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Abstract 

SincNet architecture has shown significant benefits over traditional Convolutional Neural Networks (CNN), espe-
cially for speaker recognition applications. SincNet comprises parameterized Sinc functions as filters in the first layer 
followed by convolutional layers. Although SincNet is compact in nature and offers top-level understanding of the 
features extracted, the effect of window function used in SincNet is not thoroughly addressed yet. Hamming and 
Hann are popularly used as the default time-localized windows to reduce spectral leakage. Hence, a comprehensive 
investigation of 28 different windowing functions on SincNet architecture towards speaker recognition task using 
TIMIT dataset was performed in this work. Additionally, “trainable” window functions were configured with tunable 
parameters to characterize the performance. The paper benchmarks the effect of the time-localized windowing 
function in terms of the bandwidth, side-lobe suppression, and spectral leakage for the filter banks employed in the 
first layer of the SincNet architecture. Trainable Gaussian and Cosine-Sum functions exhibited relative improvement of 
41.46% and 82.11% in the sentence level classification error rate over Hamming window when employed on SincNet 
architecture.
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1  Introduction
SincNet architecture derived from Convolutional Neu-
ral Network (CNN) is reported to yield better results for 
speaker recognition tasks [1, 2] and continuous decoding 
of speech signals  [3]. Besides an advantage of reduced 
parameters in SincNet structure owing to the usage of 
band-pass type filter bank in the first layer, the extraction 
of the features is much more interpretable than the mix 
of filters learnt in CNN. SincNet allows to keep the model 
size low by defining two cutoff frequencies for each of the 
band-pass filters employed in the first layer of the CNN. 
Hence, all the kernel-based filter-bank offer high-level 
tunable parameters, defined by pair of cutoff frequencies 
during the network training phase. Since its inception 
by Ravanelli and Bengio [2, 4], few advances in SincNet 
architecture have been carried out. Sinc-layer followed by 

depth-wise separable-convolutions (DSConv) to reduce 
network parameters and subsequently achieve energy 
efficiency was attempted on speech commands  [5] and 
for speaker verification [6]. Curricular based loss function 
was applied on SincNet architecture in [7] to improve the 
speaker recognition accuracy. Another work on lever-
aging the stride and window size to extract features on 
SincNet was attempted  [5]. All the recent works have 
either been an attempt towards utilizing Sinc functional 
layers and integrate with other existing convolutional 
layers to improve accuracy or utilize the existing style 
of operations on Sinc function to further leverage the 
hyper-parameters. Few other work showcased the learna-
bility of filters in CNNs towards phone recognition [8] on 
raw speech. An alternative to SincNet architecture based 
on the complex Gabor filter learning process was pro-
posed in [9]. To the best of our knowledge, no study has 
been performed on evaluating the time-localized Sinc 
filters using a variety of windowing functions and estab-
lish optimal windowing function for speaker recognition 
task. A characterization of different windowing functions 
on SincNet architecture in terms of trainable parameters, 
validation loss, and sentence level classification error rate 
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(CER) is not established yet, but is highly valuable in dis-
tinguishing the speech signals by different speakers.

This paper contributes in analyzing 28 time-local-
ized windowing functions for the SincNet architecture 
towards speaker recognition task. The trainability of cer-
tain groups of windowing functions is also investigated to 
achieve the best performance in terms of sentence level 
CER. A trade-off between wide band-pass spectrum with 
reduced stop-band ripples and less spectral leakage over 
the parameterized Sinc filter bank is discussed. Individ-
ual time-localized Sinc filters’ temporal and frequency 
response for the filter bank is made available in  [10] for 
further usage by the scientific community.

2 � SincNet architecture
The first layer of SincNet architecture consists of a filter 
bank comprising of band-pass filters. Sinc function 
defined as Sin(x)

x  has a finite rectangular frequency 
response, rect( f

f1
) centered at 0 Hz. Hence, two Sinc func-

tions, as represented in time-domain by Eq. 1, denotes an 
ideal band-pass filter in frequency spectrum as specified 
in Eq. 2.

Equation  1 is not a time-limited function; hence time-
localized Sinc filters are needed to realize the filter bank 
for the neural network implementation. Moreover, it was 
reported that the dynamics of the first layer is highly 
influential for the overall performance of the neural 
network  [11]. In typical applications, the window func-
tions used are non-negative, smooth, “bell-shaped” pro-
file. Generally, Hamming window of length L defined as 
w[n] = 0.54 − 0.46× cos( 2πnL ) is used in narrow-band 
applications because of its high frequency selectivity. The 
time-localized Sinc filters in SincNet are expressed as 
stated in Eq. 3. Figure 1 shows one such Hamming win-
dow based time-localized Sinc filter.

(1)g[n, f1, f2] = 2f2sinc(2π f2n)− 2f1sinc(2π f1n)

(2)G[f , f1, f2] = rect(f /2f2)− rect(f /2f1)

In this work, 28 window functions including, tunable 
windows with trainable parameters are investigated to 
optimally parameterize Sinc function for the overall 
improvement of SincNet architecture.

3 � Filter design
Windows such as Hamming, Hann, Blackman, Welch, 
Nuttal, Flattop, Bohman, Bartlett, and Parzen are com-
monly used depending on the required spectral char-
acteristics of the filter and are fixed-shape window 
functions. Simple functions such as rectangular and 
triangular are also investigated. Gaussian, Exponential, 
Kaiser, Taylor, Chebwin, Tukey, Slepian, and Cosine-Sum 
are tunable windows that allow to modify the shape of 
the window. These parameters of tunable windows that 
allow to alter the shapes are considered as suitable candi-
dates to optimize SincNet architecture in addition to the 
cutoff frequencies of the band-pass filters. In this work, 
the same window function is used on all Sinc filters, and 
hence the number of trainable parameters for the over-
all SincNet architecture with trainable-windows and with 
fixed-windows are generalized and illustrated in Table 1. 
To obtain results comparable to the original SincNet 
model, the filter length was fixed to 251. The windowing 
function and its trainable parameters are maintained the 
same for all the 80 filters implemented in the first layer 
of the SincNet architecture, which is targeted for speaker 
recognition task. Hence any increase in the number of 
trainable parameters remains inconsequential when 

(3)gw[n, f1, f2] = g[n, f1, f2] × w[n]

Fig. 1  Windowing effect on the ideal Sinc filter

Table 1  Trainable parameters of Sinc filters, where N is the size 
of filter bank

Window functions No. of trainable parameters

Gaussian, Exponential, Kaiser, Taylor, 
Chebwin, Tukey, Slepian,

2N + 1

Cosine-Sum 2N + (K + 1) ; K > 0

Fixed windows 2N
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compared to the 80 filters employed in the first layer. 
For 28 different windowing functions investigated, the 
increase in the trainable parameters ranges from 1 to 10 
for the entire model, which retains the compact nature of 
the overall SincNet architecture. Table 1 generalizes the 
number of trainable parameters where 2N is the number 
of parameters defining N filters employed for the Sinc fil-
ter bank in SincNet architecture, and K is the additional 
trainable parameters based on the windowing function 
employed  (as defined in Eq.  4). Trainable Cosine win-
dows in this work are a general form of Cosine-summa-
tion windows as expressed in Eq. 4.

Hann, Hamming, Blackman, Nuttall, Flattop, and Black-
man-Harris are considered as special cases of the Cosine-
Sum windows, that are defined with fixed coefficients ak . 
These set of window functions are referred to as Group1-
A from here on. Table  2 shows the typical coefficient 
values used to define Group1-A window functions. 
Group1-B refers to a set of general Cosine-Sum win-
dow functions whose coefficients are “trainable”  within 
the SincNet architecture for K ranging from 1 to 9. The 
six fixed-window functions in Group1-A mathemati-
cally correlate to Cosine-Sum window functions catego-
rized in Group1-B with K ranging from 1 to 4. The CER 
performance between the two sets of functions of simi-
lar number of coefficients is further investigated in this 
work. Tunable windows such as Gaussian, Exponential, 
Kaiser, Taylor, Chebwin, Tukey, and Slepian are catego-
rized and referred to as Group2. Other fixed-windows, 

(4)w[n] =

K

k=0

(−1)kakcos
2πkn

L
, 0 ≤ n < L

BartlettHann, Rectangular, Welch, Bohman, Triangular, 
Bartlett, and Parzen are grouped into Group3.

4 � Results and discussion
4.1 � Dataset and training setup
The TIMIT speech corpus consisting of 4.5  h of read 
speech [12] as referred from the original SincNet archi-
tecture  [2] was evaluated for various window functions. 
The dataset comprises of 6300 sentences, 10 utterances 
spoken by 630 speakers. SA1, SA2 utterances (being 
common across all the 630 speakers) were excluded in 
the experiments to ensure the evaluation is free of con-
tent-bias. The remaining 8 utterances were split into 
train and test set, each comprising of 5 and 3 sentences 
respectively. Non-speech intervals at the beginning and 
at the end of each sentence were removed. SincNet con-
vergence is fast compared to conventional CNN. Hence 
individual training was run for 360 epochs; with valida-
tion error and validation loss were reported after every 
8th epoch. The SincNet architecture with 80 parameter-
ized Sinc filters of 251 sample length in the first layer, fol-
lowed by two convolution layers of 60 filters with a filter 
length of 5 samples were setup. Layer normalization was 
employed for all the convolution layers including the Sinc 
functional layer, and for input samples. Three fully con-
nected layer of 2048 neurons with batch normalization 
were applied post convolution layers. Each speech sen-
tence is split to 200 ms segments with 10 ms overlap. The 
parameters of the Sinc layer were initialized to mel-scale 
cutoff-frequencies, whereas the rest of the network was 
initialized to Glorot initialization scheme. The sentence 
level classification error rate (CER) is calculated as the 
average of the frame error rate (FER) obtained over each 

Table 2  The coefficients of Cosine-Sum windows, where K is the number of coefficients, as defined in Eq. 4

Window function a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

Coefficients of fixed 
Cosine-Sum win-
dows (Group1-A)

Hamming 0.5400 0.4600

Hann 0.5000 0.5000

Blackman 0.4200 0.5000 0.0800

Nuttall 0.3636 0.4892 0.1366 0.0106

Blackman-Harris 0.3588 0.4883 0.1413 0.0167

Flattop 0.2156 0.4166 0.2773 0.0836 0.0069

Coefficients of 
trained Cosine-Sum 
windows (Group1-B)

K=1 0.3102 0.6754

K=2 0.2161 0.4907 0.2940

K=3 0.2896 0.3509 0.2041 0.1572

K=4 0.2398 0.3127 0.1862 0.1606 0.0818

K=5 0.2442 0.2794 0.1794 0.1758 0.0626 0.0576

K=6 0.0769 0.2079 0.2706 0.1836 0.1216 0.0981 0.0423

K=7 0.2540 0.2563 0.1297 0.1241 0.0671 0.0819 0.0284 0.0492

K=8 0.2177 0.2600 0.1211 0.1283 0.0644 0.0704 0.0655 0.0370 0.0333

K=9 0.1821 0.2075 0.1334 0.1184 0.0633 0.1075 0.0567 0.0562 0.0524 0.0167
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variable length sentence (variable number of frames per 
sentence).

4.2 � Trainability of window functions
The parameters defining the shape of tunable window 
functions were configured as trainable parameters of 
the SincNet model during the training phase. The vari-
ation of trainable parameters during training runs were 
recorded. Figure  2 demonstrates the trainability of the 
Gaussian function, where the parameter σ (standard-
deviation of the Gaussian function) was initialized to five 
different values. It converges to values between 0.2 and 
0.1 post 360 epochs, to yield the lowest CER. The ini-
tial Gaussian window and converged Gaussian window 
is shown in Fig. 2, to indicate the preferred shape of the 
windowing function for achieving the lowest CER. Simi-
larly, the trained parameters of Group1-B Cosine-sum 
windows(coefficients ak ) post 360 epochs are reported in 
Table 2. The trainable parameters for the functions falling 
in Group2 are reported in Table 3. Note that all trainable 
parameters are extracted for the best CER achieved for 
the speaker recognition task.

4.3 � Window analysis and discussions
The frequency response of 80 time-localized Sinc fil-
ters was investigated and analyzed for all 28 window 
functions primarily with respect to the three spectral 
parameters stated in the order of significance: (i) band-
width of the individual filters, (ii) side-lobe suppres-
sion, and (iii) spectral leakage between the filters. Five 
selected temporal and frequency response of the filters 

from different groups are shown in Fig. 3 for easy read-
ing. The Hamming window belonging to Group1-A, and 
Bohman window from Group3 shows narrow band-pass 
spectrum, but large stop-band ripple ( ∼ −  60 db). The 
spectral leakage is also prominently visible in these two 
window functions. The trainable Gaussian categorized in 
Group2, depicts wide band-pass spectrum, but extremely 
low stop-band ripples, and spectral leakage. The Flattop 
function picked from Group1-A shows narrow band-pass 
spectrum. The stop-band ripples, and spectral leakage 
exists below −  120 db. The trainable Cosine-Sum func-
tion belonging to Group1-B with K = 4 shows minimum 
stop-band ripples and very low spectral leakage with a 
moderate band-pass spectrum. Between the trainable 
Gaussian, and trainable Cosine-Sum function, the latter 
is preferred owing to the narrower band-pass spectrum, 
whereas the other two spectral parameters are com-
parable. Overall, the trade-off between the band-pass 
spectrum over stop-band ripple and spectral leakage is 

Fig. 2  Convergence of trainable parameter σ and the corresponding Gaussian window functions when initialized to different values during training 
runs

Table 3  Parameters of Group2 windows obtained after training

Window function Trainable 
parameter

Description Value

Chebwin attn Attenuation in dB 2.8979

Exponential τ Decay parameter 2.0966

Gaussian σ Standard deviation 0.1160

Kaiser β Shape parameter 0.2898

Slepian NW Half bandwidth 0.2090

Taylor sll (dB) Side lobe suppression 2.8979

Tukey α Shape parameter 0.0290
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evidently visible in the frequency-response of the filter 
banks. Additionally, all the windowing functions pre-
serve the mel-scale frequency characteristics which is an 
incidental outcome in the SincNet for efficient speaker 
recognition [13]. Frequency response of the other 23 
time-localized windows across the filter bank is made 
available in [10].

4.4 � Speaker recognition performance
Figure  4a shows the test CER result for all 28 window 
functions when individually applied to SincNet architec-
ture over 360 epochs during the training phase. The sen-
tence level classification error rate (CER) is calculated as 
the average of the frame error rate (FER) obtained over 
each variable length sentence. The test loss reflects the 
cross-entropy loss for the multi-class speaker-identifica-
tion task. This loss shows a classic behavior of having a 
minimum at some optimal epoch, after which the test-
loss increases; corresponding to the fact that the model 

is overfitting on extended epochs. The Frame-Error 
Rate (FER) (and sentence-level CER), on the other hand, 
reflect the error per frame between the predicted label 
and the ground-truth label. Both FER and CER saturate 
with the minimum loss model, but continue to show a 
marginally decreasing trend as in the Fig. 4a, consistently 
for all window functions. We ascribe this to the fact that 
overfitted models tend to do well on the unseen test data 
under the FER/CER metrics. This observation from our 
experiments across all window functions with regard to 
the “test-loss and FER/CER profiles” over epochs is con-
sistent with the observation and trends in Ravanelli and 
Bengio  [2]. Please note that the absolute value of CER 
that falls between 0 to 1 is reported, and these values are 
not in %. A zoomed-in version of the same at minimum 
validation loss, i.e., around 25th  epoch, and at the last 
epoch (360th) are also depicted in Fig. 4b and c, respec-
tively. A poorly performing exponential window with 
large CER at convergence is also annotated in Fig.  4a 

Fig. 3  Frequency response of 80 time-localized Sinc filters using five different window functions
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and not included in zoomed-in versions of Fig. 4b and c. 
The trainable Gaussian and trainable Cosine-Sum func-
tions clearly show a major drop in the CER to a minimum 
of 0.0072 and 0.0022, respectively, when compared to 
0.0123 CER for Hamming window as shown in Fig.  4c. 
The trainable Gaussian and trainable Cosine-Sum func-
tions converge faster to minimum CER when compared 
to the other fixed window functions, as shown in Fig. 4a. 
This further saves the training time for the SincNet 
architecture.

The absolute values of CER at minimum loss as 
referred in Fig. 4b and at last epoch as referred in Fig. 4c 
are reported in Table 4. The training is not stopped early 
at minimum validation loss, since the CER continues to 
reduce and the aim was to minimize the CER. Train-
able Gaussian function, Bohman, Parzen, and trainable 
Cosine-Sum functions, especially with K =  5, 6, 8, and 
9, showcase the best CER performance among the 28 
windowing functions investigated and is highlighted in 
Table 4 for easy reading. The trainable Cosine-Sum func-
tion with K = 9 reported the best performance with a 
relative improvement of 82.11% when compared with 
the Hamming window which is conventionally used for 
time-localizing Sinc filter banks. Other relative improve-
ments in the speaker recognition performance were 
exhibited by the trainable Cosine-Sum functions with 
K =  4, 5 (35.77%), K =  6, 8 (41.46%), trainable Gauss-
ian (41.46%), and few other functions such as Parzen 
(41.46%), and Bohman (47.15%). This clearly confirms 
the need to appropriately select the windowing func-
tions towards parameterizing Sinc filters for an effective 
outcome in the speaker recognition task. The improve-
ment in the trainable Gaussian and trainable Cosine-
Sum functions is attributed to reduced stop-band ripples 
and minimum spectral leakage which localizes the fil-
ter banks as reported in Fig. 3, and thereby extracts the 

necessary features to offer the best speaker recognition 
performances.

4.5 � Stability of results
The SincNet model was trained with individual win-
dowing functions for 5 independent runs, where the 
weights are randomly initialized with a different seed 
every time. The training was continued for 100 epochs. 
Figure  5 shows the CER performance in terms of mean 
and standard-deviation  (SD) for the minimum loss, and 
at the 100th  epochs. The CER standard deviation  (SD) 
and mean converges to a small value as the training 
progresses. At 100th  epoch, CER mean and SD contin-
ues to be small, when compared with the earlier mini-
mum loss epoch for all windowing functions as shown 
in the Fig.  5a. Low SD suggests that the model training 
with windowing functions is highly stable and remains 
independent of the initialized weights and order of the 
data-points. Figure  5b is an enlarged view showcasing 
CER performance of Group1-A, Group1-B, and Group3 
windowing functions at 100th  epoch. It is evident that 
among the three groups of windowing functions, Cosine-
Sum (K=5) shows half the CER of Barlett-Hann function, 
suggesting preference to pick Cosine-Sum (K=5) over 
other functions. Group2 functions associated with CER 
performance at 100th  epoch was plotted separately in 
Fig.  5c. The study shows that the smaller mean value is 
accompanied with smaller deviations. The website [10] is 
further updated with the training performance for indi-
vidual windowing functions for five independent runs 
initialized with random seeds.

5 � Conclusion
Different trainable and fixed windows were thoroughly 
investigated for SincNet architecture by evaluating 
sentence level CER for speaker recognition task. The 

Fig. 4  a Sentence level CER for all 28 windows. b Prominent window functions at minimum loss epoch and c at last epoch. Best viewed in color 
and in enlarged form
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trainable Cosine-Sum function with K = 9  and train-
able Gaussian function show relative CER improve-
ment of 82.11%  and 41.46% with respect to Hamming 
window, which is primarily attributed to low stop-band 
ripple and reduced spectral leakage. The trainability of 
the Gaussian function was analyzed and its impact on 
the faster training convergence and improved classifica-
tion results were noted. The main intention of the work 
is to study and demonstrate various spectral properties 
impact and influence towards the final performance in 
terms of multi-class speaker-recognition task. These 

spectral properties are essentially pass-band band-
width (narrower the better), spectral leakage (across 
adjacent frequencies outside the pass-band), pass- and 
stop-band ripples, pass-band to stop-band attenuation 
(higher the better). The various visualizations of these 
characteristics for each of the window function, allows 
us to infer the CER performance. The trainable win-
dows for SincNet architecture makes the speaker rec-
ognition task highly efficient, and similar configuration 
is likely to boost other tasks.

Table 4  Absolute sentence level CER for all the investigated window functions. Prominent results are highlighted and are also referred 
in Fig. 4b, c

Group Window Minimum loss CER Last epoch CER

Group1-A (fixed) Hamming 0.0512 0.0123

Hann 0.0455 0.0123

Blackman 0.0253 0.0101

Nuttall 0.0209 0.0130

Blackman-Harris 0.0361 0.0130

Flattop 0.0577 0.0058
Group1-B (trainable) Cosine-Sum (K=1) 0.0354 0.0130

Cosine-Sum (K=2) 0.0339 0.0087

Cosine-Sum (K=3) 0.0310 0.0072

Cosine-Sum (K=4) 0.0310 0.0079

Cosine-Sum (K=5) 0.0152 0.0079

Cosine-Sum (K=6) 0.0238 0.0072

Cosine-Sum (K=7) 0.0505 0.0087

Cosine-Sum (K=8) 0.0188 0.0072

Cosine-Sum (K=9) 0.0253 0.0022
Group2 (trainable) Chebwin 0.0440 0.0130

Exponential 0.4004 0.1277

Gaussian 0.0426 0.0072
Kaiser 0.0527 0.0130

Slepian 0.0577 0.0130

Taylor (nbar=1) 0.0657 0.0123

Taylor (nbar=5) 0.0599 0.0159

Taylor (nbar=10) 0.0952 0.0267

Taylor (nbar=20) 0.1544 0.0498

Tukey 0.0599 0.0144

Group3 (fixed) Bartlett-Hann 0.0375 0.0115

Rectangular 0.0447 0.0115

Welch 0.0455 0.0144

Bohman 0.0332 0.0065
Traingular 0.0260 0.0108

Bartlett 0.0202 0.0115

Parzen 0.0382 0.0072
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Fig. 5  Mean and standard-deviation of CER for all the investigated window functions a at minimum loss (left axis) and at 100th epoch (right axis). b 
Enlarged view of the CER at 100th epoch for Group1-A, Group1-B, and Group3 functions, and c Group2 functions
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