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Abstract 

The paper uses the K-graphs learning method to construct weighted, connected, undirected multiple graphs, aim-
ing to reveal intrinsic relationships of speech samples in the inter-frame and intra-frame. To benefit from the learned 
multiple graphs’ property and enhance interpretability, we study the spectral property of speech samples in the joint 
vertex-frequency domain by using the new graph weight matrix. Moreover, we propose the representation of mini-
mum mean-square error (MMSE) graph spectral magnitude estimator for speech signals residing on undirected mul-
tiple graphs. We use the MMSE graph spectral magnitude estimator to improve speech enhancement performance. 
The numerical simulation results show that the proposed method outperforms the existing methods in graph signal 
processing (GSP) and the baseline methods for speech enhancement in discrete signal processing (DSP) in terms of 
PESQ, LLR, output SNR, and STOI results. These results also demonstrate the validity of the learned multiple graphs.

Keywords  Graph signal processing, K-graphs learning, Graph representation, MMSE, Speech enhancement

1  Introduction
Graph signal processing (GSP) [1, 2] explores the rela-
tionships among discrete signals residing on vertexes via 
graph models [3]. It has been developing a set of theo-
ries based on the traditional discrete signal processing 
to investigate, analyze, and process the data defined over 
arbitrary topologies [4, 5]. The scope of research has 
changed from fundamental GSP concepts [6–8] to prac-
tical applications including graph signals denoising and 
restoration [9–11], learning graphs from observed data 
[12–14], image processing [15, 16], and graph clustering 
[17, 18].

GSP is efficient in characterizing time series by using 
graph theories [19]. To be specific, in [20], dynamic vis-
ibility graphs (DVG) were constructed to describe time 
series, which studied the DVG dependence of different 
time series. In [21], the recurrence matrix of the time 
series was defined as the adjacency matrix of an associ-
ated complex graph to link different points in the case 
where the evolution of the considered states is similar. In 
[22, 23], a visibility graph based on the Gaussian kernel 
function was defined for electroencephalogram (EEG) 
signals, which provided a topology to capture sudden 
fluctuations happening in EEG during seizure activity.

Traditional discrete signal processing (DSP)-based 
speech enhancement algorithms use short-time spec-
trum estimation to suppress noises. Specifically, in [24], 
the authors proposed the traditional Wiener filtering for 
speech enhancement by leveraging the frequency-domain 
characteristics of noises and speech signals. In [25], the 
authors focused on the major importance of the short-
time spectral amplitude (STSA) of the speech signal and 
proposed a minimum mean-square error (MMSE) STSA 
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estimator for speech enhancement by modeling speech 
and noise spectral components as statistically independ-
ent Gaussian random variables. In [26], the authors pro-
posed the optimal modified minimum mean-square error 
log-spectral (OMLSA) for robust speech enhancement 
by minimizing the mean-square error of the log-spectra 
as a weighted geometric mean of the hypothetical gains 
associated with the speech presence uncertainty. In addi-
tion, in [27], the authors proposed a statistical speech 
enhancement model using acoustic environment clas-
sification supported by a Gaussian mixture model. In 
[28], the authors proposed a joint-constrained diction-
ary learning method to solve the “cross projection” prob-
lem of signals in the joint dictionary for single-channel 
speech enhancement.

Unlike the traditional DSP-based speech enhancement 
methods, GSP-based speech enhancement methods first 
establish graphs for speech signals before performing 
enhancement. By establishing the graph adjacency matrix 
with different edges and weights, speech signals can 
then be flexibly mapped into different graph frequency 
domains with different graph Fourier bases. It is worth 
noting that finite (periodic) time series have been con-
structed as signals indexed by a directed cycle graph [1, 
2, 6]. Speech signals are special time series. The current 
graph topology of finite time series is directly applied 
for unstructured speech signals, which explores sampled 
speech signals’ time shifts and succession and fails to 
capture the potential relationship among speech samples.

Our previous work [29, 30] has made many processes 
for inferring a suitable graph representation of speech 
signals. To be specific, in [29], we first established a 
single undirected graph topology for unstructured 
speech signals, which successfully mapped time-domain 
speech signals into the vertex domain and viewed them 
as speech graph signals. In [30], we proposed a single 
digraph by using algebraic signal processing (ASP) [31] 
theories and then built graph wiener filters in the graph 
Fourier domain for speech enhancement. However, the 
designed static graph topology for speech signals in our 
previous work [29, 30] cannot capture the potential rela-
tionships between different speech frames. In [32], we 
proposed to learn a directed multilayer graph model for 
speech signals by using graph learning, which reveals 
both the intrinsic relationships of inter-frames and those 
among speech samples within a frame. But it aimed to 
learn a complex and large volume graph model for the 
total speech signals, which does not reveal the dynamic 
change characteristics in speech signals.

Against this backdrop, in this paper, we propose a 
K-graph learning method to learn multiple undirected 
graphs for framed noisy speech graph signals to better 

match the dynamic nature of speech. Specifically, the 
framed noisy speech graph signals are partitioned into 
a set of clusters. For each cluster, an undirected graph 
is learned to reveal the potential relationships among 
noisy speech frames in the cluster. In this way, multiple 
graphs of a small size other than a large-volume graph 
are learned, which reveal the inter-frame relationships 
of the total speech signals in a more dynamic way. 
Additionally, as the size of each cluster is much smaller 
than that of the whole speech signals, the K-graphs 
learning method leads to multiple graphs of small vol-
umes with a much lower learning complexity.

On the basis of the learn multiple undirected graphs, 
we propose the gain function representation for the 
MMSE graph spectral magnitude estimator by extend-
ing the classical MMSE-STSA to enhance noisy speech 
signals. The contributions of the paper are summarized 
as follows.

i) We propose the novel undirected multiple graphs 
by using the K-graphs learning method, which reveals 
potential relationships among noisy speech frames in 
real-time. On this basis, we construct a joint graph 
weight matrix and define the related graph Fourier basis.

ii) Based on the constructed graph Fourier basis, we 
investigate the gain function representation of MMSE 
graph magnitude spectral estimator for speech graph 
signals (SGSs). We propose an MMSE graph spectral 
magnitude estimator by extending the classical MMSE-
STSA method in DSP to perform speech enhancement.

iii) Our numerical results show that the proposed 
method outperforms the benchmarks in terms of the 
output signal-to-noise ratio (SNR), perceptual evalu-
ation of speech quality (PESQ), log-likelihood ratio 
(LLR), and short-time objective intelligibility (STOI). 
The numerical results also demonstrate the validity of 
the learned multiple graphs for speech signals. We use 
the classical MMSE-STSA [25] and OMLSA [26] meth-
ods in DSP and existing graph Wiener filtering methods 
[33] as benchmarks.

The remainder of the paper is organized as follows. 
Section 2 introduces the related work of GSP. Section 3 
investigates the K-graphs learning method for speech 
signals. The details of the MMSE graph spectral magni-
tude estimator method are given in Section 4. Section 5 
provides our experimental results. Section 6 concludes 
the paper.

Notation: The superscript T  represents the trans-
pose. trace(·) , �·�F  and �·�1 represent the trace, F-norm, 
1-norm, respectively, and 1 denotes the all-ones matrix. 
× represents the Cartesian product. I is the identity 
matrix. E(·) and p(·) represent the expectation operator 
and the probability density function, respectively.
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2 � Related work
2.1 � Basics of GSP
Let G = (V , E ,A) represent a weighted graph, where V 
denotes the collection of vertices v1, · · · , vN  , the set of 
edges E satisfies (m, n) ∈ E if and only if the vertex vm 
is connected to the vertex vn [34], and A denotes the 
graph weight matrix. The element in A represents the 
weight of the edge between vertices vm and vn , which 
intuitively and numerically shows the appropriate 
dependence or similarity between signals on vertices 
[35, 36]. This paper focuses on a connected undirected 
graph with finite vertices. We can define the variation 
operator by the combinatorial graph Laplacian matrix 
L = D− A , where D is a diagonal matrix with elements 
dmm =

∑N
n=1 Amn, (m = 1, · · ·N ) [37].

Following [38, 39], we have the smoothness of graph 
signals X given by

A small smoothness value means that signals indexed by 
adjacent vertices have similar values, that is, X is smooth 
[40]. From (1), we have

2.2 � Speech signals on graphs
After the framing operation, speech signals can be 
expressed as a matrix s ∈ R

M×Ns where each row rep-
resents a frame speech signals, M represents the num-
ber of whole noisy speech frames, and Ns denotes the 
length of a speech frame. Let us view each discretized 
speech sample as a vertex. Assuming that the relation-
ship between the adjacent samples is symmetrical, 
speech samples can be constructed as speech graph 
signals (SGSs) residing on a connected undirected 
graph. The one-to-one mapping between the ith noisy 
speech sample fi in a frame and the signal value of the 
ith vertex vi is given by

where Vs is the set of vertices cardinality |Vs| = Ns , in this 
way, noisy speech signals in each frame are mapped into 
the graph domain.

(1)(XL)(vm) =
∑

{vm}∈V
Am,n(x(m)− x(n)).

(2)

X
T
LX =

∑

{vm}∈V
x(m)

∑

{vn}∈V
Am,n(x(m)− x(n))

=
∑

{vm}∈V

∑

{vn}∈V
Am,n(x

2(m)− x(m)x(n))

=
1

2

∑

{vm}∈V

∑

{vn}∈V
Am,n(x(m)− x(n))

2
.

(3)sG : R → Vs, fi → vi,

2.3 � The joint graph Fourier transform
Let we denote the time-vertex graph signal as 
XE=[x1, x2, ..., xT] ∈ R

N×T , where x1 , x2 , . . . , xT repre-
sent graph signals sampled at 1, 2, ...T successive regular 
intervals with length N [41]. To investigate the spectral 
properties of XE , following [42, 43], the joint time-ver-
tex graph Fourier transform (JFT) is defined as

where �T ∈ R
T×T is constructed as the normal-

ized discrete Fourier transform matrix, with 
�T (t, k) = e−j 2π(k−1)

T /
√
T and �G ∈ R

N×N is the eigen-
vector matrix obtained by the eigendecomposition of 
XE ’s graph weight matrix. More specifically, �T is applied 
to analyze the time-frequency oscillations of XE along the 
time domain, �G allows us to obtain the graph-frequency 
characters of XE along the graph edges. Moreover, the 
corresponding inverse IJFT is defined as

The definitions of JFT and IJFT allow us to take into 
account the variation of the graph and the temporal 
aspects of time-vertex graph signals.

3 � The K‑graphs learning method for speech graph 
signals

This section uses the K-graphs learning method to infer 
a multiple-graphs model for SGSs without prior graph 
topologies. It is noted that the inter-frame relation-
ship is not considered in traditional speech enhance-
ment systems. Differing from noises, speech samples 
have a strong correlation between and within frames. 
In this paper, considering that when we learn a global 
graph for speech signals, it would be complex. Inspired 
by K-means and K-graphs learning [44], we partition 
the SGSs into clusters and use the K-graphs learning 
method to capture the potential properties of speech 
samples both the inter-frame and intra-frame.

Noisy speech signals are mapped into the graph 
domain by using Eq. (3) and are constructed as SGSs. 
We employ Ms speech frames in a cluster to learn 
a graph for capturing the relationships between 
Ms speech frames. The SGSs in the kth cluster, skG 
(1 ≤ k ≤ K ,K = M/Ms) , resides on the kth undirected 
multiple graph Gk = (Vk ,Lk) , where Vk indicates the 
vertex set and Lk is the graph Laplacian matrix of Gk , 
and M is the total number of speech frames. Let us now 
investigate the graph weighted matrix Lk of Gk , for 
the sake of revealing the intrinsic relationships among 
speech frames in real-time.

(4)XE = JFT{XE} = �GXE�T,

(5)IJFT{X̂E} = �−1
G X̂E�

T
T .
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Following the K-graphs learning framework in [44], 
we formulate the multiple graphs learning problem of 
noisy speech graph signals as

where skGLk(s
k
G)

T describes the smoothness of SGSs 
supported on Gk , the Frobenius norm of 1+Lk is used 
to control the distribution of the edge weights and the 
sparsity, and the third term is the regularization function 
and ensures its positive value [45]. The first and second 
constraints are used to ensure the symmetricity and non-
negativity of Lk . The third constraint is added to prevent 
trivial solutions and control the volume of the corre-
sponding multiple graphs Gk . Ms controls the volume of 
the intra-graph. α and β are non-negative regularization 
parameters. As the objective function (6) is convex, we 
can solve it with the CVX toolbox [46] in the experimen-
tal section.

We infer an intra-graph topology to investigate the 
internal relationships between speech samples within a 
frame. We denote sig as the ith row of skG , which is indexed 
by an intra-graph Oi . Here we focus on studying the 

(6)

min
L1,···LK

s
1
G ,···s

K
G∈R

Ms×Ns

K∑

k=1

∑

s
k
G∈s

K
G

trace(skGLk(s
k
G)

T)+
K∑

k=1

β�1+Lk�2F +
K∑

k=1

α�Lk�1,

s.t. diag(Lk) ≥ 0,
trace(Lk) = Ms.

Lk = (Lk)
T , 1 ≤ k ≤ K,

strong causality between adjacent speech samples within 
a frame. Upon denoting the graph weight matrix of Oi by 
Wi ∈ R

Ns×Ns , we set wi(m, n) = 1 if there exists a strong 

causality between the vertex vm and its adjacent vertex vn , 
and otherwise wi(m, n) = 0 . That is,

Then, we have Oi = (Vi,Wi) , where Vi represents the 
vertex set with cardinality |Vi| = Ns . Hence, Ms speech 
frames f  can be constructed as the speech graph signal 
sG indexed by the multiple graphs GS = (V ,L∗) as shown 
in Fig. 1.

By applying the Cartesian product of the inter-graph Lapla-
cian matrix Lk and the intra-graph weight matrix Wi , L∗ is 
constructed as

(7)Wi =




0 1 0 · · · · · · 0
1 0 1 · · · · · · 0
0 1 0 1 · · · 0
...

...
...

...
. . . 0

0 · · · · · · 1 0 1
0 · · · · · · · · · 1 0



.

(8)p : f → sG ∈ R
Ms×Ns indexedby GS = Gk × Oi, 1 ≤ k ≤ K , 1 ≤ i ≤ Ms.

Fig. 1  The visualization of the multiple graphs Gs
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and the vertex set V∗ is given as

4 � The MMSE graph spectral magnitude estimator 
method

This section proposes a minimum mean-square error 
(MMSE) graph spectral magnitude estimator based on 
the learned multiple graphs above. Specifically, we first 
define the corresponding joint graph Fourier transform 
(JGFT) and the inverse JGFT (IJGFT). Then we investi-
gate the representation of the MMSE graph spectral mag-
nitude estimator in GSP by extending the classical MMSE 
short-time spectral amplitude (STSA) estimator.

4.1 � The joint graph Fourier transform for SGSs
Differ from the joint graph Fourier transform definition 
in Section  2, by applying the singular value decomposi-
tion (SVD) on Wi , we have

where Fw and Dw are the left unitary matrix and 
the right unitary matrix of Wi , respectively, and 
�w = diag(�w1 , �

w
2 , ..., �

w
Ns
) is the corresponding diagonal 

matrix and its element represents the graph frequency 
along the intra-graph edge. Similarly, we have

where FL and DL respectively represent the left unitary 
matrix and the right unitary matrix of Lk  and the ele-
ment �Lj  

(
1 ≤ j ≤ Ms

)
 of �L represents the graph fre-

quency along the inter-graph edges. The joint graph 
Fourier transform (JGFT) for skG can be defined as

where Sk
F

 is the graph Fourier version of skG . Moreover, 
the inverse IJGFT of Sk

F
 is defined as

(9)L
∗ = Lk ×Wi, 1 ≤ k ≤ K , 1 ≤ i ≤ Ms,

(10)V
∗ = Vk × Vi.

(11)Wi = Fw ×�w ×D
T
w ,

(12)Lk = FL ×�L ×D
T
L
,

(13)S
k
F
= JGFT{skG} = (Fw)

−1
s
k
G(FL)

−1,

(14)s
k
G = IJGFT{Sk

F
} = FwS

k
F
FL.

It should be noted that by using the defined JGFT, we 
can get the graph magnitude spectra of speech signals 
belonging to the real field by mapping speech signals into 
the graph frequency domain.

4.2 � The MMSE graph spectral magnitude estimator 
for SGSs

Let us now investigate the MMSE graph spectral mag-
nitude estimator. We denote skG = xG + nG where xG is 
clean SGSs, nG is the additive graph noise signal which 
is independent of xG . By performing the defined JGFT in 
(13), we have

where Sk
F

 , XF  and NF  are the JGFT coefficient of skG , xG 
and nG respectively. Upon denoting the ith row of Sk

F
 , XF  , 

and NF  by Yi , Xi , and Ni , respectively, a graph speech 
sample on a vertex can be donated as Yi

j = Xi
j +Ni

j where 
i = 1, 2, 3, ...,K  , j = 0, 1, 2, ...,Ns − 1.

Let us denote Ri
j =

∣∣∣Yi
j

∣∣∣ and Zi
j =

∣∣∣Xi
j

∣∣∣ . Based on the work 
in [46], the MMSE estimator for the graph magnitude spec-
trum Xi

j can be obtained as

In case of the Gaussian statistical model for spectral com-
ponents, we have

where (�x)ij = E

[(
Xi
j

)2]
 and (�n)ij = E

[(
Ni
j

)2]
 are the jth 

SGS and the graph noise variance for Xi
j  and Ni

j  respec-
tively. By substituting (17) and (18) into ∫∞
0 Zi

j p(Y
i
j |Z

i
j )p(Z

i
j )dZ

i
j and 

∫∞
0 p(Y i

j |Z
i
j )p(Z

i
j )dZ

i
j , we 

have

(15)S
k
F
= XF +NF ∈ R

(16)Ẑi
j = E(Zi

j |Y
i
j ) =

∫∞
0 p(Y i

j |Z
i
j )p(Z

i
j )(Z

i
j )dZ

i
j∫∞

0 p(Y i
j |Z

i
j )p(Z

i
j )dZ

i
j

.

(17)p(Y i
j |Z

i
j ) =

1

π(�n)
i
j

exp

{
−

1

(�n)
i
j

|Yi
j − Zi

j |
2

}
,

(18)p
�
Zi
j

�
=

Zi
j

π(�x)
i
j

exp





−

�
Zi
j

�2

(�x)
i
j





,

(19)

ξ =
� ∞

0
Zi
j p(Y

i
j |Z

i
j )p(Z

i
j )dZ

i
j

=
� ∞

0

1

π(�n)
i
j

exp

�
−

1

(�n)
i
j

|Yi
j − Zi

j |
2

�
(Zi

j)
2

π(�x)
i
j

exp





−

�
Zi
j

�2

(�x)
i
j





dZi

j ,
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and

Then, we can rewrite (16) equivalently as

And, we arrive at

Upon denoting σ 2 =
(�n)

i
j+(�x)

i
j

(�n)
i
j(�x)

i
j

 and τ =
Y i
j (�x)

i
j

(�n)
i
j+(�x)

i
j

 , we can 

rewrite (21) equivalently as

Let us now analyze ξ . Upon denoting y = Zi
jσ − στ , we 

have

(20)

� =∫
∞

0

p(Y i
j
�Zi

j
)p(Zi

j
)dZi

j

=∫
∞

0

1

�(�n)
i
j

exp

�
−

1

(�n)
i
j

�Y i
j
− Zi

j
�2
�

Zi
j

�
�
�x
�i
j

exp

⎧⎪⎨⎪⎩
−

�
Zi
j

�2

�
�x
�i
j

⎫
⎪⎬⎪⎭
dZi

j
.

(21)

Ẑi
j
=

�

�
=

∫ ∞

0
exp

{
−

1

(�n)
i
j

|Y i
j
− Zi

j
|2
}
exp

{
−

(
Zi
j

)2

(�x )
i
j

}
(Zi

j
)2dZi

j

∫ ∞

0
exp

{
−

1

(�n)
i
j

|Y i
j
− Zi

j
|2
}
exp

{
−

(
Zi
j

)2

(�x)
i
j

}
Zi
j
dZi

j

.

(22)

Ẑi
j
=

�

�
=

∫ ∞

0
exp

{
−

(�n )
i
j
+(�x )

i
j

(�n )
i
j
(�x )

i
j

(Zi
j
−

Y i
j
(�x )

i
j

(�n )
i
j
+(�x )

i
j

)

2
}
exp

{
−

(Zi
j
)
2

(�x )
i
j

}
(Zi

j
)
2
dZi

j

∫ ∞

0
exp

{
−

(�n )
i
j
+(�x )

i
j

(�n )
i
j
(�x )

i
j

(Zi
j
−

Y i
j
(�x )

i
j

(�n )
i
j
+(�x )

i
j

)

2
}
exp

{
−

(Zi
j
)
2

(�x )
i
j

}
(Zi

j
)dZi

j

Zi
j
.

(23)Ẑi
j =

ξ

ζ
=

∫∞
0 exp

{
−σ 2(Zi

j − τ )
2
}
(Zi

j)
2
dZi

j

∫∞
0 exp

{
−σ 2(Zi

j − τ )
2
}
(Zi

j)dZ
i
j

.

(24)

� =∫
∞

0

exp
{
−�2(Zi

j
− �)

2
}
(Zi

j
)
2
dZi

j

=
1

�3 ∫
∞

0

exp
{
−(Zi

j
� − ��)

2
}
(Zi

j
�)

2
dZi

j
�
y=Zi

j
�−��

→

=
1

�3 ∫
0

−��

y2exp
{
−y2

}
dy +

1

�3 ∫
∞

0

y2exp
{
−y2

}
dy

Let us introduce the Gauss error function 
erf (x) = 2√

π

∫ x
0 e−η2dη . Substituting erf(x) into (24) (see 

Appendix 1) gives

Similarly, we have

By combining (21), (25) and (26) (see Appendix  2), we 
arrive at

Let us introduce the notation of the prior signal-to-noise 
ratio ϕi

j =
(�x)

i
j

(�n)
i
j

 and the posterior signal-to-noise ratio 

δij =
(�n)

i
j

(�x)
i
j

 . Due to σ 2 =
(�n)

i
j+(�x)

i
j

(�n)
i
j(�x)

i
j

 and τ =
Y i
j (�x)

i
j

(�n)
i
j+(�x)

i
j

 , we 

have

By combining (23), (27) and (28), we can obtain the gain 
function of the MMSE graph spectral magnitude estima-
tor given as

where C is a constant. Following the classical decision 
directed approach in [25], we have ϕi

j as

where υ ∈ (0, 1) is the gain parameter. For the sake of 
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proposed MMSE graph magnitude spectral estimator-
based K-graphs learning in the following sections.

5 � Numerical results and discussions
In this section, we present the output signal-to-noise 
ratio (SNR), perceptual evaluation of speech qual-
ity (PESQ) [47], log-likelihood ratio (LLR) [48], and 
short-time objective intelligibility (STOI) [49] measure 
results of the proposed MMSE graph spectral magni-
tude estimator. The traditional MMSE-STSA method 
in [25], the optimal modified minimum mean-square 
error log-spectral method (OMLSA) in [26], the 
improved graph Wiener filtering method (GWF-SGS) 
in [30], the vertex-frequency graph Wiener filtering 
(VFGWF) in [32], the graph Wiener filtering method 
for directed cyclic time series (GWF-DCGS), and 
the graph Wiener filtering for arbitrary graph signals 
(GWF-AGS) in [33] are used as the benchmarks. The 
output LLR is defined as

where 
−→
dp and 

−→
dc represent the LPC vector of the 

enhanced speech frame and original speech signals, 
respectively. Rc represents the autocorrelation matrix of 
the original speech signals [50]. In our numerical simu-
lations, the noisy speech signals are generated by mixing 
pure speech signals from the TIMIT database [51] with 
noise signals at the input signal-to-noise ratios (SNRs) 
from −15 to 5 dB. Two hundred sentences consisting of 
20 speakers (10 females and 10 males) are used as the 
clean speech signal. White noise, Gaussian color noise, 
and Babble noise from NOISES-92 library [52] are used 
as noise signals. The sampling frequency is 16 kHz. The 
speech signals are framed by the Hamming window with 
a length of 256 points and an overlap of 50%.

Figure  2 shows the traditional spectrogram obtained 
by the discrete Fourier transform (DFT) and the graph 
spectrogram obtained by the proposed graph Fourier 

(31)LLR = log
(−→
dpRc

−→
dp

T/
−→
dcRc

−→
dc

T
)
,

Fig. 2  Clean speech signals and its spectrograms. a The clean speech signals. b The traditional spectrogram. c The graph spectrogram
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basis based on the graph weight matrix Wi of the inter-
graph, respectively. Observe from Fig.  2 that the graph 
spectrogram is mainly distributed in the high graph fre-
quency regions, while the traditional spectrogram is 
mainly distributed in the low-frequency regions. The 
reason is that considering the Theorem  1 for the graph 
frequency ordering in [53], the smallest eigenvalue of Wi 
represents the lowest frequency, and its largest eigen-
value is the highest frequency. These are different from 
the traditional frequencies. Although the graph spectro-
gram is similar to that of the conventional spectrogram, 
this graph spectrogram is utterly different from that of 
the traditional spectrum. In addition, the proposed graph 
Fourier basis can map speech signals into the real graph 
frequency field by applying the eigenvector matrix of Wi.

Figure  3 shows the output SNR of the proposed 
GMMSE-KGL method in the case of white noise versus 
the frame number Ms where Ns = 256 . Observe from 
Fig. 3, to achieve a high output SNR, Ms should be nei-
ther too small nor too large. When it takes a small value, 
the relationships among non-adjacent frames cannot be 
well described as the designed small multiple graphs. In 
contrast, when Ms takes a large value, the boundaries 
between sub-multiple graphs might have a similar ten-
dency, which would degrade the output SNR. Because 
the larger multiple graphs will lose some details of speech 
samples, resulting in estimating the inability to the graph 
spectral magnitude of speech samples well. Hence, the 

range of Ms can be Ms ∈ [20, 30] in the case of Ns = 256 , 
and we use Ms = 30 in our numerical simulations below.

Figure 4 shows the output SNR results of the proposed 
GMMSE-KGL method under white noise with the dif-
ferent vertex number Ns of the intra-graph topology Oi 
where Ms = 30 . We can see from Fig. 4 that the perfor-
mance of the proposed GMMSE-KGL method decreases 
with the increase of Ns . The reason for this is that the 
intra-graph topology becomes more complex and larger 
as Ns increases, resulting in the gain function of the pro-
posed GMMSE-KGL method is not accurately estimated 
by using the SGS’s graph power spectrum on Oi . Moreo-
ver, the proposed GMMSE-KGL method in the case of 
Ns = 64 would obtain a better performance. Considering 
the fairness of comparison, we use the frame with length 
256 and build our intra-graph with Ns = 256 , that is, 
Oi = (Vi,W

256×256
i ).

Table 1 shows the PESQ results of the K-graphs learn-
ing (KGL) followed by the GMMSE method, the graph 
k-shift operator (GKSO) [30] followed by the GMMSE 
method and the graph learning (GL) [32] followed by 
the GMMSE method in the case of white noise. For writ-
ing convenience, we denote the methods above as the 
GMMSE-KGL, GMMSE-KGS, and GMMSE-GL, respec-
tively. We can observe from Table  1 that the PESQ of 
the proposed GMMSE-KGL outperforms that of the 
GMMSE-GKSO and GMMSE-GL, which illustrates the 
effectiveness of the K-graphs learning part in speech 

Fig. 3  The output SNR versus the cluster number K of the proposed GMMSE-KGL method
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enhancement. Moreover, the PESQ of the proposed 
GMMSE-KGL is 0.5 higher than that of GMMSE-GKSO 
and is 0.2 higher than that of GMMSE-GL, when the 
input SNR is larger than -5 dB.

Table  2 shows the PESQ results of the proposed 
GMMSE and the graph Wiener filtering (GWF) method 
combined with the K-graphs learning method in the case 
of white noise, respectively. For writing convenience, we 
denote the two methods above as the GMMSE-KGL and 
GWF-KGL. From Table 2, we can see that the PESQ of 
the proposed GMMSE-KGL is 0.2 higher than that of 
GWF-KGL. The PESQ results of the proposed GMMSE-
KGL demonstrate the effectiveness of the GMMSE part 
in speech enhancement. Tables 1 and 2 illustrate that the 
proposed K-graphs learning part and the GMMSE-based 

Fig. 4  The output SNR versus the sample number Ns of the proposed GMMSE-KGL method

Table 1  The PESQ of the different graph models followed by the 
GMMSE method

PESQ

Input SNR

Graph models −15 dB −10 dB −5 dB 0 dB 5 dB

GMMSE-GKSO 1.028 1.283 1.058 1.465 1.420

GMMSE-GL 0.984 1.128 1.408 1.798 2.109

GMMSE-KGL 0.995 1.162 1.532 1.934 2.277

Table 2  The PESQ of different graph speech enhancement 
methods followed by the K-graphs learning method

PESQ

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 0.954 1.079 1.253 1.560 1.924

GWF-KGL 0.984 1.065 1.304 1.633 2.001

GMMSE-KGL 0.995 1.162 1.532 1.934 2.277

Table 3  The PESQ of different methods for white noise

PESQ

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 0.954 1.079 1.253 1.560 1.924

MMSE-STSA 0.916 1.063 1.413 1.834 2.201

OMLSA 0.920 0.874 1.255 1.757 2.246

GWF-SGS 0.984 1.065 1.304 1.633 2.001

VFGWF 1.002 1.067 1.347 1.711 2.078

GWF-AGS 0.849 0.959 1.109 1.318 1.628

GWF-DCGS 0.885 1.081 1.166 1.244 1.349

GMMSE-KGL 0.995 1.162 1.532 1.934 2.277
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enhancement part almost contribute equally to the per-
formance improvement.

Table  3 shows the PESQ results of the proposed 
GMMSE-KGL, GWF-DCGS, GWF-AGS, GWF-SGS, 
VFGWF, MMSE-STSA, and OMLSA methods for the 
case of white noise. Observe from Table 3 that though the 
proposed GMMSE-KGL method leads to a slightly lower 
PESQ value as compared to the VFGWF method in the 
case of −15 dB input SNR, the proposed GMMSE-KGL 
method outperforms all the benchmarks when the input 
SNR is more than −10dB in terms of PESQ, which shows 
the advantage of the proposed GMMSE-KGL method.

Table  4 shows the LLR results of the proposed 
GMMSE-KGL, GWF-DCGS, GWF-AGS, GWF-SGS, 
VFGWF, MMSE-STSA, and OMLSA methods for the 
case of white noise. We can see from Table  4 that the 
proposed GMMSE-KGL method performs better than 
the GWF-DCGS, GWF-AGS, VFGWF, and MMSE-
STSA methods in terms of LLR results. However, when 
the input SNR is between −10 and −5 dB, the proposed 
GMMSE-KGL method performs worse than the OMLSA 
method. Because OMLSA could estimate the noise very 
well by applying the MCRA method, estimating the log-
spectral amplitude of clean speech signals.

Table 5 shows the output SNR results of the proposed 
GMMSE-KGL method, GWF-DCGS, GWF-AGS, GWF-
SGS, VFGWF, MMSE-STSA, and OMLSA methods for 
the case of white noise. From Table  5, we can see that 
the output SNR of the proposed GMMSE-KGL method 
is higher than that of the GWF-DCGS and the GWF-
AGS methods, regardless of the input SNR. The pro-
posed GMMSE-KGL method is also higher than that of 
the GWF-SGS, VFGWF, and OMLSA methods for the 
cases where the input SNR is lower than −5 dB. However, 
when the input SNR is higher than −5 dB, the proposed 
GMMSE-KGL method leads to a lower output SNR as 
compared to the MMSE-STSA, OMLASL, GWF-SGS, 

and VFGWF methods. The reason for this is that the pro-
posed GMMSE-KGL method may misestimate the graph 
spectra of clean speech signals, so it cannot estimate the 
graph magnitude of pure graph speech signals.

Table  6 shows the STOI results of the proposed 
GMMSE-KGL method and the benchmarks in the 
case of white noise. Observe from Table 6 that the pro-
posed GMMSE-KGL method outperforms the OMLSA, 
MMSE-STSA, GWF-AGA, and GWF-DCGS methods 
overall. However, the proposed GMMSE-KGL method 
performs worse than the GWF-SGS, and VFGWF meth-
ods in terms of STOI. The reason for this is that when we 
learn the dynamic graphs using the K-graphs learning 
method, the graph spectrum of some noises is regarded 
as that of clean speech details, leading to estimating 
accurately the graph spectrum of clean speech signals.

Table  7 reports the PESQ results of the proposed 
GMMSE-KGL, GWF-DCGS, GWF-AGS, VFGWF, 
MMSE-STSA, and OMLSA methods in a comparative 
study on suppressing Gaussian color noise. Observe from 
Table  7 that the proposed GMMSE-KGL method out-
performs all the benchmarks in terms of PESQ overall. 
Moreover, from Table 7 we can see that when the input 

Table 4  The LLR of different methods for white noise

LLR

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 1.638 1.631 1.617 1.580 1.514

MMSE-STSA 1.627 1.616 1.591 1.532 1.430

OMLSA 1.677 1.670 1.646 1.579 1.468

GWF-SGS 1.638 1.631 1.617 1.578 1.510

VFGWF 1.643 1.634 1.611 1.565 1.485

GWF-AGS 1.642 1.635 1.620 1.581 1.514

GWF-DCGS 1.652 1.630 1.630 1.594 1.517

GMMSE-KGL 1.745 1.649 1.634 1.626 1.569

Table 5  The output SNR of different methods for white noise

Output SNR

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

MMSE-STSA −0.633 1.488 3.358 5.225 6.763

OMLSA −0.046 0.961 2.356 3.869 4.842

GWF-SGS −7.533 −3.275 0.794 3.897 7.865

VFGWF −7.686 −3.386 0.736 4.732 8.746

GWF-AGS 0.108 0.116 0.091 0.066 0.050

GWF-DCGS 0.022 0.114 0.035 0.011 0.040

GMMSE-KGL 0.304 0.414 2.694 3.384 3.876

Table 6  The STOI of different methods for white noise

STOI

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 0.388 0.464 0.571 0.697 0.817

MMSE-STSA 0.405 0.461 0.538 0.630 0.719

OMLSA 0.360 0.404 0.489 0.627 0.756

GWF-SGS 0.406 0.506 0.626 0.743 0.837

VFGWF 0.396 0.494 0.613 0.730 0.829

GWF-AGS 0.511 0.535 0.562 0.586 0.631

GWF-DCGS 0.528 0.543 0.565 0.555 0.560

GMMSE-KGL 0.372 0.461 0.567 0.675 0.772
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SNR is −15dB, the PESQ of the proposed GMMSE-KGL 
method is lower than that of the OMLSA and GWF-SGS 
methods.

Table  8 shows the LLR results in a comparative study 
on suppressing Gaussian color noise. Observe from 
Table  8 that the LLR results of the proposed GMMSE-
KGL method are slightly higher than the traditional 
MMSE-STSA and OMLSA methods from 0 to 5 dB and 
are lower than those of the GWF-DCGS, GWF-AGS, 
GWF-SGS, and VFGWF methods when the input SNR 
is no less than 0 dB. This illustrates that the proposed 
GMMSE-KGL method provides a slightly better spectral 
envelope than the traditional MMSE-STSA and OMLSA 
methods. However, the proposed GMMSE-KGL method 
cannot estimate the graph spectrum reasonably as com-
pared to the existing GSP-based methods.

Table  9 shows the output SNR results in a compara-
tive study on suppressing Gaussian color noise. From 
Table  9, we observe that in terms of its output SNR, 
the proposed GMMSE-KGL method outperforms the 
GWF-DCGS, GWF-AGS, GWF-SGS, VFGWF, and 
OMLSA methods in cases of negative input SNRs. In 

the positive input SNRs, the relationship among noise 
frames could not be captured by the K-graphs learn-
ing method, leading to not estimating noise power 
spectra in real-time. The performance of the proposed 
GMMSE-KGL method is lower than the GWF-SGS 
and VFGWF methods. Additionally, compared to the 
MMSE-STSA method, the proposed GMMSE-KGL 
method leads to a much smaller improvement in the 
output SNR results. The reason for this is that the pro-
posed GMMSE-KGL method reduces more details of 
clean speech signals and has a slight improvement in 
terms of the output SNR.

Table  10 shows the STOI results of the proposed 
GMMSE-KGL, GWF-DCGS, GWF-AGS, GWF-SGS, 
VFGWF, MMSE-STSA, and OMLSA methods in the case 
of Gaussian color noise. Observe from Table 10 that the 
STOI results of the proposed GMMSE-KGL method are 
higher than that of the MMSE-STSA, OMLSA, GWF-
DCGS, and GWF-AGS methods when the input SNR is 
between −15 and 5dB. Note that the proposed GMMSE-
KGL method estimates the graph spectrum of some 
Gaussian color noise as that of clean speech signals, 

Table 7  The PESQ of different methods for Gaussian color noise

PESQ

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 0.937 1.058 1.181 1.437 1.797

MMSE-STSA 0.940 0.966 1.281 1.692 2.097

OMLSA 1.150 0.884 1.125 1.586 2.100

GWF-SGS 0.981 1.006 1.195 1.500 1.870

VFGWF 0.939 1.038 1.223 1.558 1.934

GWF-AGS 0.836 0.960 1.049 1.231 1.356

GWF-DCGS 0.838 0.940 1.104 1.253 1.471

GMMSE-KGL 0.971 1.132 1.424 1.850 2.233

Table 8  The LLR of different methods for Gaussian color noise

LLR

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 1.998 1.986 1.938 1.815 1.611

MMSE-STSA 1.967 1.907 1.810 1.662 1.454

OMLSA 1.917 1.857 1.724 1.537 1.335

GWF-SGS 1.998 1.986 1.938 1.815 1.609

VFGWF 1.992 1.972 1.920 1.800 1.584

GWF-AGS 1.889 1.859 1.814 1.748 1.553

GWF-DCGS 1.985 1.969 1.912 1.789 1.595

GMMSE-KGL 1.891 1.918 1.828 1.664 1.463

Table 9  The output SNR of different methods for Gaussian color 
noise

Output SNR

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

MMSE-STSA −0.692 1.314 2.929 4.693 6.318

OMLSA −0.037 0.673 1.898 3.474 4.642

GWF-SGS −7.364 −3.521 0.791 3.698 7.817

VFGWF −8.846 −4.352 0.028 3.997 8.289

GWF-AGS 0.024 0.049 0.026 0.032 0.016

GWF-DCGS 0.232 0.299 0.275 0.185 0.111

GMMSE-KGL 0.292 1.023 2.893 3.565 4.591

Table 10  The STOI of different methods for Gaussian color noise

STOI

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 0.371 0.435 0.531 0.650 0.775

MMSE-STSA 0.391 0.436 0.507 0.593 0.685

OMLSA 0.356 0.396 0.461 0.582 0.719

GWF-SGS 0.386 0.476 0.594 0.709 0.807

VFGWF 0.377 0.463 0.578 0.695 0.799

GWF-AGS 0.513 0.543 0.579 0.597 0.609

GWF-DCGS 0.520 0.530 0.540 0.543 0.528

GMMSE-KGL 0.351 0.437 0.533 0.641 0.740
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resulting in obtaining low STOI results as compared to 
the GWF-SGS and VFGWF methods.

Table  11 shows the PESQ results of the proposed 
GMMSE-KGL, GWF-DCGS, GWF-AGS, GWF-SGS, 
VFGWF, MMSE-STSA, and OMLSA methods for Bab-
ble noise. Observe from Table  11 that the proposed 
GMMSE-KGL method outperforms all the benchmarks 
in terms of PESQ with input SNR ranging from −15 to 
5 dB.

Table  12 shows the LLR results of the proposed 
GMMSE-KGL, GWF-DCGS, GWF-AGS, GWF-SGS, 
VFGWF, MMSE-STSA, and OMLSA for Babble noise. 
Observe from Table 12 that the proposed GMMSE-KGL 
method performs better than the traditional MMSE-
STSA and OMLSA methods when the input SNR is 
between −10 and 5dB. However, the proposed GMMSE-
KGL method cannot outperform the GWF-SGS, 
VFGWF, GWF-DCGS, and GWF-AGS methods when 
the input SNR is between −15 and 5 dB. The reason for 
this is that the proposed GMMSE-KGL method may not 
estimate the graph spectrum of the nonstationary noise 

as compared to the GWF-SGS, VFGWF, GWF-DCGS, 
and GWF-AGS methods.

Table  13 shows the output SNR results of the pro-
posed GMMSE-KGL, GWF-DCGS, GWF-AGS, GWF-
SGS, VFGWF, MMSE-STSA, and OMLSA methods for 
Babble noise. Observe from Table  13 that the proposed 
GMMSE-KGL method outperforms the GWF-SGS, 
VFGWF, and MMSE-STSA methods when the input SNR 
is lower than −5dB. Though the GWF-AGS and GWF-
DCGS methods could be better than GMMSE-KGL in 
negative input SNR values, our proposed GMMSE-KGL 
method performs better than the GWF-AGS and GWF-
DCGS methods when input SNRs are positive.

Table  14 shows the STOI results of the proposed 
GMMSE-KGL, GWF-DCGS, GWF-AGS, GWF-SGS, 
VFGWF, MMSE-STSA, and OMLSA methods for Bab-
ble noise. It can be observed from Table 14 that when the 
input SNR is less than 0dB, the STOI results of the pro-
posed GMMSE-KGL method are higher than those of 
MMSR, OMLSA, and GWF-SGS methods and are lower 
than those of the VFGWF, GWF-AGS, and GWF-DCGS 
methods. The above situation is reversed when the input 

Table 11  The PESQ of different methods for Babble noise

PESQ

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 1.472 1.460 1.633 1.920 2.240

MMSE-STSA 0.981 1.196 1.582 1.993 2.374

OMLSA 1.068 1.263 1.624 1.978 2.354

GWF-SGS 1.174 1.264 1.514 1.671 2.122

VFGWF 1.306 1.511 1.692 1.977 2.284

GWF-AGS 0.975 1.204 1.456 1.683 1.799

GWF-DCGS 1.084 1.321 1.179 1.474 1.475

GMMSE-KGL 1.594 1.626 1.939 2.230 2.492

Table 12  The LLR of different methods for Babble noise

LLR

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 1.423 1.318 1.149 0.934 0.709

MMSE-STSA 1.559 1.440 1.260 1.050 0.835

OMLSA 1.585 1.465 1.287 1.074 0.850

GWF-SGS 1.998 1.986 1.938 1.814 1.610

VFGWF 1.471 1.356 1.204 0.997 0.773

GWF-AGS 1.415 1.315 1.156 0.954 0.749

GWF-DCGS 1.395 1.324 1.209 1.074 0.930

GMMSE-KGL 1.885 1.887 1.838 1.810 1.784

Table 13  The output SNR of different methods for Babble noise

Output SNR

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

MMSE-STSA −7.691 −3.262 0.830 4.741 8.442

OMLSA −2.119 0.678 2.604 3.873 4.753

GWF-SGS −10.816 −6.075 −1.547 2.359 6.599

VFGWF −9.100 −8.986 −4.057 0.830 5.727

GWF-AGS 0.021 0.160 0.243 0.225 0.147

GWF-DCGS 0.046 0.073 0.023 0.019 0.010

GMMSE-KGL −0.521 −0.243 0.211 1.022 2.304

Table 14  The STOI of different methods for Babble noise

STOI

Input SNR

Algorithms −15 dB −10 dB −5 dB 0 dB 5 dB

Noisy 0.342 0.418 0.524 0.644 0.758

MMSE-STSA 0.253 0.342 0.471 0.610 0.735

OMLSA 0.265 0.356 0.481 0.614 0.736

GWF-SGS 0.283 0.372 0.506 0.640 0.764

VFGWF 0.255 0.407 0.519 0.645 0.760

GWF-AGS 0.506 0.533 0.567 0.586 0.573

GWF-DCGS 0.520 0.540 0.546 0.527 0.494

GMMSE-KGL 0.315 0.391 0.498 0.603 0.697
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SNR is not less than 0dB. This implies that the proposed 
GMMSE-KGL method may not estimate a graph spec-
trum of Babble noise, and even some speech details may 
be regarded as Babble noise and removed in higher input 
SNR cases.

Table  15 gives the computational complexity of the 
proposed GMMSE-KGL, GWF-DCGS, GWF-AGS, 
GWF-SGS, VFGWF, MMSE-STSA, and OMLSA meth-
ods. Here we discuss the computational complexity of 
methods caused by the graph/discrete Fourier transform 
and its inverse transform. To be specific, let M, Ms Ns , L 
represent the number of whole noisy speech frames, the 
number of noisy speech frames in a cluster, the length of 
a noisy speech frame, and the tap number of the graph 
Wiener filtering, respectively. Based on the computa-
tional complexity discussion in [30, 32] and the matrix 
multiplication theory, we can observe from Table 15 that 
the computational complexity of the proposed GMMSE-
KGL method is higher than that of traditional methods. 
The reason for this is that the proposed GMMSE-KGL 
method does not apply the fast graph Fourier transform, 
while all the traditional methods use the FFT operation. 
Meanwhile, the proposed GMMSE-KGL method based 
on the Fourier basis of the sparse matrix L∗ has a lower 
computational complexity compared to both the GWF-
DCGS method and that of the GWF-AGS method. Note 
that Ms is smaller than M , and the computational com-
plexity of the proposed GMMSE-KGL method is lower 
than that of the VFGWF method.

6 � Conclusions
This paper used the K-graphs learning method to learn 
multiple graphs for speech signals, which can investi-
gate intrinsic relationships among inter-frames and the 
relationship between speech samples within a frame in 
real-time. On this basis, we developed a representation 
of the MMSE graph spectral magnitude estimator and 
used different input SNRs to evaluate the performance 

of the proposed GMMSE-KGL method on speech 
enhancement. The experimental results showed that 
the proposed GMMSE-KGL method outperformed the 
graph Wiener filtering methods in GSP on the PESQ 
and was comparable to some of the well-performing 
traditional baseline methods in DSP in terms of the 
LLR, STOI, and output SNR.

Appendixes
Appendix 1
In this Appendix, we derive the molecular fraction ξ in 
(23)

Upon denoting y = Zi
jσ − στ , we have

Using the representation of the combinations of expo-
nentials and arbitrary power [[54], eq.3.381.4]

we obtain

Using the representation of the Gauss error function 
erf (x) = 2√

π

∫ x
0 e−η2dη [[54], 3.321.1] and upon denoting 

-y = t , we obtain
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Table 15  The computational complexity of different methods

Algorithms The complexity

MMSE-STSA O
(
Ns log2Ns + Ns logNs

)

OMLSA O
(
Ns log2Ns + Ns logNs

)

GWF-SGS O
(
Ns + Ns

2
)
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(
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2
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GWF-AGS O(LNs)

GWF-DCGS O(LNs)

GMMSE-KGL O
(
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2
Ns

)



Page 14 of 16Wang et al. EURASIP Journal on Audio, Speech, and Music Processing          (2023) 2023:7 

Appendix 2
In this Appendix, we derive the gain function (28) of 
MMSE graph magnitude estimator, the denominator 
fraction ζ in (22) is given as

Upon denoting y = Zi
jσ − στ , we have
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Using the representation of the Gauss error function 
erf (x) = 2√

π

∫ x
0 e−η2dη [[54], 3.321.1] and upon denoting 

-y=t , we have

Submitting the (A.5) and (B.3) into (23), we obtain

Hence, the gain function of the MMSE graph spectral 
magnitude estimator can be described as
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