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Abstract 

Most music listeners have an intuitive understanding of the notion of rhythm complexity. Musicologists and scientists, 
however, have long sought objective ways to measure and model such a distinctively perceptual attribute of music. 
Whereas previous research has mainly focused on monophonic patterns, this article presents a novel perceptually-
informed rhythm complexity measure specifically designed for polyphonic rhythms, i.e., patterns in which multiple 
simultaneous voices cooperate toward creating a coherent musical phrase. We focus on drum rhythms relating to 
the Western musical tradition and validate the proposed measure through a perceptual test where users were asked 
to rate the complexity of real-life drumming performances. Hence, we propose a latent vector model for rhythm 
complexity based on a recurrent variational autoencoder tasked with learning the complexity of input samples and 
embedding it along one latent dimension. Aided by an auxiliary adversarial loss term promoting disentanglement, 
this effectively regularizes the latent space, thus enabling explicit control over the complexity of newly generated 
patterns. Trained on a large corpus of MIDI files of polyphonic drum recordings, the proposed method proved capable 
of generating coherent and realistic samples at the desired complexity value. In our experiments, output and target 
complexities show a high correlation, and the latent space appears interpretable and continuously navigable. On the 
one hand, this model can readily contribute to a wide range of creative applications, including, for instance, assisted 
music composition and automatic music generation. On the other hand, it brings us one step closer toward achieving 
the ambitious goal of equipping machines with a human-like understanding of perceptual features of music.
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1  Introduction
Researchers in psychology, neuroscience, musicology, 
and engineering have long tried to find quantitative 
mathematical models of perceptual attributes of music. 
However, human perception can hardly be systematized 
into a fixed set of disjoint categories. In fact, music simi-
larity, expressiveness, emotion, and genre, to name a few, 
are elusive terms that defy a shared and unambiguous 

definition  [1–3]. Furthermore, seeking a general con-
sensus might be considered an ill-defined problem, as 
these aspects of music fruition are distinctively subjec-
tive and are strongly dependent on one’s personal expe-
rience, music education, background, and culture  [4–6]. 
Our perception of a musical performance depends on 
the complex interaction between multiple interrelated 
conceptual layers, and not a single aspect can be gauged 
in a vacuum: melody, harmony, rhythm, loudness, tim-
bre, time signature, and tempo all play a joint role in the 
holistic perception of music and may affect how a musi-
cal piece is experienced  [7]. Nevertheless, while an all-
encompassing model for music perception may seem a 
long way off, researchers have compellingly resorted to a 
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divide-and-conquer strategy to address such a multifac-
eted problem.

This work focuses on the long-studied aspect of rhythm 
complexity. Over the past few decades, numerous math-
ematical models have been proposed in the literature [8–
17], all aimed at assessing the complexity of a pattern of 
rhythmic events. These algorithms ultimately provide an 
explicit mapping from a symbolic representation of the 
rhythm to a scalar value meant to quantify the degree 
of complexity that a human listener would perceive. 
These methods, however, are only able to partially model 
rhythm complexity. Indeed, while most listeners are able 
to assess the complexity of a given musical piece, an 
experienced musician writing or performing music can 
make use of a controlled degree of complexity to great 
artistic effect.

Data-driven methods have recently proven to be a 
powerful and expressive tool for multimedia genera-
tion. For example, deep learning techniques have been 
successfully applied to image  [18–20], text  [21–23], 
speech  [24–26], and music generation  [27–32]. How-
ever, the mappings provided by deep generative models 
for musical applications are typically implicit and lack 
interpetability of the underlying generative factors. In 
fact, they often fall short on two crucial aspects: control-
lability and interactivity [33]. Nonetheless, several attrib-
ute-controlled methods have been recently proposed in 
the literature. The hierarchical architecture of Music-
VAE  [29], other than achieving state-of-the-art perfor-
mance in modeling long-term musical sequences, enables 
latent vector arithmetic manipulation to produce new 
samples with the desired characteristics. Following the 
work of [29], Roberts et al. [28] explored possible interac-
tive applications of latent morphing via the interpolation 
of up to four melodies or drum excerpts. In [31], Gillick 
et  al.  introduced GrooVAE, a seq2seq recurrent vari-
ational information bottleneck model capable of generat-
ing expressive drums performances. The model, trained 
using Groove MIDI Dataset, was designed to tackle sev-
eral drum-related tasks, including humanization, groove 
transfer, infilling, and translating tapping into to full 
drum patterns. Furthermore, Engel et  al.  [34] showed 
that it is possible to learn a-posteriori latent constraints 
that enable the use of unconditional models to generate 
outputs with the desired attributes. Hadjeres et  al.  [35] 
proposed a novel geodesic latent space regularization 
to control continuous or discrete attributes, such as the 
number of musical notes to be played, and applied it to 
the monophonic soprano parts of J.S.  Bach chorales. 
In  [36], Brunner et  al.  presented a recurrent variational 
autoencoder complemented with a softmax classifier 
that predicts the music style from the latent encoding of 
input symbolic representations extracted from MIDI; the 

authors thus performed style transfer between two music 
sequences by swapping the style codes. Tan and Herre-
mans [37] took inspiration from Fader Networks [38] and 
proposed a model that allows to continuously manipulate 
music attributes (such as arousal) by independent “slid-
ing faders.” This was achieved by learning separate latent 
spaces from which high-level attributes may be inferred 
from low-level representations via Gaussian Mixture 
VAEs  [39]. More recently, Pati and Lerch  [40] proposed 
a simple regularization method that monotonically 
embeds perceptual attributes of monophonic melodies, 
including rhythm complexity, in the latent space of a vari-
ational autoencoder. The authors have later investigated 
the impact of different latent space disentanglement 
methods on the music generation process of control-
lable models  [41]. Finally, it is worth mentioning that 
recent commercial products, such as Apple’s Logic Pro 
Drummer, offer some degree of control over the rhythm 
complexity of an automated polyphonic drumming 
performance.

Against the backdrop of such a rich literature cor-
pus, the contribution of this article is twofold. First, we 
propose a novel complexity measure that is specifically 
designed for drum patterns belonging to the Western 
musical tradition. To the best of our knowledge, this con-
stitutes the first attempt at designing a proper polyphonic 
rhythm complexity measure. We validate the proposed 
algorithm via a perceptual experiment conducted with 
human listeners and show a high degree of agreement 
between measured complexity and subjective evalua-
tions. Second, we present a latent vector model capable 
of learning a compact representation of drum patterns 
that enables fine-grained and explicit control over per-
ceptual attributes of the generated rhythms. Specifically, 
we encode the newly proposed complexity measure in 
the latent space of a recurrent variational autoencoder 
inspired by [29, 31] and modified to enable single-knob 
manipulation of the target attribute. The resulting model 
can generate new and realistic drum patterns at the 
desired degree of complexity and provides an interpreta-
ble and fully-navigable latent representation that appears 
topologically structured according to the chosen rhythm 
complexity measure.

The remainder of this article is organized as follows. In 
Section 2, we provide an overview of the relevant litera-
ture and existing techniques for measuring the rhythm 
complexity of monophonic patterns. In Section  3, we 
propose a novel polyphonic complexity measure. In Sec-
tion 4, we describe the dataset of drum patterns utilized 
in the present study. In Section 5, we provide the details 
of the listening test conducted to validate the proposed 
complexity measure and present the results. In Section 6, 
we outline the proposed latent rhythm complexity model. 
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In Section  7, we evaluate the performance of the pro-
posed model on the tasks of attribute-controlled drum 
pattern generation and output complexity manipulation. 
Finally, Section 8 concludes this work.

2 � Background on rhythm complexity
Over the years, several rhythm complexity measures 
have been proposed in the literature [42–44]. Rather than 
considering the music signal as a raw waveform, most of 
the existing methods relies on a intermediate symbolic 
representation of rhythm as that produced by an ideal 
onset detector [45]. For a given tatum1, it is customary to 
derive a discrete-time binary sequence of onsets distrib-
uted across a finite number of pulses. On this grid, ones 
correspond to onsets and zeros correspond to silence, as 
depicted in Fig. 1. A pulse refers to the smallest metrical 
unit meaningfully subdividing of the main beat and repre-
sent one of all the possible discrete-time locations within 
a binary pattern that can be assigned either one or zero. 
Therefore, a rhythm complexity measure can be thought 
of as a (nonlinear) function fp : {0, 1}M×N → R that, 
given the matrix representation of a polyphonic rhythm 
with N pulses and M voices, yields a real-valued scalar.

Many rhythm complexity measures have been based on 
the concept of syncopation  [8, 13–15, 47] i.e., the place-
ment of accents and stresses meant to disrupt the regular 
flow of rhythm. Others, such as [10, 12, 48], are measures 
of irregularity with respect to a uniform meter, and several 

rely on the statistical properties of inter-onset intervals [9, 
16, 42, 49]. Moreover, some authors have investigated 
entropy  [50], subpattern dependencies  [11], predictive 
coding [17], and the amount of data compression achiev-
able [12, 51] in order to quantify the complexity of a rhyth-
mic sequence. However, to the best of our knowledge, 
previous work almost entirely concerns monophonic 
patterns ( M = 1 ) and not polyphonic rhythms ( M > 1).

Notably, [52, 53] explore the adaptation of Toussaint’s 
metrical [13] and Longuet-Higgins and Lee [8] mono-
phonic complexity measures to the polyphonic case, 
respectively. In [52], rhythm complexity estimates are 
used to rank MIDI file in a database. In [53], complex-
ity measures are used to drive an interactive music sys-
tem. Crucially, however, [52, 53] consider each drum-kit 
voice independently of the others before pooling the 
results, thus disregarding the interaction between voices. 
Furthermore, the authors provide no validation of the 
proposed methods against the results of a subjective 
evaluation campaign conducted with human listeners.

3 � A novel rhythm complexity measure 
for polyphonic drum patterns

Drawing from the rich literature discussed in Section 2, the 
simplest design for a proper polyphonic complexity measure 
fp would first entail computing the complexity of each 
voice xm in a M-voices pattern x = [x1[n], . . . , xM[n]]⊤ 
separately from one another by using one of the many 
state-of-the-art monophonic rhythm complexity meas-
ures f (·) . Then, the overall complexity can be obtained as 
the linear combination

Fig. 1  Various representations of the same polyphonic drum pattern: raw audio waveform (top), drum sheet music (center), and symbolic binary 
representation (bottom)

1  In this context, tatum refers to “the smallest time interval between succes-
sive notes in a rhythmic phrase” [46].
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However, such a naive approach is bound to provide a 
poor complexity model as it does not take into considera-
tion the interplay between voices that are instead meant 
to complement each other.

Instead, we propose to compute the linear combina-
tion of the monophonic complexity of groups of voices 
selected from those that are often found to create inter-
locked rhythmic phrases in the drumming style typical of 
contemporary Western music. Indeed, our assumption 
is that grouping multiple voices together allows to better 
capture the perceptual rhythm complexity of polyphonic 
patterns, as it is arguably determined by the joint inter-
action of multiple sources that play a certain role only in 
relation to others.

Given a subset of binary voices x1[n], . . . , xL[n] out 
of the M voices in x ∈ {0, 1}M×N , the kth group can be 
defined as

Namely, gk [n] = 1 if and only if at least one of the L 
grouped voices had an onset at pulse  n. Otherwise, 
gk [n] = 0 . Applying (2) to all K groups, the given pat-
tern x yields an augmented matrix representation 
g = [g1[n], . . . , gK [n]]

⊤ of size K × N  , where possibly 
K ≫ M . Hence, the proposed polyphonic complexity 
measure is given by

where the weights wk can be either, e.g, set to 1/K (yield-
ing a simple average) or determined via (possibly non-
negative) linear regression against the subjective results 
of a large-scale listening test.

We empirically determine the grouping reported in 
Table 1. Most notably, bass and snare drums are merged 
into a single group ( k = 1 ). Together, they constitute the 
backbone of contemporary Western drumming practices, 
especially in the rock and pop genre. Therefore, their 
relationship cannot be wholly conceptualized if they are 
considered disjointedly. Likewise, high and low toms are 
merged into group k = 6 . For their part, closed and open 
hi-hat appear by themselves in respective groups ( k = 2 
and k = 3 ), and we include an auxiliary group ( k = 4 ) 
to account for those rhythms in which the hi-hat fol-
low a regular pattern regardless of the pedal action. For 
instance, let us consider a 1-bar pattern where open and 
closed hi-hat alternate as depicted in Fig.  2. The closed 

(1)fp(x) :=

M

m=1

wmf (xm[n]).

(2)gk [n] :=

L
∨

ℓ=1

xℓ[n]

(3)fp(g) :=

K
∑

k=1

wkf (gk [n])

hi-hat ( k = 2 ) is always off-beat and thus is likely be 
assigned high complexity. However, the joint rhythm 
consists of a regular sequence of semiquavers thus mak-
ing up for a rather easy-to-conceptualize rhythm. Simi-
larly, an auxiliary group ( k = 9 ) is introduced for crash 
and ride cymbals, as the former is often used to accent 
patterns played mostly on the latter. Ultimately, by meas-
uring the complexity of joint patterns and individual 
voices, we expect to regularize the overall complexity 
estimate accounting for both regularity and novelty.

In this study, in order to quantify the complexity of 
each group, we adopt Toussaint’s metrical complexity 
measure  [13]. For completeness, a detailed presentation 
of [13] is given in the Appendix. However, the proposed 
method does not intrinsically rely on any particular 
choice of f (·) , and a different monophonic measure may 
be used for each group of voices independently of the 
others.

4 � Groove MIDI Dataset
Groove MIDI Dataset (GMD) was released by the 
authors of  [31] and contains 13.6 h of drums record-
ings performed by professional and amateur drummers 
on an electronic drum set. The dataset contains audio 
files, MIDI transcriptions, and metadata, including time 
signature and tempo expressed in ticks per quarter. 
Whereas the original recordings are of variable lengths, 
we limit our study to 2-bar scores. GMD comprises a 
total of 22619 2-bar scores, 97% of them being of time 
signature 4/4. Filtering out other time signatures yields a 
total of 21940 samples. The General MIDI standard for 
drum-kits provides an integer number between 1 and 
255 corresponding to each drum instrument. We apply 
the reduction strategy proposed in [29, 31] to map the 
22 drum classes included in GMD onto nine canonical 
voices: Bass drum (0), Snare drum (1), Closed Hi-Hat (2), 
Open Hi-Hat (3), High Floor Tom (4), Low-Mid Tom (5), 

Table 1  Proposed drum-kit voice groups gk [n] used for the 
computation of rhythm complexity as given in (3)

Group Voices

k = 1 Bass drum (0); Snare drum (1)

k = 2 Closed Hi-Hat (2)

k = 3 Open Hi-Hat (3)

k = 4 Closed Hi-Hat (2); Open Hi-Hat (3)

k = 5 High Floor Tom (4)

k = 6 Low-Mid Tom (5); High Tom (6)

k = 7 Ride Cymbal (7)

k = 8 Crash Cymbal (8)

k = 9 Ride Cymbal (7); Crash Cymbal (8)
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High Tom  (6), Ride Cymbal  (7), Crash Cymbal  (8). We 
assume a tatum corresponding to a sixteenth note, 
regardless of tempo. This yields a total of 32 pulses every 
two bars. Thus, we quantize every MIDI event to the 
closest pulse in order to produce a symbolic representa-
tion in the form of a real-valued matrix with M = 9 rows 
and N = 32 columns. Finally, we obtain a binary matrix 
by discarding the information regarding the velocity of 
each onset and replacing with ones all rhythmic events 
with non-zero velocity.

5 � Perceptual evaluation
5.1 � Experimental setup
The polyphonic complexity measure proposed in Sec-
tion 3 is validated via a listening test involving eight MIDI 
patterns sampled from GMD. The evaluation corpus was 
obtained by synthesizing audio clips from MIDI files in 
order to control the quantization and velocity of the test 
patterns. In fact, the audio recordings included in GMD 
contain agogic and dynamic accents which are tradition-
ally excluded from the evaluation of rhythm complexity. 
First, we quantized every onset to the nearest semiqua-
ver, and the corresponding velocity values were all set to 
80. Then, the resulting patterns were repeated four times 
to create 8-bar sequences, synthesized to wav files using 
a library of realistic drum samples distributed with Able-
ton Live 9 Lite, and finally presented to human listeners 
via an online form. Akin to the five-point category-judg-
ment scales of the Absolute Category Rating method 
included in the ITU-T Recommendation P.808  [54], 
testers were asked to provide a subjective assessment of 
the perceived rhythm complexity on a scale of 1 (lowest 
complexity) to 5 (highest complexity). The eight test sam-
ples were selected as follows. First, we filtered all three 
folds of GMD to gather a pool of candidate patterns. 
Specifically, we discarded all rhythms having either less 
than three voices (to make sure to evaluate proper poly-
phonic patterns) or less than eight pulses where at least 
one onset is present (to exclude overly sparse temporal 
sequences). Then, in order to ensure an even represen-
tation across the whole range of complexity values, we 
evaluated (3) for every candidate pattern using uniform 
weights wk = 1 , k = 1, . . . ,K  . We selected eight uni-
formly spaced target complexity values by sampling the 
range between the minimum and maximum complexity 

thus obtained. Hence, we extracted the eight drum pat-
terns whose complexities were closest to the target ones. 
During the test, the order in which the patters were pre-
sented to the user was randomized and the name of each 
file replaced with a string of random characters. In order 
to minimize experimenter-expectancy effect, no audio 
examples were provided to the subjects before the test. 
Indeed, manually selecting a number of clips that aligned 
with the authors’ a priori notion of rhythm complexity 
could have possibly led to confirmation bias. Instead, we 
opted for an experimental setup in which all test clips 
were presented in the same web page, and users were 
allowed to listen to all patterns and possibly modify pre-
vious assessments before submitting the final evaluation 
results. A total of 24 people took part in the experiment, 
mainly from a pool of university students and research-
ers from the Music and Acoustic Engineering program 
at Politecnico di Milano, Italy. All test subjects are thus 
expected to have some degree of familiarity with basic 
music theory concepts.

5.2 � Results
Figure  3 shows the correlation between the proposed 
rhythm complexity measure and the scores attributed 
to each pattern by the test subjects. Blue circles rep-
resent the average perceptual complexity assigned by 
the users to each of the eight drum patterns. Blue ver-
tical lines, instead, represent the standard deviation 
for each given sample. The red dashed line represents 
the linear regression model with complexity measures 
as covariates and average subjective assessments as 
dependent variables. Using a uniform weighting policy 
for all voice groups, the data show a Pearson linear 
correlation coefficient of 0.9541 and, correspondingly, 
a Spearman rank correlation coefficient of 0.9762, 
indicating a strong monotonic relationship. Further-
more, the simple linear model y = 0.034 fp(g)+ 1.35 
can fit the average user scores with a coefficient of 
determination of R2 ≈ 0.91.

As previously mentioned in Section  3, perceptually 
informed group weights w1, . . . ,wK  may be determined 
from the collected subjective assessments. Albeit the 
small sample size involved in the present experiment 
does not allow for a robust linear regression and it is 
likely to lead to overfitting, we empirically found that 

Fig. 2  Exemplary 1-bar hi-hat pattern. Taken by itself, the Closed Hi-Hat group ( k = 2 ) is characterized by high syncopation, all onsets being 
off-beat. Functionally, however, the combined pattern played on the hi-hat ( k = 4 ) is likely to be perceived as steady and regular
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setting w1 = 3 for the bass and snare drum group 
( k = 1 ) and w4 = w9 = 1/3 for the compound hi-hat 
( k = 4 ) and cymbals ( k = 9 ) groups leads to a Pearson 
coefficient of 0.983 corresponding to a linear model 
y = 0.033 f ′p(g)+ 0.89 with R2 ≈ 0.97.

The results presented in this section indicate a high 
degree of agreement between subjective assessments 
and the proposed complexity measure. Going forward, 
however, additional tests on curated datasets may be 
needed to confirm the applicability of the voice groups 
identified in Section 3 to genres such as jazz and heavy 
metal that are characterized by peculiar drumming 
techniques. These experiments are left for future work.

6 � Proposed attribute‑controlled drum patterns 
generation model

6.1 � Deep generative architecture
In this section, we present a new attribute-controlled 
generative model that enables fine-grained modeling of 
musical sequences conditioned on high-level features 
such as rhythm complexity. The deep generative model 
is based on the hierarchical recurrent β-VAE architecture 
of MusicVAE [29], and it is augmented with two auxiliary 
loss terms meant to regularize and disentangle the latent 
space, respectively.

As in  [31], the recurrent encoder qφ(z|x) comprises a 
stack of two bidirectional layers, each with 512 LSTM 
cells. The forward and backward hidden states obtained 
by processing an input sequence x ∈ {0, 1}M×N are con-
catenated into a single 1024-dimensional vector, before 
being fed to two parallel fully-connected layers. The 
first layer outputs the locations of the latent distribution 

µ ∈ R
H , where H = 256 . The second layer, equipped with 

a softplus activation function, yields the scale parameters 
σ ∈ R

H
≥0.

We implement a hierarchical LSTM decoder pθ (x|z) 
composed of a high-level conductor network and a bot-
tom-layer RNN decoder. Namely, both the conductor and 
the decoder are two-layer unidirectional LSTM networks 
with 256 hidden cells and tanh activations. The output layer 
of the conductor has size 128 and that of the decoder has 
M sigmoid units, as many as the number of drum voices.

The input sequence x is split into S = 8 non-overlap-
ping sections of size M × N/S . The conductor network, 
whose goal is to model the long-term character of the 
entire sequence, outputs S embedding vectors which are in 
turn used to initialize the hidden states of the lower-level 
decoder.

The latent code z ∈ R
H is randomly sampled from a 

multivariate Gaussian distribution p(z) parameterized by 
µ and σ . Then, it is passed through a fully-connected layer 
followed by a tanh activation function to compute the ini-
tial states of the conductor network. For each of the S seg-
ments, the 128-dimensional embedding vector yielded by 
the conductor is in turn passed through a shared fully con-
nected layer to initialize the hidden states of the lower-level 
decoder. The concatenation between the previous output 
and the current embedding vector serves as input for the 
decoder to produce the next section. The decoder autore-
gressively generates S sections that are thus concatenated 
into the complete output sequence.

As commonly done for β-VAEs, the base model is 
trained by minimizing the following objective [55]

Fig. 3  Correlation between the proposed rhythm complexity measure with uniform weights wk = 1, ∀k , and the average score assigned by 
human listeners to each of the eight drum patterns
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where DKL( · || · ) denotes the Kullback-Leibler divergence 
(KLD) and the real-valued parameter β < 1 favors recon-
struction quality over enforcing a standard normal distri-
bution in the latent space [21].

6.2 � Latent space regularization
The deep generative model described in Section  6.1, 
despite having proven able to produce coherent long-
term musical sequences, is unaware of the perceptual 
aspects of target rhythms. To incorporate this informa-
tion into our latent vector model, similarly to [36, 40, 56], 
we propose a multi-objective learning approach. Namely, 
we force the base model to jointly learn the rhythm 
complexity of input patterns along with minimizing the 
classic β-VAE loss function given in (4). Our goal is to 
regularize the latent space in a way that would allow for 
continuous navigation and semantic exploration of the 
learned model. This is achieved by including the following 
auxiliary loss function

where fp(g) is a polyphonic rhythm complexity measure 
such as the one described in Section 3, and zi ∈ R is ith 
element of the latent code z . This way, we are effectively 
constraining the ith latent space dimension to become 
topologically structured according to the behavior of the 
target perceptual measure. Hence, sampling latent codes 
along such dimension allows for the explicitly manipula-
tion the complexity of output patterns in a way close to 
human understanding.

(4)LVAE = E
[

log pθ (x|z)
]

+ βDKL

(

qφ(z|x) || p(z)
)

,

(5)Lreg = MSE(fp(g), zi),

Since the latent vectors are encouraged to follow a 
multivariate standard normal distribution N (0, I) by 
the KLD term in (4), we standardize the complexity val-
ues of training data by subtracting the sample mean and 
dividing by the standard deviation. This yields the zero-
mean and unit-variance complexity distribution shown in 
Fig. 4, which is compatible with being encoded into the 
ith univariate component of z . Finally, we use the training 
data statistics thus obtained to apply the same standardi-
zation at inference time.

6.3 � Latent space disentanglement
Having regularized zi as described in the previous sec-
tion, there are yet no guarantees that some information 
regarding rhythm complexity had been incorporated into 
other latent space dimensions. In fact, rhythm complexity 
is typically measured by gauging onset locations, which 
ultimately carry most of the same information the base 
model is trying to encode in the H latent dimensions. In 
particular, we would like the remaining H − 1 dimen-
sions of the latent space to be relatively invariant with 
respect to changes in input complexity. Indeed, explicit 
and interpretable control over the desired output behav-
ior becomes unfeasible when multiple latent variables 
are redundant and affect the same aspects of the overall 
rhythm complexity model. In the context of feature learn-
ing for generative applications, such a desirable property 
is often referred to as latent space disentanglement [57].

Notably, β-VAE was originally introduced to favor dis-
entanglement  [55]. However, this is mainly achieved for 
large values of β , as later observed in  [58]. Therefore, 

Fig. 4  Histogram of the proposed rhythm complexity measure evaluated on all 2-bar training patterns in GMD. Complexity values are standardized 
to obtain a distribution with zero mean and unit variance. For comparison, the probability density function of a standard normal distribution 
N (0, 1) is overlaid in red
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inspired by prior work on predictability minimization [59, 
60] and attribute manipulation by means of sliding faders [37, 
38, 40], we propose to augment the base model with an 
auxiliary adversarial loss term promoting latent space 
disentanglement. Let z⋆ ∈ R

H−1 be the vector of all 
remaining latent variables in z except for zi . We define an 
adversarial regressor f̂p(z⋆) that is tasked to estimate the 
input rhythm complexity fp(g) by minimizing the following 
loss functions

In order to reduce the amount of information regarding 
fp(g) that is embedded into z⋆ , we connect the encoder 
and the regressor via a gradient reversal layer (GRL) [60] 
that flips the sign of the gradients during backpropaga-
tion. Therefore, the encoder will learn a latent represen-
tation z⋆ that is minimally sensitive with respect to the 
input complexity as it is now trained adversarially with 
respect to the regressor.

In this study, we implement the adversarial regressor 
as a feed-forward neural network with two hidden layers 
with 128 units followed by ReLU activations and a linear 
output layer yielding a scalar value. The block diagram of 
the complete model is depicted in Fig. 5.

6.4 � Model training
The proposed latent vector model is optimized for 300 
epochs using Adam [61], a batch size of 128, and the fol-
lowing compound objective function

where α and γ are scalar weights for the attribute-regu-
larization and adversarial terms, respectively.

The learning rate is set to 10−3 and exponentially 
decreased to 10−5 with a decay rate of 0.99. We set the 
regularization weight α = 1 for the entire training. Con-
versely, β and γ are annealed during early training to let 

(6)Ladv = MSE(fp(g), f̂p(z⋆)).

(7)L := LVAE + αLreg + γ Ladv,

the model focus more on pattern reconstruction then 
on structuring the latent representation. Namely, we set 
β = 10−4 and γ = 10−6 for the first 40 epochs. Through-
out the following 250 epochs, β is linearly increased up to 
0.25 with a step of 10−3 per epoch, and γ is increased up 
to 0.05 with a step of 2 · 10−4 . Furthermore, we randomly 
apply teacher forcing on the recurrent decoder with a 
probability of 50%.

7 � Performance evaluation
In this section, we evaluate the proposed latent vector 
model on several attribute-controlled generation tasks. In 
Section 7.1, we discuss the effects of latent space regulari-
zation. In Section 7.2, we show that the proposed adver-
sarial component is effectively disentangling the latent 
representation. In Section 7.3, we investigate the capability 
of the proposed method to alter the rhythm complexity of 
input patterns in a controlled way. Finally, in Section 7.4, 
we test the model on the task of attribute-controlled gen-
eration from randomly sampled latent vectors.

7.1 � Latent space regularization
In Fig. 6, we depict the latent vectors obtained by encod-
ing GMD test data. For the sake of visualization, we only 
plot two latent dimensions, i.e., zi and zl . In this example, 
we regularize the first dimension, i.e., i = 0 , and choose 
l = 127 . The color assigned to each point represents the 
rhythm complexity measured on the respective input 
patterns using  (3): brighter colors correspond to higher 
complexity. The clearly noticeable color gradient indi-
cates that the complexity values have been monotonically 
encoded along the regularized dimension. Furthermore, 
the latent complexity distribution appears to be continu-
ously navigable from low to high values by traversing the 
latent space toward the positive direction of z0.

In Fig. 7, instead, the coloring is determined according 
to the rhythm complexity measured on the output pat-
terns generated by the decoder. Whereas the variational 

Fig. 5  Proposed latent vector model for attribute-controlled drum pattern generation
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decoding process appears to affect output measures, we 
may notice that the overall complexity distribution retain 
a high degree of agreement with that of the input data.

7.2 � Latent space disentanglement
The adversarial component introduced in Section  6.3 
is meant to penalize any leakage of information regard-
ing rhythm complexity into the non-regularized latent 
space dimensions. To assess the effectiveness of the pro-
posed method, we conduct a simple ablation study. We 
train two generative models: the first is implemented as 
described in Section 6; the second follows the same spec-
ifications except for the exclusion of the adversarial term 
from the loss function in (7).

Quantifying latent space entanglement is a challeng-
ing task, as unwanted redundancy and the intertwining 
of latent variables might not follow a simple and easy-to-
identify behavior. Therefore, similarly to what proposed 

in [62], our approach was to measure latent space entan-
glement via nonlinear regression. We define a nonlinear 
regressor r(·) meant to estimate the measured complex-
ity fp(g) from the non-regularized latent code portion z⋆ . 
These codes are obtained by passing GMD data through 
the two pre-trained generative models under considera-
tion. For the sake of simplicity, let us denote with z⋆ the 
partial codes from the proposed model and with z̃⋆ the 
ones from the baseline without adversarial term.

We implement each regressor as a two-layer feed-
forward neural network with 128 units and ReLU acti-
vations. The two networks are optimized using z⋆ and 
z̃⋆ extracted from training data. The regressors are thus 
evaluated on the test fold of GMD. We argue that a lower 
regression performance corresponds to a more disentan-
gled latent representation.

The regressor r(z̃⋆) achieves a coefficient of determina-
tion R2 = 0.5 , quantifying the percentage of the variation 

Fig. 6  Latent rhythm complexity distribution of input drum patterns

Fig. 7  Latent rhythm complexity distribution of generated drum patterns
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in test data complexity that is predictable from the inde-
pendent variables z̃⋆ . This clearly suggests that, without 
the proposed adversarial component, a non-negligible 
amount of information regarding rhythm complexity 
leaked into the non-regularized latent space and can be 
thus predicted. Conversely, the coefficient of determina-
tion of r(z⋆) drops to R2 = 0.1 when including the adver-
sarial loss term, revealing that the latent space has been 
effectively disentangled. Ultimately, this enables intui-
tive control over the output complexity that can be now 
altered in a fader-like fashion [38] simply by varying the 
scalar value of zi.

7.3 � Rhythm complexity manipulation
In this section, we demonstrate how the proposed model 
could allow for a fine-grained manipulation of target attrib-
utes of the generated samples. In particular, we encode 
each rhythm x in the test fold of GMD and extract the cor-
responding latent vectors z . Then, we fix z⋆ and let zi vary 
according to zi + j�z , where j ∈ Z and �z = 0.5 . For each 
new latent code obtained this way, we task the decoder to 
generate the corresponding pattern. Hence, we compare the 
difference between the complexity of the unaltered output 
and that of the newly generated ones. Figure  8 shows the 
violin plot for j ∈ [−5, 5] , depicting for each shift j�z the 
distribution of the resulting changes in the complexity of the 
decoder output for all samples in the test set. Remarkably, 
we obtain a Pearson correlation coefficient of 0.90 between 
the desired and resulting complexity increments.

By keeping z⋆ fixed throughout the experiment, we 
argue that the generated rhythms would be most similar 
to the original one. However, the more the target com-
plexity is altered, the greater will be the deviation from 
the original pattern. To support these claims, we com-
pute the average Hamming distance H(s0, sj) between the 
unaltered output pattern ( j = 0 ) and the ones generated 
with the desired complexity increment j�z . Namely, we 

convert each drum voice into a string of ones and zeros 
and measure the number single-character edits needed 
to change one pattern into the other. Arguably, a higher 
Hamming distance indicates a more significant modifi-
cation of the original output pattern. In Fig. 9, we show 
H(s0, sj) as a function of j�z with �z = 0.1 . Notably, the 
average distance monotonically increases as the target 
complexity increment moves away from zero. In fact, the 
patterns with the least amount of complexity manipu-
lation appear to be the most similar to the reference 
rhythm with an average of approximately 7.4  edits per 
sample. Conversely, the maximum distance is achieved 
for j�z = 2.5 , where we observe an average of 21.3 edits 
per sample.

7.4 � Attribute‑controlled generation
Finally, we evaluate the proposed latent vector model in a 
purely generative mode. We sample 1000 random latent 
codes from N (0, I) and task the decoder to autono-
mously produce new patterns. We let z0 vary from −2.576 
to 2.576 , thus accounting for the complexity of 99% of the 
samples in the GMD test fold. Hence, we compute the 
correlation between z0 and the complexity of the newly 
generated patterns. Figure  10 shows a clear linear rela-
tionship between desired and output rhythm complexity. 
Despite a Pearson correlation coefficient of 0.9163, how-
ever, we notice the tendency of the system to reduce the 
output complexity with respect the target z0 value. This, 
in turn, is confirmed by the slope of the best-fit linear 
regression model y ≈ 0.78 z0 − 0.18 being less than one. 
Moreover, this trend is accompanied by an increment 
in the output complexity variance as z0 increases. These 
phenomena might be explained by considering that the 
training fold of GMD consists of data from spontane-
ous drumming performances and offers a limited rep-
resentation of high-complexity patterns. As a result, the 
decoder may have been biased toward generating more 

Fig. 8  Violin plot of the measured output complexity increments as a function of j�z
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conventional lower-complexity rhythms. Nevertheless, 
we argue that, in a practical application, this effect may be 
straightforwardly compensated by incorporating a suitable 
multiplicative factor into z0 , thus reestablishing an identity-
like mapping between desired and measured complexity.

8 � Conclusions and future work
In this article, we presented a novel latent rhythm com-
plexity model designed for polyphonic drum patterns in 
the style of contemporary Western music. The proposed 
framework is based on a multi-objective learning para-
digm in which variational autoencoding is supplemented 
by two additional loss terms, one for latent space regu-
larization and the other targeting disentangled represen-
tations. In particular, the model is simultaneously tasked 
with predicting and embedding the value of a given 
musical attribute along one of its latent dimensions. This 
way, the ensuing latent space is encouraged to become 
semantically structured according to the target high-level 

feature, thus enabling straightforward interpretation and 
intuitive navigation. Moreover, we showed that decoding 
the latent representations thus obtained grants explicit 
control over the complexity of newly generated drum 
patterns. To achieve this, we introduced a new poly-
phonic rhythm complexity measure. To the best of our 
knowledge, the present work constitutes the first attempt 
at defining a proper complexity measure for polyphonic 
rhythmic patterns. The proposed measure was validated 
through a perceptual experiment which showed a high 
degree of correlation between measured complexity and 
that assessed by human listeners, as indicated by a Pear-
son coefficient above 0.95. Our method, being based on 
the linear combination of state-of-the-art monophonic 
measures applied to groups of functionally related drum 
voices, allows for great flexibility when it comes to 
measuring and weighting the contribution of individual 
(groups of ) voices and may serve as a starting point for 
future research.

Fig. 9  Average Hamming distance as a function of j�z . As the target complexity varies, attribute-controlled rhythms show a monotonically 
increasing degree of dissimilarity with respect to the unaltered output pattern

Fig. 10  Correlation between z0 and the rhythm complexity of drum patterns generated from randomly-sampled latent vectors
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Endowing machines with an explicit understanding of 
perceptual features of music has the potential to enrich 
the capabilities of many AI-driven creative applications, 
including assisted music composition and attribute-con-
trolled music generation. Besides, our work proves that 
regularizing a latent vector model according to target 
perceptual attributes may structure the resulting latent 
representations in a humanly interpretable way. There-
fore, this approach might readily complement those 
applications involving the semantic exploration of musi-
cal content, such as music database navigation, recom-
mender systems, and playlist generation.

Future work entails a large-scale survey to further vali-
date the promising results presented in this article. This 
way, it would also be possible to determine the optimal 
complexity measure for each group of voices and derive a 
set of perceptually informed parameters for the proposed 
method. Moreover, examining the interplay between dif-
ferent yet related voices is not a concept solely pertaining 
to drums. In fact, we envision an adaptation of the pro-
posed method to encompass, e.g., string quartets or four-
part harmony chorales in which distinct voices are clearly 
identifiable and yet cannot be fully modeled indepen-
dently of the others. Finally, building upon the existing 
work on the perception of monophonic rhythm complex-
ity, the present study focuses on fixed-length quantized 
binary patterns. This means that only onset locations are 
considered, whereas dynamics, accents, time signature, 
and temporal deviations smaller than a tatum are disre-
garded. Although this choice is motivated by a divide-
and-conquer modeling approach that regards these 
aspects of rhythm to be (at least partially) independent of 
each other, the validity of these assumptions is yet to be 
proved. In fact, one may argue that the temporal distribu-
tion of agogic and dynamic accents is likely to affect the 
complexity of a rhythmic pattern beyond the simple loca-
tion of its onsets. Similarly, ditching quantization in favor 
of a continuous-time representation would fundamen-
tally change the definition of syncopation, which could 
in turn entail a range of different psychoacoustic effects. 
Ultimately, these compelling questions remain open and 
must become the foundation of future research on the 
perception of rhythm.

Appendix
Toussaint’s Metrical Complexity Measure
Introduced in  [13], Toussaint’s metrical complexity is 
based on the concept of syncopation. The measure, which 
was developed for monophonic binary patterns, entails 
assigning a weight to each pulse depending on their posi-
tion in a regular metrical structure of length N. This is 

achieved by means of the hierarchy of pulses’ strength 
proposed by Lerdahl and Jackendoff [63].

Such a hierarchy is obtained by iteratively adding 
units of weight to pulses spaced according to regular 
subdivisions at different metrical levels. For instance, 
a 6/8 rhythm can be either divided into three units of 
length two or two units of length three, and weights 
are assigned accordingly. For an arbitrary number of 
pulses, Lerdahl and Jackendoff ’s hierarchy thus derives 
from a (non-unique) tree-like structure built upon the 
prime factorization of N. For the sake of simplicity, 
however, we only consider the case of rhythms whose 
length is a power of two, which is relevant for our study 
of 2-bar 4/4 time scores.

At metrical level zero, the hierarchy is initial-
ized to h(0) = [1, 1, . . . , 1]⊤ . Then, for each level 
l = 1, . . . , log2(N ) , weights are updated according to

for t = 0, . . . ,N/2l − 1 . For a 16-pulse pattern, the rule 
in (8) yields

where four is the highest metrical level. This means that 
the first pulse is regarded as the “strongest,” followed by 
the ninth, whereas, e.g., the second, fourth, sixth, and 
eighth are considered “weak” beats.

Hence, given a monophonic pattern x ∈ {0, 1}N and 
a hierarchy h ∈ N

N , a quantity known as metricity is 
defined as the inner product

In  [13], metricity it is assumed to be inversely propor-
tional to rhythm complexity. Inconveniently, however, 
it is also directly proportional to the number of onsets 
present in x . To address both aspects at once, Toussaint’s 
metrical complexity measure is defined as

where Mx is the maximum metricity attainable with the 
number of onsets present in x (regardless of their original 
position) under the fixed hierarchy h . Formally, given all 
possible binary patterns with N pulses, we can write

where κ = 1, . . . , 2N  and η(x) :=
∑N

n=1 x[n] corre-
sponds to the number of onsets in the target pattern 
x . By taking into account the quantity Mx , Toussaint’s 
complexity measure becomes effectively independent 

(8)h(l)[n] ← h(l−1)[n] + 1, n = 2l t + 1,

(9)h(4) = [5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1]⊤,

(10)m(x) := h⊤x.

(11)f (x) := Mx −m(x),

(12)Mx := max
κ

{

m(x′κ) :

N
∑

n=1

x′κ [n] = η(x)

}

,
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of the number of onsets, a favorable property if one 
does not want to attribute higher complexity to a pat-
tern solely because it happens to have a large number 
of rhythmic events.

Toussaint’s metrical complexity is only one of many 
rhythm complexity measures that can be found in the 
literature. For an overview, we refer the readers to [44].
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