD 
and ILD, strongly rely on the 3D position between the 
receiver and the sound sources. Recently, several meth-
ods using neural networks have been proposed for gen-
erating binaural audio from mono audio, using 2D visual 
information as guidance [5–8]. However, using 2D visual 
information inherently restricts the neural network’s abil-
ity to extract information about the 3D positions between 
the receiver and the sound sources present in a scene. 
Not having access to this potentially useful information 
entails the risk of finding a sub-optimal solution for the 
task of binaural generation. In addition, these recent 
methods extract visual information by applying 2D dense 
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convolutions to planar projections of the scene. This pro-
cess forces the 2D convolutional filters to attend to local 
planar-projection regions with no relationship to physical 
space—possibly hindering the audio-visual learning nec-
essary for the binaural synthesis task.

In this paper, we introduce Points2Sound, a multi-
modal neural network that synthesizes binaural audio 
from mono audio using 3D visual information as guid-
ance (see Fig.  1). For the visual learning, we propose 
the use of 3D point clouds as visual information as well 
as 3D sparse convolutions for extracting information 
from the 3D point clouds. This approach enables the 
model to extract information about the 3D position of 
the sound sources while convolutional filters attend to 
3D data structures in local regions of the 3D space. For 
the audio learning, Points2Sound uses advancements 
in neural audio modeling in the waveform domain. 
We extend the Demucs architecture [9] and show that 
this model can be effectively conditioned by using 
visual information. Although Demucs was originally 
designed for source separation, we find it appropri-
ate for binaural synthesis given that the model needs 
to intrinsically separate the sound of the sources in 
the mono mixture for further binaural rendering. This 
study thus analyzes the performance of Points2Sound 
for different 3D point cloud attributes, learning objec-
tives, reverberant conditions, and types of mono 
mixtures.

The main contributions of this work are the following:

•	 We introduce the use of 3D point clouds to con-
dition audio signals. By using 3D visual informa-
tion and 3D sparse convolutions, the neural net-
work can learn the correspondence between audio 

characteristics (e.g., spatial cues or timbre) and 3D 
structures found in local regions of the 3D space—
a correspondence relevant for binaural audio syn-
thesis.

•	 We tackle visually informed binaural audio gen-
eration directly in the waveform domain, thereby 
optimizing our model in an end-to-end fashion 
and allowing it to learn audio features that are not 
limited by a fixed resolution of a spectrogram rep-
resentation.

•	 We evaluate how 3D point cloud attributes, i.e., 
depth or rgb-depth, several types of mono mixture 
signals, the effect of the room, and different learn-
ing objectives affect binaural audio synthesis perfor-
mance for different numbers of sound sources in the 
scene.

•	 We provide a dataset of the captured 3D-video point 
clouds, videos with listening examples, and the 
source code for reproducibility purposes1.

This paper is organized as follows: Section  2 provides a 
brief overview of the related work. Section 3 details the 
neural network architecture, the training procedure, and 
the data used. Section 4 presents the evaluation metrics 
and the obtained results. Section 5 discusses the results, 
and Section 6 concludes.

2 � Related work
We provide a brief overview of related works in the field 
of audio-visual source separation and audio-visual spatial 
audio generation.

Fig. 1  Points2Sound is a deep learning model capable of generating a binaural version from mono audio that matches a 3D point cloud scene

1  https://​github.​com/​franc​escll​uis/​point​s2sou​nd

https://github.com/francesclluis/points2sound
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2.1 � Audio‑visual source separation
Source separation has been traditionally approached 
using only audio signals [10, 11] with methods such as 
independent component analysis [12], sparse coding [13], 
or non-negative matrix factorization [14]. Recently, audio 
source separation has experienced significant progress 
due to the application of deep learning methods [15–18]. 
Current trends include performing source separation in 
the waveform domain [9, 19, 20] or preserving binaural 
cues during the separation process [21, 22]. In addition, 
deep learning methods have facilitated the inclusion of 
visual information to guide the audio separation [23, 24]. 
In the case of music source separation using visual infor-
mation, learning methods mainly use appearance cues 
from the 2D visual representations [25, 26], but have been 
enhanced also with motion information [27, 28]. Interest-
ingly, audio-visual source separation models intrinsically 
learn to map audio to their corresponding position in the 
visual representation. This has encouraged the use of vis-
ual information for spatial audio generation [5].

2.2 � Audio‑visual spatial audio generation
With the recent advances on audio modeling using neu-
ral networks, end-to-end deep learning approaches using 
explicit information about the position and orientation of 
the sources in the 3D space have been proposed for bin-
aural audio synthesis [29, 30]. These approaches require 
head tracking equipment to know the pose of the receiver 
and the sound source in the environment. Concurrently, 
audio-visual learning for spatial audio generation has 
gained interest. Several methods have been proposed to 
infer spatial acoustic cues to mono audio from leverag-
ing visual information. Morgado et  al.  [31] proposed a 
learning method to generate the spatial version of mono 
audio guided by 360◦  videos. Their approach is to pre-
dict the spatial audio in ambisonics format which can be 
later decoded as binaural audio for reproduction through 
headphones. Gao et al.  [7] show that directly predicting 
the binaural audio creates better 3D sound sensations. 
They propose a U-Net-like framework for mono-to-
binaural conversion using normal field-of-view videos. 
Since then, binauralization models using 2D visual infor-
mation have been enhanced using different approaches 
such as using an auxiliary classifier [8] or integrating the 
source separation task in the overall binaural genera-
tion framework [5]. In addition, it has been shown that 
features from pretrained models on audio-visual spatial 
alignment tasks are beneficial for audio binauralization 
[6]. Note that many of these approaches use audio spec-
trogram representations while considering mono mixture 
signals represented as the sum of the two spatial channels 
in order to train their networks [5–8]. It remains unclear 

how operating in the waveform domain and using other 
mono representations may affect the binaural synthesis 
performance.

3 � Approach
We propose Points2Sound, a deep learning algorithm 
capable of generating a binaural version from a mono 
audio using the 3D point cloud scene of the sound 
sources in the environment.

3.1 � Problem formulation
Consider an audio mono signal sm ∈ R

1×T of length T 
samples generated by N sources si , with

along with the 3D scene of the sound sources in the 3D 
space represented by a set of I points P = {Pi}

I
i=1 , and 

the corresponding binaural signal sb ∈ R
2×T . We aim at 

finding a model f with the structure of a neural network 
such that sb(t) = f (sm(t),P) . The binaural version sb(t) 
generated by N sources si is defined as:

where HRTF(ϕi, θi, di)|left,right is the head-related transfer 
function of the sound incidence at the specified i-source 
orientation (ϕi, θi) and distance di for both left (L) and 
right (R) ears. Throughout this work, orientation and 
distance are defined based on a head-related coordinate 
system, i.e., the center of coordinates is considered the 
head of the listener. During the training of the model, we 
consider generic HRTFs measured in an anechoic envi-
ronment. However, during testing, we also evaluate the 
model performance under reverberant room conditions 
by using two binaural room impulse responses. Also, 
note that in this work only the sound source’s contribu-
tion through the 3D point cloud is explicitly considered 
for binauralization. The contributions of the listener and 
the environment are implicitly considered via the choice 
of HRTF.

3.2 � Points2Sound model architecture
We propose a multi-modal neural network architecture 
capable of synthesizing binaural audio in an end-to-end 
fashion: the architecture takes as inputs the 3D point 
cloud scene along with the raw mono waveform and out-
puts the corresponding binaural waveform. The architec-
ture comprises a vision network and an audio network. 
Broadly, the vision network extracts a visual feature from 
the 3D point cloud scene that serves to condition the 

(1)sm(t) =

N

i=1

si(t)

(2)sL,Rb (t) =

N
∑

i=1

si(t)⊛HRTF(ϕi, θi, di)|left,right
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audio network for binaural synthesis. Figure  2 shows a 
schematic diagram of the proposed model.

3.2.1 � Sparse tensor for 3D point cloud representation
3D scenes captured by rgb-depth cameras or LiDAR 
scanners can be represented by a 3D point cloud. A 3D 
point cloud is a low-level representation of a 3D scene 
that consists of a collection of I points {Pi}

I
i=1 . The essen-

tial information associated to each point Pi is its location 
in space. For example, in a Cartesian coordinate system, 
each point Pi is associated with a triple of coordinates 
ci = (xi, yi, zi) ∈ R

3 in the x,  y, and  z-axes. In addition, 
each point can have associated features fi ∈ R

n like its 
color.

Extracting information from a 3D point cloud using 
neural networks requires non-standard operations that 
can handle the 3D data sparsity. It is common to repre-
sent the 3D point cloud information using a sparse ten-
sor [32–34] and define operations on that sparse tensor, 
such as the 3D sparse convolution operation. Note that 
sparse tensors require a discretization step that enables 
point cloud coordinates to be defined in the integer grid 
of the sparse tensor. In this work, the 3D point cloud is 
represented with a third order tensor by first discretiz-
ing its coordinates using a voxel size vs . The voxel size vs 
denotes the discretization step size and allows to define 

point cloud coordinates in the integer grid of the tensor. 
The discretized coordinates of each point are given by 
c
′
i = ⌊ civs

⌋ = (⌊ xivs
⌋, ⌊

yi
vs
⌋, ⌊ zivs ⌋) . Then, the resultant tensor 

representing the point cloud is given by

where C ′ is the set of discretized coordinates of the 
point cloud and fi is the feature associated to the point 
Pi . Note that in the following we will evaluate how 3D 
point cloud attributes affect the binaural audio synthesis. 
Accordingly, we will consider two types of 3D point cloud 
scenes: when 3D point cloud scenes consist of depth-
only data and when 3D point cloud scenes consist of rgb-
depth data. In the cases where depth-only information 
is available, we use the non-discretized coordinates as 
the feature vectors associated to each point, i.e., fi = ci . 
When rgb-depth information is available, we use the rgb 
values as the feature vectors associated to each point, 
i.e., fi = (ri, gi, bi).

3.2.2 � 3D sparse convolution on a 3D sparse tensor
The 3D sparse convolution is a generalized version of the 
conventional dense convolution designed to operate on a 
3D sparse tensor [35].

(3)T[c′i] =

{

fi if c
′
i ∈ C ′

0 otherwise,

Fig. 2  Overview diagram of Points2Sound. It consists of a sparse Resnet18 network for visual analysis and a Demucs network for binaural audio 
synthesis. The vision network extracts a visual feature h from the 3D point cloud. Then, this visual feature serves to condition the audio network to 
generate a binaural version from the mono audio that matches the visual counterpart. Both networks are jointly optimized during the training of 
the model
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The 3D sparse convolution on a 3D sparse tensor is 
defined as follows:

for (x, y, z) ∈ C ′
out . Where N(x, y, z) = {(p, j, k)||p| ≤ Γ,

|j| ≤ Γ, |k| ≤ Γ, (p + x, j + y, k + z) ∈ C �
in
} . W are the 

weights of the 3D convolutional kernel and 2Ŵ + 1 is the 
convolution kernel size. C ′

in and C ′
out are predefined input 

and output discretized coordinates of sparse tensors [35].

3.2.3 � Vision network
The vision network consists of a Resnet18  [36] archi-
tecture with 3D sparse convolutions  [35] that extracts a 
visual feature from the 3D point cloud scene. Resnet18 
with 3D sparse convolutions has been successfully used 
in several tasks such as 3D semantic segmentation [35] or 
3D single-shot object detection  [34]. Thus, we consider 
sparse Resnet18 suitable for our scenario, where extract-
ing information about the position of the sources while 
recognizing the type of source is critical for reliable bin-
aural synthesis. Sparse Resnet18 learns at different scales 
by halving the feature space after two residual blocks and 
doubling the receptive field by using a stride of 2. A key 
characteristic of residual blocks is their residual connec-
tions which allow to propagate the input data through 
later parts of the block by skipping some layers. Through 
the network, ReLU is used as an activation function and 
batch normalization is applied after sparse convolutions. 
At the top of the Resnet18 4 th block, we add a 3×3×3 
sparse convolution with K = 16 output channels and 
apply a max-pooling operation to adequate the dimen-
sions of the extracted visual feature h.

3.2.4 � Audio network
We adapt the Demucs architecture [9] to synthesize bin-
aural versions ŝb from mono audio signals sm given the 
3D scene of the sound sources P . Although Demucs 
was originally designed for source separation, we find 
it appropriate for binaural synthesis because the model 
needs to intrinsically learn to separate the sound of the 
sources in the mono mixture for further rendering (see 
Eq. 2). Demucs works in the waveform domain and has 
a U-Net-like structure  [37] (see Fig.  2). The encoder-
decoder structure learns multi-resolution features from 
the raw waveform while skip connections allow low-level 
information to be propagated through the network. In 
the current case, skip connections allow later decoder 
blocks of the network to access information related to 
the phase of the input signal, which otherwise may be 
lost when propagated through the network. In this work, 
we keep the original six convolution blocks for both the 
encoder and decoder but extend the architecture so that 

(4)
�
out[x, y, z] =

∑

p,j,k∈N(x,y,z)

�[p, j, k]�in[x + p, y + j, z + k]

the input and output channels match our mono and bin-
aural signals.

3.2.5 � Conditioning
We use a global conditioning approach on the audio net-
work to guide the binaural synthesis according to the 3D 
scene. Global conditioning was introduced in Wavenet 
[38] and has been recently used in the Demucs archi-
tecture for separation purposes using one-hot vectors 
[39]. In a similar way, we use the extracted visual feature 
h from the vision network and insert it in each encoder 
and decoder block of the audio network. Specifically, the 
visual feature is inserted after being multiplied by a learn-
able linear projection V·,q,· . As in [39], Demucs encoder 
and decoder take the following expression:

where Encoderq+1 and Decoderq−1 are the outputs 
from the q-th level encoder and decoder blocks, respec-
tively. W·,q,· are the 1-D kernel weights at the q-th block. 
Rectified linear unit (ReLU) and gated linear unit [40] 
(GLU) are the corresponding activation functions. The 
operator ∗ denotes the 1-D convolution while ∗⊤ corre-
sponds to a transposed convolution operation, as com-
monly defined in the deep learning frameworks [41].

3.2.6 � Learning objective
During the training of Points2Sound, the parameters of 
both vision and audio networks are optimized to reduce 
the L1 loss function between the estimated binaural sig-
nal ŝL,Rb  and the ground truth binaural signal sL,Rb  . The L1 
loss computes the absolute error between the estimated 
and the ground truth waveform samples. We refer to this 
learning objective as

Note that in Section  4.3 we will investigate the effect 
of another learning objective on the performance of 
Points2Sound.

3.3 � Data
While there are lots of audio datasets, there is data scar-
city of 3D point cloud videos of performing musicians. 
For the purposes of this work, we capture 3D videos of 
the same twelve performers playing different instru-
ments: cello, doublebass, guitar, saxophone, and violin. In 

(5)
�������q+1 = GLU(�encoder,q,2 ∗ ReLU(�encoder,q,1 ∗

�������q + �encoder,q,1�) + �encoder,q,2�),

(6)
�������q−1 = ReLU(�decoder,q,2 ∗

⊤
GLU(�decoder,q,1 ∗

(�������q + �������q) + �decoder,q,1�)

+ �decoder,q,2�).

(7)Lfull = �sL,Rb − ŝb
L,R�.
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addition, we separately collect audio recordings of these 
instruments from existing audio datasets. This data will 
serve later to generate 3D audio-visual scenes for super-
vised learning.

3.3.1 � Point clouds
Recordings were conducted using an Azure Kinect DK 
(by Microsoft) placed 1 m above the floor and capturing 
a frontal view of the musician at a distance of 2 m. Azure 
Kinect DK comprises a depth camera and a color camera. 
The depth camera was capturing a 75◦ × 65◦ field of view 
with a 640× 576 resolution while the color camera was 
capturing with a 1920× 1080 resolution. Both cameras 
were recording at 15 fps, and Open3D library [42] was 
then used to align depth and color streams and generate a 
point cloud for each frame. The full 3D video recordings 
span 1 h of duration with an average of 12 performers for 
each instrument.

We increase our 3D point cloud video dataset col-
lecting 3D videos from small ensemble 3D-video data-
base [43] and Panoptic Studio [44]. In small ensemble 
3D-video database, recordings are carried out using 
three RGB-Depth Kinect v2 sensors. LiveScan3D [45] 
and OpenCV libraries are then used to align and gener-
ate point clouds for each frame given each camera point 
of view and sensor data. The average video recording 
is 5 min per instrument and a single performer per 
instrument. In Panoptic Studio, recordings are carried 
out using ten Kinect sensors. In this case, recordings 
span two instrument categories: cello and guitar. The 
average time per video recording is 2 min per instru-
ment for a single performer per instrument. As we 
gather 3D point cloud videos from different sources, we 
set the axes representing the point clouds to have the 
same meaning for all the collected 3D videos. This is as 
follows: the body face direction is the z-axis, the stat-
ure direction is the y-axis, and the side direction is the 
x-axis. Then, we split 75% of the data for training, 15% 
for validation, and the remaining 10% for testing. Data 
split is made ensuring that there is no overlap in identi-
ties between sets.

3.3.2 � Audio
We collect 30 h of mono audio recordings at 44.1  kHz 
from Solos [46] and Music [25]. Both datasets gather 
music from YouTube which ensures a variety of acoustic 
conditions. In total, we gather 72 recordings per instru-
ment with an average of 5 min per recording. We split 
75% of the recordings for training, 15% for validation, 
and the remaining 10% for testing.

For further binaural auditory scene generation, we also 
create multiple binaural versions of each recording using 

the Two!Ears Binaural Simulator [47]. Specifically, for 
each audio recording, we simulate the binaural version at 
a discrete set of angular positions in the horizontal plane 
with no elevation, i.e., (ϕk , θ) := ( kπ4 , 0) for k = 0, . . . , 7 . 
For binaural auditory modeling, we use the HRTFs at 1m 
of distance between source and receiver measured with a 
KEMAR manikin (type 45BA) at the anechoic chamber 
of the TU Berlin [48].

3.4 � Audio‑visual 3D scene generation
We synthetically create mono mixtures, 3D scenes, and 
the corresponding binaural version to train the model in 
a supervised fashion.

For each instance, we randomly select N sources and 
N angular positions with N chosen uniformly between 1 
and 3. The binaural mixture, which serves as supervision, 
is created following Eq. 2. First, we select 3-s length bin-
aural signals for each sound source in the mix based on 
its angular position, and then, we sum all selected binau-
ral signals to create the binaural mixture.

For the 3D scene, we first select individual musician’s 
point clouds corresponding to these sources. Then, musi-
cian point clouds are located at their corresponding 
angular position in a random distance ranging from 1 to 
3 m from the listener’s head in the 3D space. Finally, all N 
musician point clouds are merged to create a single 3D 
point cloud scene. Note that we generate binaural ver-
sions using HRTFs computed at 1-m distance from the 
listener’s head but locate the sources in a distance ranging 
from 1 to 3 m. This assumption is based on the fact that 
distance has a smaller influence on the shape of HRTFs, 
for source-receiver distances greater than 1m [49].

During the training of the model, each individual musi-
cian point cloud is independently augmented in both 
coordinates and color. We randomly shear and translate 
the coordinates of each musician in the scene. Shearing 
is applied along all axes and the shear elements are sam-
pled from a Normal distribution N (0, 0.12) . Translation 
is applied along the stature direction and the translation 
offset is sampled from N (0, 0.22).

Regarding color, we distort the brightness and inten-
sity of each sound source in the scene. Specifically, we 
apply color distortion to each point via adding Gaussian 
noise sampled from N (0, 0.052) on each rgb color chan-
nel. We also alter color value and color saturation with 
random amounts uniformly sampled ranging from −0.2 
to 0.2 and −0.15 to 0.15, respectively. Figure 3 illustrates 
the different augmentation operations applied. After aug-
mentation, each scene is represented as a sparse tensor 
by discretizing the point cloud coordinates using a voxel 
size of 0.02 m. We select a small voxel size as it has been 
shown to work better than bigger ones for several 3D vis-
ual tasks [35].
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3.5 � Implementation details
Initially, we pretrain the vision network to facilitate the 
future learning process. Pretraining is done on the 3D 
object classification task modelnet40 [50]. Since mod-
elnet40 consists of 3D CAD models, we sample point 
clouds from the mesh surface of the objects shapes. 
For the pretraining, we also discretize the coordinates 
setting the voxel size to 0.02 m. Then, Points2Sound 
vision and audio networks are jointly trained for 120k 
iterations using the Adam [51] optimizer. We use a 
batch size of 40 samples and we set the learning rate 
to 1× 10−4 . We select the weights corresponding to 
the lowest validation loss after the training process. 

Training and testing are conducted on a single Titan 
RTX GPU. The training stage takes about 72 h while 
the inference takes 0.115 s to binauralize 10 s of 
mono audio (value averaged from 300 samples). We 
use the Minkowski Engine [35] for the sparse tensor 
operations and PyTorch [41] for the other operations 
required.

4 � Results
4.1 � Evaluation metrics
As in previous work [31], we measure the quality of the 
predicted binaural audio assessing the short-time Fourier 
transform (STFT) Distance. Using the STFT Distance, 
we assess how similar the frequency components of each 
predicted binaural channel are to the ground truth. STFT 
Distance ( dSTFT ) between a binaural signal sb and its esti-
mate ŝb is defined as:

where � · �2 is the L2 norm and STFT(· ) is the short-time 
Fourier transform. The STFT is computed using a Hann 
window of 23 ms and a hop length of 10 ms.

We also assess the quality of the predicted binaural 
audio using the Envelope Distance. The Envelope Dis-
tance operates in the time domain and is intended to 
capture the perceptual similarity between two binaural 
signals in a better way than directly computing the loss 
between its waveform samples [31]. Envelope Distance 
( dENV ) between a binaural signal sb and its estimate ŝb is 
defined as:

where E[s(t)] corresponds to the envelope of the signal 
s(t). The envelope is given by the magnitude of the ana-
lytical signal computed using the Hilbert transform.

Note that we report the performance depending on the 
number of sources ( N = 1, 2, 3 ), based on the average 
of the evaluation metrics. Average values for any num-
ber of sources are given by dENV  and dSTFT . Also, before 
computing the distances, the predicted and the ground 
truth signals are normalized according to their maximum 
absolute value.

4.2 � Baselines
We use two baselines to assess the quality of the pre-
dicted binaural versions:

Rotated‑Visual  Rotated-Visual baseline assesses the 
performance of Points2Sound ( Lfull ) when wrong visual 

(8)
dSTFT =�STFT(sLb(t))− STFT(ŝLb(t))�2

+ �STFT(sRb (t))− STFT(ŝRb (t))�2

(9)
dENV =�E[sLb(t)] − E[ŝLb(t)]�2

+ �E[sRb (t)] − E[ŝRb (t)]�2

Fig. 3  Illustration of the augmentation operations applied to a 3D 
point cloud scene. a Original scene. b Color augmentations applied 
to the original scene. Color augmentations include modifying 
the brightness and intensity of the sound sources as well as 
distort the color of each point using Gaussian noise. c Coordinate 
augmentations applied to the original scene. Coordinate 
augmentations include random shearing along all axes and random 
translation along the stature direction
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information is provided. To this end, during testing, we 
rotate the 3D scene by π/2 in the horizontal plane of the 
listener’s head.

Mono‑Mono  Mono-Mono baseline simply copies the 
mono input audio to both binaural predicted channels.

A quantitative comparison with a similar method for 
mono to binaural synthesis using visual information is 
provided in the Appendix.

4.3 � Evaluation
For evaluation, we use 504 audio-visual 3D scenes with 
N = 1, 2, 3 sound sources. Audio-visual 3D scenes are 
generated using the test data set and following the pro-
cedure explained in Section  3.4. During the evaluation, 
augmentation operations are not applied and 10-s audio 
clips are selected.

Points2Sound input audio  We consider three different 
types of mono mixture input signals for Points2Sound. 
Table 1 shows quantitative results of Point2Sound for the 
different types of mono mixture signals and number of 
sources.

First, we consider true mono mixture signals which 
come from the audio dataset, detailed in 3.3.2, where 
no HRTFs have been applied. In this case, Points-
2Sound improvement over the baselines is notable. 

This is especially observed in the dSTFT metric, where 
the Mono-Mono baseline achieves 26.626 while Points-
2Sound achieves 6.340. Despite the improvement, the 
binaural predictions are degraded and contain time-fre-
quency artifacts that change the timbre characteristics of 
the original sound.

Second, we consider mono mixture signals which con-
tain only the left binaural channel, i.e., sm = sLb . Note that 
in this case, ITDs are not preserved in the mono mixture 
and the network has to shift differently between left and 
right channels in the binaural prediction. Results show 
that Points2Sound improves the evaluation metrics for all 
baselines especially when few sources are present. When 
N = 1 source, Points2Sound achieves a dENV of 0.054 and 
a dSTFT of 0.636, as opposed to 0.165 and 7.610 achieved 
by the Rotated-Visual baseline. It is important to remark 
that in comparison to the true mono input signal, the 
absolute values in dSTFT show how much information is 
given to the model when the HRTFs are already applied 
in the mono mixture.

Third, following previous work [5–8], we consider 
mono mixture signals represented as the sum of the two 
spatial channels, i.e., sm = sLb + sRb  . In this case, the mix-
ing of the channels creates a mono signal that loses spa-
tial properties. But, the resultant mono signal preserves 
the correct ITDs from the binaural version. Results 
show that Point2Sound achieves the best results using 
this mono representation with a dENV  of 0.095 and a 
dSTFT of 1.686. Note that the obtained quantitative 
results are similar to the ones achieved using the above 

Table 1  Quantitative results of baselines and Points2Sound considering different mono input audio. For each method, we use rgb-
depth 3D point cloud attributes and report the performance depending on the number of sources ( N = 1, 2, 3 ), based on the average 
of the evaluation metrics. Average values for any number of sources are given bydENVanddSTFT

The lowest errors are highlighted using bold font

dENV ↓ dSTFT ↓ dENV ↓ dSTFT ↓

1 2 3 1 2 3

sm(true mono)

   Mono-Mono 0.387 0.403 0.388 26.719 26.414 26.747 0.392 26.626

   Rotated-Visual 0.232 0.285 0.305 9.002 10.588 12.016 0.274 10.535

   Points2Sound ( Lfull) 0.173 0.248 0.280 3.297 6.645 9.080 0.233 6.340

sm = s
L

b

   Mono-Mono 0.148 0.155 0.159 7.472 6.997 6.951 0.154 7.14

   Rotated-Visual 0.165 0.166 0.165 7.610 6.808 6.345 0.165 6.921

   Points2Sound ( Lfull) 0.054 0.103 0.130 0.636 1.820 2.604 0.095 1.686

sm = s
L

b
+ s

R

b

   Mono-Mono 0.142 0.166 0.178 4.046 4.112 4.058 0.162 4.072

   Rotated-Visual 0.166 0.192 0.209 5.663 5.918 6.031 0.189 5.870

   Points2Sound ( Lfull) 0.015 0.073 0.114 0.099 0.762 1.521 0.067 0.794
   Points2Sound ( Lfull ) (only-depth) 0.016 0.080 0.122 0.082 0.885 1.736 0.072 0.901

   Points2Sound ( Ldiff) 0.015 0.090 0.125 0.153 1.205 1.832 0.076 1.063
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approach, where mono mixture signals are represented 
as sm = sLb.

For the following, when we refer to Points2Sound, we 
assume it has been trained using mono mixture signals 
represented as sm = sLb + sRb.

3D point cloud attributes  We evaluate how 3D point 
cloud attributes affect the binaural audio synthesis. 
Accordingly, we consider two types of 3D point cloud 
scenes: when 3D point cloud scenes consist of depth-
only data and when 3D point cloud scenes consist of rgb-
depth data. We use the term “only-depth” in Table  1 to 
report the performance when 3D point cloud scenes con-
sist of depth-only data. Otherwise, we report the perfor-
mance when 3D point cloud scenes consist of rgb-depth 
data.

We observe that Points2Sound benefits from the rgb 
information especially when multiple sound sources are 
present. For example with N = 3 sources, Points2Sound 
using rgb-depth features achieves a dENV of 0.114 and a 
dSTFT of 1.521, as opposed to 0.122 and 1.736 achieved 
by only depth features. But with N = 1 source, Points-
2Sound using depth features slightly outperform rgb-
depth features, providing a dSTFT of 0.082 and a dENV of 
0.016, as opposed to 0.099 and 0.015 We suspect that 
with a single source, depth features already provide 
straight information about the position of the source 
for accurate binaural synthesis. However, when multiple 
sources are present, rgb-depth features better distinguish 
each source which facilitates the binaural synthesis of the 
audio network. Informal listening corroborates that rgb-
depth features help the model to recognize and locate 
multiple sources, as it provides more stable auditory 
images of the sound sources for the whole 10-s clips.

Number of sources in the 3D scene  We are also inter-
ested in evaluating the quality of the predicted binaural 
audio depending on the number of sound sources present 
in the 3D scene. We observe that when N = 1 sources, 
Points2Sound provides perceptually convincing binaural 
predictions with a consistent performance across almost 
all examples.

When N = 2 sources, informal listening reveals that 
binaural audio predictions are convincing especially 
when the sources are located at the same side of the 
listener’s head. Quantitative results show that Points-
2Sound using rgb-depth features achieves a dENV of 
0.044 and a dSTFT of 0.284 when both sources are in the 
same side and a dENV of 0.084 and a dSTFT of 0.944 for 
other source position configurations. We also observe 

that in some cases, Points2Sound has difficulties when 
one of the two sources is located in front or behind 
the listener’s head. This results in binaural predictions 
where the auditory image of the front/back source is 
not stable for the whole 10-s clip.

When N=3 sources, Points2Sound has difficulties to 
provide stable auditory images for every sound source 
for the whole 10-s clip.

Effect of the room  We evaluate how Points2Sound 
performs under reverberant room conditions. To this 
end, we use binaural room impulse responses (BRIRs) 
to generate two test sets. Note that Points2Sound is 
trained using HRTFs measured in an anechoic room. 
The first test set is generated using the BRIRs meas-
ured in the studio room Calypso at TU Berlin [52]. 
The Calypso room has a volume of 83 m3 and a rever-
beration time RT60 of 0.17 s at a frequency of 1 kHz. 
The second test set is generated using the BRIRs 
measured in the meeting room Spirit at TU Berlin 
[53]. The Spirit room has a rectangular shape with an 
estimated reverberation time RT60 of 0.5 s. In both 
rooms, BRIRs were measured using a KEMAR mani-
kin (type 45BA) and a loudspeaker (Genelec 8250A) 
placed in front of the manikin at 2 m of distance. As 
the head movements of the manikins were measured 
from − π/2 to π/2 , we simulate the binaural versions 
at the following discrete set of angular positions in the 
horizontal plane with no elevation (ϕk , θ) := ( kπ4 , 0) 
for k = −2, . . . , 2 . Finally, 504 audio-visual 3D scenes 
with N = 1, 2, 3 are generated using the same proce-
dure explained in Section 3.4. Figure 4 shows a visual 
comparison of the performance of Points2Sound for 
different room acoustic conditions. The results are 
reported for a different number of sources using rgb-
depth point cloud features. We observe that Points-
2Sound performance decreases as the testing of acous-
tic conditions diverge from the anechoic training. In 
this case, better binaural predictions are achieved in 
the room Calypso with a RT60 of 0.17 s as opposed 
to predictions in the room Spirit with a RT60 of 0.5 s. 
It is in high reverberant rooms where it becomes evi-
dent that Points2Sound has not been trained to model 
room effects such as reflections, especially for the 
low number of sources in the scene. For example with 
N = 1 sources, Points2Sound achieves an average of 
dSTFT of 4.491 in the Spirit room in contrast with 1.081 
achieved in the Calypso room. Points2Sound perfor-
mance in the dry room, i.e., the Calypso room, is closer 
to the anechoic performance, in particular when mul-
tiple sound sources are present. With N = 3 sources, 
Points2Sound achieves an average of dSTFT 2.180 in 
the Calypso room and 1.521 in the anechoic setting. 
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This suggests that Points2Sound potential applicability 
should consider dry rooms that resemble the anechoic 
training conditions.

Points2Sound loss function. We analyze Points2Sound 
performance depending on the learning objective. The ini-
tial proposed learning objective, referred to as Lfull , opti-
mizes the parameters of the model to reduce the L1 loss 
between the estimated binaural ŝbL,R and the ground truth 
binaural sL,Rb  , i.e.

Note that in this case, Points2Sound predicts the full 
binaural signal, i.e., predicts both left and right binaural 
channels. Several methods in the literature propose to 
optimize the models by predicting the difference of the 
two binaural channels [5, 7]. To this end, we consider 
another loss function for Points2Sound, i.e., Ldiff , which 
optimizes the parameters to reduce the L1 loss between 
the estimated binaural difference channels ŝbdiff and the 
ground truth binaural difference channels sdiffb  , i. e.

(10)Lfull =

∥

∥

∥
sL,Rb − ŝb

L,R
∥

∥

∥

Fig. 4  Envelope Distance ( dENV ) and STFT Distance ( dSTFT ) of Points2Sound ( Lfull ), trained in anechoic conditions, for different rooms and number 
of sources in the 3D scene. The results are reported using rgb-depth point cloud features. For each number of sources, the box extension shows the 
first and third quartile of the data with a line at the median. The whiskers extending from the box show the range of the data
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where sdiffb (t) = sLb − sRb . Note that when using Ldiff , 
Point2Sound is forced to learn the differences between 
the left and right binaural channels and predicts a one-
channel signal ŝbdiff . Then, considering the mono signal 
represented as sm = sLb + sRb , both predicted binaural 
channels are recovered as follows:

Results in Table 1 show that Points2Sound benefits from 
directly predicting the binaural signal using the Lfull loss 
function as opposed to predicting the difference between 
binaural channels with the Ldiff loss function. Using rgb-
depth point cloud features, Points2Sound ( Lfull ) achieves 
a dENV  of 0.067 and a dSTFT of 0.794 while Points2Sound 
( Ldiff ) achieves 0.076 and 1.063, respectively. The poor 
performance obtained with the rotated-visual baseline 
indicates that Points2Sound strongly relies on the 3D 
scene to synthesize binaural audio and incorrect predic-
tions are expected when using wrong visual information. 
In the following, we refer to Points2Sound assuming it 
has been trained using the Lfull loss function.

4.4 � Listening examples
We provide a Supplementary video with four listening 
examples where Points2Sound is applied to real-world 
data we record from expert musicians. We consider 
four challenging audio-visual scenes of N = 2 sources 
performing simultaneously in the same room. Specifi-
cally, two audio-visual scenes contain guitar and violin 
as sound sources while the other two contain doublebass 
and violin. The recorded audio fragments cover a vari-
ety of music styles (classical and jazz), tempi (vivace and 
lento), and dynamics (forte and piano). The 3D scenes 
of musicians are captured using Azure Kinect DK cam-
eras while mono audio is captured using a Google Pixel 
4 smartphone at a static position in the middle of the 
room. For each scene, the video shows the raw data 
first and then demonstrates the binaural predictions of 
Points2Sound. Despite the discrepancy between training 
data and real-world scenarios, the binaural predictions 
of Points2Sound show promising extrapolation ability.

5 � Discussion
The work presented in this paper indicates the poten-
tial of using 3D visual information to guide multi-modal 
deep learning models for the synthesis of binaural 

(11)Ldiff =

∥

∥

∥
sdiffb − ŝb

diff
∥

∥

∥

(12)ŝb
L =

(

sm + ŝb
diff

)

/2, ŝb
R =

(

sm − ŝb
diff

)

/2

audio from mono audio. By using 3D point clouds as 
visual information, the vision network has the ability to 
extract information about the 3D positions between the 
receiver and the sound sources in a scene to guide the 
binaural synthesis. By using 3D sparse convolutions, the 
network learns the correspondence between 3D struc-
tures found in local regions of the 3D space and audio 
characteristics.

When Points2Sound is trained using true mono sig-
nals that do not contain HRTF information, our pro-
posed method introduces time-frequency artifacts that 
lead to degraded binaural predictions. This suggests 
that a significant amount of Points2Sound’s capacity is 
needed to model the HRTF information. As a result, 
the model has more difficulties to synthesize accurate 
binaural sound. Considering one of the two binaural 
channels as input mono, i.e.,  sm = sLb , Points2Sound 
achieves similar quantitative results as when consid-
ering the mono audio as the sum of the two binaural 
channels, i.e.,  sm = sLb + sRb  . Interestingly, the model 
trained using the sum of the two binaural channels as 
mono input provides encouraging extrapolation results 
when applied to real mono recordings, as demonstrated 
by the provided sound examples.

Results suggest that waveform-based approaches can 
provide convincing performance for the task of visually 
informed spatial audio generation without the need to 
rely on hand-crafted spectrograms as input. In addition, 
by operating in the waveform domain, our model syn-
thesizes the signal directly. This is in contrast to spectro-
gram-based models which predict a mask to overcome 
the difficulties of directly predicting the spectrum, due to 
the large dynamic range of STFTs [5–8].

Our proposed model benefits from predicting the full 
binaural signal as opposed to the difference between 
binaural channels. This might be of relevance for other 
applications where visually informed models operating in 
the waveform domain are used to generate spatial audio.

Our proposed model benefits from using visual fea-
tures extracted from rgb-depth point clouds to improve 
the binaural synthesis when multiple sources are pre-
sent, in comparison with features extracted from 
depth-only point clouds. However, the fact that Points-
2Sound can work with only-depth information may be 
beneficial in cases of low ambient light, where RGB 
sensors would fail to capture the scene, in contrast to 
LiDAR sensors that are still able to capture depth infor-
mation. As mentioned above, we observe that in some 
cases Points2Sound predicts binaural versions where 
the auditory image of the sources is not stable. As this 
effect is mainly observed for cases with the number of 
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sources N > 1 , we suspect that this problem is related 
to the source separation capability of the audio net-
work. To further investigate this phenomenon, a sepa-
rate study on channel bleeding in source separation 
for different types of musical instruments would be 
required.

After analyzing the performance of Points2Sound 
under reverberant conditions, it is shown that the 
method could be applied to dry rooms that resemble 
the anechoic training conditions. However, a decreased 
performance is expected when the room acoustics con-
ditions diverge from the anechoic training. The perfor-
mance of Points2Sound in highly reverberant rooms, 
after retraining or fine-tuning the model using binaural 
room impulse responses that contain the influence of 
the room, remains to be studied.

6 � Conclusion and future work
This work introduced Points2Sound, a multi-modal deep 
learning model capable of generating a binaural version 
from mono audio using a 3D point cloud scene as guid-
ance. Points2Sound shows that 3D visual information 
can successfully guide the binaural synthesis while dem-
onstrating that waveform-based approaches can provide 
convincing performance for the task of visually informed 
spatial audio generation.

Such models see increased interest for the generation 
of spatial audio in immersive applications. Recent port-
able devices, like smartphones, have the ability to cap-
ture 3D visual data from the environment using LiDAR 
or rgb-depth cameras. However, such devices have lim-
ited capabilities to record spatial audio from the sound 
sources. Having a recorded rgb-depth environment and 
its corresponding mono audio, our approach is a step 
towards synthesizing proper acoustic stimuli for the 
users navigating the virtual environment depending on 
their location and head position.

Future work could involve adding loudness into the 
learning process via predicting a reference sound level for 
each source. This would allow to infer also sound attenu-
ation in 3D dynamic scenes.

Appendix
In the appendix, we show a quantitative comparison of 
Points2Sound ( Lfull ) with a recent spectrogram-based 
Mono2Binaural model from Gao et al.  [7]. Mono2Bin-
aural was designed to generate a binaural version from 

mono audio at 16 kHz using 2D visual information as 
guidance. In this case, we adapt it for audio recordings 
sampled at 44.1 kHz and 3D visual information as guid-
ance. The original Mono2Binaural extracts visual fea-
tures using a Resnet18 with dense convolutions while 
audio features and audio-visual analysis is performed 
using a U-Net. We use the same sparse Resnet18 from 
Points2Sound to extract the visual feature from the 
3D scene. In addition, in order to resemble its origi-
nal model, the last Resnet18 3×3×3 sparse convolu-
tion is implemented with K = 512 channels. Then, as in 
Mono2Binaural, the visual feature vector is replicated 
to match the spatial feature dimensions of the U-Net 
bottleneck and concatenated along the channel dimen-
sion. During training, we select 0.63-s clips of audio 
and compute the STFT using a Hann window of 23 ms 
and a hop length of 10 ms. Mono2Binaural considers 
mono inputs represented as sm = sLb + sRb  and the learn-
ing objective is to predict the complex-valued spectro-
gram of the difference of the two binaural channels. 
Then, both predicted binaural channels are recovered 
as follows:

where sdiffb (t) = sLb − sRb . We use the Adam optimizer and 
minimize the mean squared error loss function. During 
testing, Mono2Binaural uses a sliding window with a hop 
size of 50 ms to binauralize the 10-s audio clips.

Figure  5 shows a visual comparison of the perfor-
mance of Points2Sound and Mono2Binaural for different 
sources when rgb-depth point cloud features are used. 
Table 2 shows quantitative results of both learning meth-
ods for different types of 3D point cloud attributes and 
number of sources.

In addition, we provide a second Supplementary 
video with listening examples where three audio-visual 
scenes from the test set with N = 2 sources are pre-
sent. For each listening example, we first show the 3D 
point cloud scene and then provide the input mono 
audio, the Points2Sound and Mono2Binaural predicted 
binaural audios, and the ground truth binaural audio. 
The audio-visual scenes are selected to contain sound 
sources that are not located in the same side of the lis-
tener’s head. Also, the scenes contain a variety of sound 
sources which play in the same frequency range in some 
fragments.

(13)ŝb
L =

(

sm + ŝb
diff

)

/2, ŝb
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Fig. 5  Envelope Distance ( dENV ) and STFT Distance ( dSTFT ) of Points2Sound using Lfull loss function and Mono2Binaural for different numbers of 
sources in the 3D scene. The results are reported using rgb-depth point cloud features. For each number of sources, the box extension shows the 
first and third quartile of the data with a line at the median. The whiskers extending from the box show the range of the data

Table 2  Quantitative results of Points2Sound and Mono2Binaural. For each method, we report the performance depending on the 
number of sources ( N = 1, 2, 3 ) and the type of 3D point cloud attributes (depth or rgb-depth), based on the average of the evaluation 
metrics. Average values for any number of sources are given bydENVanddSTFT

The lowest errors are highlighted using bold font

Visual features dENV ↓ dSTFT ↓ dENV ↓ dSTFT ↓

1 2 3 1 2 3

Mono2Binaural [7] Depth 0.038 0.101 0.132 0.192 1.300 2.029 0.090 1.174

rgb-depth 0.036 0.094 0.126 0.213 1.142 1.858 0.085 1.071

Points2Sound Depth 0.016 0.080 0.122 0.082 0.885 1.736 0.072 0.901

rgb-depth 0.015 0.073 0.114 0.099 0.762 1.521 0.067 0.794
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