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Abstract 

Recently, supervised speech separation has made great progress. However, limited by the nature of supervised 
training, most existing separation methods require ground-truth sources and are trained on synthetic datasets. This 
ground-truth reliance is problematic, because the ground-truth signals are usually unavailable in real conditions. 
Moreover, in many industry scenarios, the real acoustic characteristics deviate far from the ones in simulated datasets. 
Therefore, the performance usually degrades significantly when applying the supervised speech separation models to 
real applications. To address these problems, in this study, we propose a novel separation consistency training, termed 
SCT, to exploit the real-world unlabeled mixtures for improving cross-domain unsupervised speech separation in an 
iterative manner, by leveraging upon the complementary information obtained from heterogeneous (structurally dis-
tinct but behaviorally complementary) models. SCT follows a framework using two heterogeneous neural networks 
(HNNs) to produce high confidence pseudo labels of unlabeled real speech mixtures. These labels are then updated 
and used to refine the HNNs to produce more reliable consistent separation results for real mixture pseudo-labeling. 
To maximally utilize the large complementary information between different separation networks, a cross-knowledge 
adaptation is further proposed. Together with simulated dataset, those real mixtures with high confidence pseudo 
labels are then used to update the HNN separation models iteratively. In addition, we find that combing the heteroge-
neous separation outputs by a simple linear fusion can further slightly improve the final system performance. In this 
paper, we use cross-dataset to simulate the cross-domain situation in real-life. The term of “source domain” and “target 
domain” refer to the simulation set for model pre-training and the real unlabeled mixture for model adaptation. The 
proposed SCT is evaluated on both public reverberant English and anechoic Mandarin cross-domain separation tasks. 
Results show that, without any available ground-truth of target domain mixtures, the SCT can still significantly outper-
form our two strong baselines with up to 1.61 dB and 3.44 dB scale-invariant signal-to-noise ratio (SI-SNR) improve-
ments, on the English and Mandarin cross-domain conditions, respectively.

Keywords  Unsupervised speech separation, Heterogeneous, Separation consistency, Cross-knowledge adaptation

1  Introduction
Multi-speaker interaction scenarios are very common in 
real-world speech processing applications. Speech sepa-
ration, separating each source signal from mixed speech, 
is one of the most important technology for these appli-
cations, including speaker diarization, speaker verifica-
tion, multi-talker speech recognition, etc.

Because of the importance of speech separation, 
numerous studies have focused on this topic, including 
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the traditional time-frequency (T-F) domain separation 
methods [1–12], and the recent popular time-domain 
approaches [13–20]. All these contributions have led 
to significant progress on the single-channel speech 
separation. Most of them follow a mask learning pat-
tern that aims to learn a weighting matrix (mask) to 
capture relationship between the isolated clean sources. 
The mask is then used to separate each source signal 
with an element-by-element multiplication. In addi-
tion, some researchers also concentrate on learning 
clean sources directly from the mixed speech, which is 
known as mapping-based separation [21–23].

Reviewing recent speech separation techniques, most 
of them are supervised ones with their own advantages. 
Such as, the T-F domain methods take spectrogram as 
input features that are good at capturing the phonetic 
structure of speech [24]; the time-domain methods 
pay more attention to the fine structure of speech but 
are vulnerable to environmental or background varia-
tions; the masking-based methods are effective in uti-
lizing the clean speech of training corpus but sensitive 
to speech with signal-to-noise ratio (SNR) variations; 
the mapping-based methods show more robustness for 
tasks with a wide range of SNR [25], etc. To fully exploit 
advantages over different approaches, some stud-
ies focus on integrating different approaches into an 
ensemble training framework. For example, authors in 
[24] constructed a time-and-frequency feature map by 
concatenating both time and time-frequency domain 
acoustic features to improve separation performance. 
For improving the singing voice extraction, in [26], sev-
eral attention-based fusion strategies were proposed 
to utilize the complementarities between masking and 
mapping spectrograms using a minimum difference 
masks (MDMs) [27] criterion.

Although the supervised speech separation methods 
or their combinations have performed well on data with 
the same or similar acoustic properties as the simula-
tion training sets, the performance on cross-domain 
real-world mixtures is still quite poor. The main prob-
lem of supervised training is the strong reliance on 
individual ground-truth source signals. It heavily pre-
cludes technique scaling to widely available real-world 
mixtures, and limits progress on wide-domain coverage 
speech separation tasks. In real scenarios, the isolated 
sources are difficult to collect, because they are usu-
ally contaminated by cross-talk and unknown acoustic 
channel impulse responses. Therefore, it’s very difficult 
to provide golden-standard handcrafted labels for a 
large number of real-world mixtures to train a super-
vised separation system from scratch. Moreover, adapt-
ing a well pre-trained supervised system to target real 
acoustics is also challenging, because the distribution 

of sound types and reverberation may be unknown and 
hard to estimate.

One approach to improve real-world unsupervised 
speech separation is to directly use the real acoustics in 
system training. To this end, some latest works start to 
separate speech from unsupervised or semi-supervised 
perspectives. In [28–30], a mixture invariant training 
(MixIT) that requires only single-channel real acoustic 
mixtures was proposed. MixIT uses mixtures of mix-
tures (MoMs) as input, and sums over estimated sources 
to match the target mixtures instead of the single-
source references. As the model is trained to separate 
the MOMs into a variable number of latent sources, the 
separated sources can be remixed to approximate the 
original mixtures. Motivated by MixIT, authors in [31] 
proposed a teacher-student MixIT (TS-MixIT) to alle-
viate the over-separation problem in the original MixIT. 
It takes the unsupervised model trained by MixIT as a 
teacher model, then the estimated sources are filtered 
and selected as pseudo-targets to further train a stu-
dent model using standard permutation invariant train-
ing (PIT) [3]. Besides, there are other unsupervised 
separation attempts as well, such as the co-separation 
[32], adversarial unmix-and-remix [33], and Mixup-
Breakdown [34]. All these recent efforts indicate how to 
well exploit the real-world unlabeled mixtures to boost 
the current separation systems becomes very fundamen-
tal, important, and challenging.

In this study, we also focus on improving the unsu-
pervised speech separation, a novel speech separation 
adaptation framework, termed separation consistency 
training (SCT), is proposed. Different from previous 
works, SCT aims to leverage the separation consistency 
between heterogeneous separation networks to produce 
high confidence pseudo-labels of unlabeled acoustic 
mixtures. These labels and networks are updated itera-
tively using a cross-knowledge adaptation approach to 
achieve more accurate pseudo-labels and better target 
speech separation models. In SCT, two separation net-
works with a heterogeneous structure are used, one is 
the current popular masking-based time-domain speech 
separation model, Conv-TasNet [13], and the other is our 
recent proposed mapping-based time-frequency domain 
separation model, DPCCN [35]. These two networks are 
then used to generate consistent separation results for 
target domain unlabeled mixture labeling. Considering 
the high freedom and strong modeling ability in deep 
neural networks, each heterogeneous model with a con-
sistent learning objective tends to achieve similar per-
formance in its own distinct way. Correspondingly, the 
difference between the separation models would result in 
a discriminative but complementary behavior to separate 
speech. Although this behavior is somehow vague for 
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humans due to the “black-box” property of neural net-
works. Therefore, the advantages behind using heteroge-
neous networks instead of homogeneous ones are that, 
besides the mixture labeling, the complementary infor-
mation between these heterogeneous models is expected 
to attain large diversity for label creation. By doing so, it 
provides an increased chance to produce and select more 
informative target mixtures as iterative training samples 
that a single source separation model could not produce 
by itself. In addition, a simple linear fusion strategy is 
proposed to combine the heterogeneous separation out-
puts to further improve the final separation performance.

Our experiments are performed on three open-source 
datasets, the anechoic English Libri2Mix [36] is taken 
as the source domain data, the reverberant English 
WHAMR! [37] and anechoic Mandarin Aishell2Mix [35] 
are our two target domain datasets. Extensive results 
show that, the proposed SCT is very effective to improve 
the unsupervised cross-domain speech separation per-
formance. It can significantly outperform two strong 
baselines with up to 1.61 dB and 3.44 dB scale-invariant 
signal-to-noise ratio (SI-SNR) [38] improvements on the 
English and Mandarin cross-domain tasks, respectively. 
Besides, we find that, our separation consistency selec-
tion can achieve competitive performance with the data 
selection using ground-truth sources as references dur-
ing the target heterogeneous model adaptation.

2 � Previous work
2.1 � Conv‑TasNet
Conv-TasNet is a time-domain, masking-based speech 
separation technique that proposed in [13]. Compared 
with most time-frequency domain algorithms, Conv-
TasNet shows superior separation performance on the 
standard public WSJ0-2mix [1] dataset, and has become 
the mainstream speech separation approach. This net-
work has attracted widespread attention and been fur-
ther improved in many recent works [39–42].

Conv-TasNet consists of three parts: an encoder (1d 
convolution layer), a mask estimator (several convolu-
tion blocks), and a decoder (1d deconvolution layer). 
The waveform mixture is first encoded by the encoder 
and then is fed into the temporal convolutional network 
(TCN) [43–45] based mask estimator to estimate a mul-
tiplicative masking function for each source. Finally, the 
source waveforms are reconstructed by transforming the 
masked encoder representations using the decoder. More 
details can be found in [13].

2.2 � DPCCN
DPCCN is our recent work in [35], it is a time-frequency 
domain, mapping-based speech separation technique. 
Results in [35] show that DPCCN can achieve much 

better performance and robustness over other state-of-
the-art separation methods in environmental compli-
cated conditions.

DPCCN follows a U-Net [46] style to encode the mix-
ture spectrum into a high-level representation, then 
decodes it into the clean speech. In DPCCN, DenseNet 
[47] is used to alleviate the vanishing-gradient prob-
lem and encourage the feature reuse; TCN is clamped 
between the codec to leverage long-range time informa-
tion; A pyramid pooling layer [48] is introduced after 
decoder to improve its global modeling ability. The 
detailed information can be found in [35].

3 � Heterogeneous separation consistency training
The proposed separation consistency training is per-
formed on two different separation networks with het-
erogeneous structure. In this section, we first present 
the principle of our SCT, then introduce three SCT 
variants and their differences, including basic SCT and 
the cross-knowledge adaptation. Next, two main algo-
rithms, consistent pseudo-labeling and selection (CPS), 
and heterogeneous knowledge fusion (HKF) in the pro-
posed SCT are described in detail. For simplicity, here we 
only consider the speech separation scenario with two-
speaker overlapped speech.

3.1 � Separation consistency training
Our separation consistency training is specially designed 
to improve the unsupervised speech separation where 
the target mixtures deviate far from the training simu-
lation dataset. It follows a heterogeneous separation 
framework, to create and select informative data pairs 
with high confidence pseudo ground-truth, for iteratively 
improving cross-domain speech separation by adapting 
the source separation models to the target acoustic envi-
ronments. Because the whole framework heavily relies on 
the consistent separation results of the unlabeled mix-
tures and a separation consistency measure for pseudo-
labeling, we call the whole training process as separation 
consistency training (SCT).

3.1.1 � Basic SCT
Given a large amount of or even limited unlabeled target 
mixtures, the basic SCT procedure can be divided into 
three main steps: 

(a)	 Mixture separation. Separate each unlabeled mix-
ture using two heterogeneous separation models 
that have been well-trained on the source simulated 
training set;

(b)	 Consistent pseudo-labeling and selection (CPS). 
Based on separation results in step (a), calculate a 
separation consistency measure (SCM, Eq. (1)) and 
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a mixture separation consistency measure (mSCM, 
Eq. (3)) to evaluate the confidence of separation 
outputs. Then, select those unlabeled mixtures with 
high consistent confidence and their corresponding 
separation results as pseudo ground-truth to form a 
“Pseudo Labeled Set”;

(c)	 Iterative model adaptation. Combine the “Pseudo 
Labeled Set” and the original source domain “Sim-
ulation Training Set” together to refine the source 
models to learn the target domain acoustics. And 
then, repeat the above process in an iterative man-
ner.

The two separation models in step (a) usually have com-
parable performance but with heterogeneous neural 
network structures. The bigger difference between the 
models, the better complementary information will be 
achieved. In this study, we choose DPCCN and Conv-
TasNet that presented in Section 2 as the heterogeneous 
candidates. The former is taken as the primary model, 
while the latter is regarded as a reviewer model. Conv-
TasNet [13] is the current popular masking-based time-
domain separation model, while DPCCN [35] is our 
recent proposed mapping-based time-frequency domain 
model with good robustness to complicate acoustic envi-
ronments. The huge difference in modeling patterns 
between Conv-TasNet and DPCCN, such as masking 
and mapping, time domain and time-frequency domain, 
guarantees the large diversity of the separated results. 
This diversity provides an increased chance to improve 
source models iteratively, because it can produce more 
informative target mixtures as new iterative training 
samples that the primary source model could not pro-
duce itself. Actually, during CPS in step (b), each model 
in this SCT heterogeneous framework is a reviewer for 
the other, any input mixtures will be double inspected by 
the two reviewers from different perspectives, only those 
mixtures with consistent separation performance of both 
will be selected. In this way, the double inspecting mech-
anism under a heterogeneous framework ensures the 
high confidence of pseudo ground-truth for each selected 
mixture in the target domain.

The whole framework of above basic SCT is demon-
strated in the first variant of our proposed SCT, subfigure 
(A) (SCT-1) of Fig.  1. In SCT-1, the detail of consist-
ent pseudo-labeling and selection (CPS) is presented in 
the next section, Section  3.2, and illustrated in Fig.  2A. 
“D-Pseudo Labeled Set” (“D-” means DPCCN’s outputs) 
contains the data pairs of selected unlabeled mixtures 
and their pseudo ground-truth that derive from the indi-
vidual separation outputs of the primary model DPCCN. 
Together with the original source domain “Simulation 
Training Set,” both the primary and reviewer models 

are refined and adapted to the target domain in each 
single iteration. It is worth noting that the model adap-
tation with the combined training set is necessary for 
SCT algorithm. As our source models have been trained 
well on the simulation set, and the pseudo ground-
truth of “D-Pseudo Labeled Set” is actually generated by 
DPCCN, which means if we only use the simulation set 
or “D-Pseudo Labeled Set” to adjust the primary source 
model, DPCCN, the training gradient will be very small 
or even 0. In this case, the error between model outputs 
and labels is difficult to back propagate and the adapta-
tion process will fail. However, if we adapt model using 
both “Simulation Training Set” and “D-Pseudo Labeled 
Set,” although the error between model outputs and 
ground-truth is small, the model can still be adapted 
to the target domain. For example, a simple neural net-
work can be depicted as y = w ∗ x + b , where y,w, x, b 
are model output, parameter weight, model input, and 
parameter bias, respectively. The partial differential to 
the weight w is model input x . Back to our scenario, by 
combining “Simulation Training Set” and “D-Pseudo 
Labeled Set,” the target domain data can engage in the 
model adaptation with the loss of the source domain sim-
ulation set.

3.1.2 � SCT with cross‑knowledge adaptation
To fully exploit the complementary information between 
heterogeneous networks, a cross-knowledge adaptation 
is proposed to improve the basic SCT. The framework is 
illustrated in the 2nd variant of SCT (SCT-2) in Fig. 1B. 
Different from basic SCT, in SCT-2, the reviewer Conv-
TasNet is first updated using the combined “D-Pseudo 
Labeled Set” and “Simulation Training Set,” i.e., the 
pseudo ground-truth of the primary model is used to 
guide the reviewer model’s adaptation. Next, we re-
separate all the unlabeled mixtures using the updated 
reviewer to achieve more accurate separation outputs. 
Then, all the pseudo ground-truth in “D-Pseudo Labeled 
Set” are replaced by the corresponding new individual 
outputs that produced by the updated reviewer Conv-
TasNet to construct a new pseudo labeled set “T-Pseudo 
Labeled Set” (“T-” means Conv-TasNet’s outputs). 
Finally, the “T-Pseudo Labeled Set” and “Simulation 
Training Set” are combined together to adjust the pri-
mary model DPCCN as in SCT-1. In this model adapta-
tion, the pseudo ground-truth of the reviewer model is 
used to supervise the primary model training. Just like 
the teacher-student learning, in the whole SCT-2, the 
primary and reviewer model can benefit each other, the 
learned knowledge of them is cross-used as a guide to 
improve the target model adaptation. Therefore, we call 
this adaptation procedure as “cross-knowledge adapta-
tion” for simplicity. In addition, as the “T-Pseudo Labeled 
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Set” is actually a combination of prior selected separation 
consistency statistics in “D-Pseudo Labeled Set” and the 
new pseudo ground-truth from updated Conv-TasNet, 
thus, in Fig.  1, we use the heterogeneous knowledge 
fusion (HKF) block to represent this knowledge combi-
nation. Details of HKF are demonstrated in subfigure (D) 
of Fig. 2 and Section 3.3.

Subfigure (C) (SCT-3) of Fig.  1 is a variant of SCT-2 
with minor modification before HKF block. In SCT-3, 
the CPS is performed twice. The first CPS is performed as 

the same in SCT-1 and SCT-2, while in the second CPS, 
the separation consistency statistics, SCM and mSCM are 
re-computed and updated using both mixture separation 
outputs of DPCCN and the updated Conv-TasNet. Other 
operations are all the same as in SCT-2. The motivation 
behind this two-stage CPS is that, the adapted Conv-Tas-
Net can provide more accurate separation results of tar-
get domain mixtures, which makes the second stage CPS 
produce more reliable consistent separation results for 
unlabeled mixture pseudo-labeling in each SCT iteration.

Fig. 1  The flowcharts of three SCT variants for single iteration. A Framework of the 1st SCT variant (SCT-1). The selected DPCCN outputs with 
pseudo labels are used to update both Conv-TasNet and DPCCN. B Framework of the 2nd SCT variant (SCT-2) with the cross-knowledge adaptation. 
C Framework of the 3rd SCT variant (SCT-3). Two-stage CPS are used to refine the pseudo-labeling
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In summary, in this section, we present three variants 
of the proposed SCT, one is the basic structure, and the 
others are two enhanced SCT variants with cross-knowl-
edge adaptation. Details of the CPS and HKF blocks used 
in SCT are described in the following sections.

3.2 � Consistent pseudo‑labeling and selection
The consistent pseudo-labeling and selection (CPS) block 
in the proposed SCT aims to produce high quality indi-
vidual pseudo ground-truth of each unlabeled mixture 
based on the outputs of two heterogeneous networks and 
the original mixture speech. The whole CPS procedure is 
illustrated Fig. 2A. It contains two main stages, the first 
one is the confidence measure calculation, followed by 
the pseudo ground-truth selection.

3.2.1 � Confidence measure calculation
Two measures are calculated in this stage, one is separa-
tion consistency measure (SCM, Eq. (1)), and the other 
is mixture separation consistency measure (mSCM, Eq. 
(3)). Both of them are used to evaluate the confidence 

between heterogeneous separation outputs produced by 
DPCCN and Conv-TasNet.

As shown in the left part of Fig.  2A, given N unsu-
pervised mixed speech with each contains M single 
sources, here we assume M = 2 . For the nth mixture, 
the SCM is calculated by taking the individual separa-
tion output xn of the primary model DPCCN as pseudo 
reference as follows:

where xn = [x1n, x
2
n, ..., x

M
n ]T , vn = [v1n, v

2
n, ..., v

M
n ]T are the 

M individual separation speech signals that separated by 
DPCCN and Conv-TasNet for the n-th input mixture, respec-
tively. xin and vin are the i-th individual signal. P is an M ×M 
permutation matrix, [·]i denotes selecting i-th element from 
the matrix, and T is the operation of transpose. The SI-SNR 
in Eq. (1) is the standard scale-invariant signal-to-noise ratio 
(SI-SNR) [38] that used to measure the performance of state-
of-the-art speech separation systems. It is defined as:

(1)SCM(xn, vn) = max
P

1

M

M

i=1

SI− SNR xin, [Pvn]i

Fig. 2  A The whole framework of consistent pseudo-labeling and selection (CPS). B The flowchart of separation consistency measure. C The 
flowchart of the mixture separation consistency measure. D The heterogeneous knowledge fusion
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where s and ŝ are the reference and estimated speech, 
respectively. � · �2 denotes the signal power, �·� is the 
inner-product operation.

Figure  2B shows a two-speaker SCM process for the 
n-th mixture. The DPCCN outputs, x1n , x2n are taken as 
references to calculate the pairwise SI-SNR with the 
Conv-TasNet outputs, v1n and v2n . In this case, there are 
two permutation combinations, namely [x1n, v1n; x2n, v2n] 
and [x1n, v2n; x2n, v1n] , then SCM compares the averaging 
pairwise SI-SNR for each assignment and takes the high-
est value to represent the separation consistency between 
two heterogeneous networks outputs. The higher SCM, 
the better consistency of unlabeled separation outputs 
we can trust. However, when the input mixtures are hard 
to separate for both heterogeneous networks, xn and vn 
can be very close to the original mixture speech, and 
they could also result in a very high SCM. In this case, the 
pseudo reference xn may be far from the ground-truth 
and may not be qualified for the source model adapta-
tion. To alleviate this situation, the following mSCM is 
introduced from another perspective to evaluate the 
quality of target domain mixture separation results and 
enhance the confidence of selected results.

The mixture separation consistency measure (mSCM), 
aims to measure the consistency between the outputs of 
heterogeneous networks and the original input mixture 
yn . It is defined as:

where φi
n ∈ {xin, v

i
n} is the i-th individual output of 

DPCCN or Conv-TasNet of n-th input mixture as shown 
in Eq. (1). Figure 2C gives a detailed operation of mSCM 
under a two-speaker case, and as shown in Eq. (3), we see 
the average SI-SNR between the input mixture and all 
separated outputs are calculated. Different from SCM, the 
mSCM evaluate the confidence of separation results in an 
opposite way and the lower is desired. We believe that, in 
most conditions, the waveform of well-separated results 
should be very different from the original mixture. There-
fore, the corresponding mSCM will be in a low position. 
It is noted that when the input mixture has a high input 
SNR, the lower mSCM constraint will filter out its sepa-
rated results. Even though, the lower mSCM hypothesis 
still makes sense, because the filtered speech with high 
input SNR is somehow homogeneous and has limited 
benefits to model adaptation. In addition, the high input 

(2)SI− SNR(s, ŝ) = 10 log10

(

� �ŝ,s�
�s,s� s�

2

� �ŝ,s�
�s,s� s − ŝ�2

)

(3)

mSCM(yn, xn, vn) =
1

2M

M
∑

i=1

∑

φ

SI− SNR(yn,φ
i
n)

SNR cases are rare for cross-domain task. Therefore, 
the lower mSCM constraint is safe and effective in most 
conditions.

3.2.2 � Pseudo ground‑truth selection
After computing both SCM and mSCM statistics of input 
mixtures, we re-organize all the statistics and speech sig-
nals that related to each unlabeled input mixture in a new 
data tuple format to facilitate the pseudo ground-truth 
selection. As shown in Fig. 2A, we call each data tuple as 
a “separation consistency information (SCI)” tuple, and 
it is organized as:

where ID is the mixture ID, Mix is the input mixture 
speech signal, Sep1 and Sep2 are the two individual 
speech signals that separated by DPCCN. With these 
SCI tuples, we then perform the pseudo ground-truth 
selection in two ways:

•	 CPS-1: Select SCI pairs with SCM value lies in the 
top p%SCM range, p ∈ [0, 100].

•	 CPS-2: Select SCI tuples with the following con-
straint: 

 where k = 1, 2, ...,N  , SCIs and SCIk are the selected 
SCI tuples and k-th SCI tuple, respectively. α , β are 
thresholds for SCM and mSCM, respectively.

No matter for CPS-1 or CPS-2, the separated signals, 
Sep1 and Sep2, in all the selected SCI tuples will be 
taken as the high confidence pseudo ground-truth for 
their corresponding mixture Mix. Then the selected mix-
tures with pseudo ground-truths are taken to form the 
“D-Pseudo Labeled Set” (pseudo ground-truth that pro-
duced by DPCCN) for further separation model adapta-
tion. As discussed in the definition of mSCM, compared 
with CPS-1, perhaps CPS-2 is better at dealing with the 
difficult separation cases to some extent.

3.3 � Heterogeneous Knowledge Fusion
The heterogeneous knowledge fusion (HKF), illustrated 
in Fig.  2D is used during the cross-knowledge adapta-
tion in SCT-2 and SCT-3. HKF is a very simple opera-
tion just by replacing Sep1 and Sep2 in the selected 
SCI tuples of Fig.  2A with the outputs of the adapted 
Conv-TasNet as in SCT-2 and SCT-3. We use vi′n to rep-
resent the i-th individual signal of n-th mixture separated 
by the adapted Conv-TasNet. The updated new data 
tuples {Mix, Sep1, Sep2} are then picked to form 
the “T-Pseudo Labeled Set” (pseudo ground-truths that 

(4)
SCI = {ID, SCM, mSCM, Mix, Sep1, Sep2}

(5)
SCIs = {SCIk | (SCMk > α) ∩ (mSCMk < β)}
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produced by Conv-TasNet). By doing so, the complemen-
tary information between the prior knowledge of sepa-
ration consistency information that captured in the CPS 
block and the adapted Conv-TasNet are subtly integrated 
to further refine the primary DPCCN.

4 � Experimental setups
4.1 � Dataset
The publicly available English Libri2Mix [36] is used as 
our source domain dataset. Libri2Mix is a recent released 
anechoic separation corpus that contains artificial mixed 
speech from Librispeech [49]. We use the Libri2Mix gen-
erated from “train-100” subset to train our models. Two 
target domain datasets are used to validate our proposed 
methods, one is the English WHAMR! [37], the other is 
the Mandarin Aishell2Mix [35]. WHAMR! is a noisy and 
reverberant version of the WSJ0-2mix dataset [1] with 
four conditions (clean and anechoic, noisy and anechoic, 
clean and reverberant, noisy and reverberant). We take 
the clean and reverberant condition to evaluate the cross-
domain speech separation performance. Note that the 
evaluation references of WHAMR! are also reverberant 
rather than anechoic. Aishell2Mix is created by ourselves 
[35], it is anechoic and released in [50]. Each mixture in 
Aishell2Mix is generated by mixing two-speaker utter-
ances from Aishell-1 [51]. These utterances are randomly 
clamped to 4 seconds and rescaled to a random relative 
SNR between 0 and 5 dB. All datasets used in this study 
are resampled to 8kHz. The mixtures in both target 
domain datasets, WHAMR! and Aishell2Mix, are taken 
as the real-world unlabeled speech. Only the ground-
truth of test sets in WHAMR! and Aishell2Mix are avail-
able for evaluating the speech separation performance, 
the training and development sets are all unlabeled. More 
details can be found in Table  1. It is worth noting that, 
the target domain development sets used to supervise the 

model adaptation are also with pseudo ground-truth that 
produced by our proposed SCT.

4.2 � Configurations
We keep the same network configurations of Conv-Tas-
Net and DPCCN as in [13, 35], respectively. The model 
parameters of Conv-TasNet and DPCCN are 8.8M1 and 
6.3M. When processing a 4-s speech, the number of 
multiply-accumulate (MAC) operations [52] of Conv-
TasNet and DPCCN are 28.2G and 33.1G, which are 
evaluated using open-source toolbox [53]. All models are 
trained with 100 epochs on 4-s speech segments. The ini-
tial learning rate is set to 0.001 and halved if the accu-
racy of development set is not improved in 3 consecutive 
epochs. Adam [54] is used as the optimizer and the early 
stopping is applied for 6 consecutive epochs. We use the 
standard negative SI-SNR [38] as loss function to train all 
separation systems. Utterance-level permutation invari-
ant training (uPIT) [3] is used to address the source per-
mutation problem. All source model adaptation related 
experiments are finished within 20 epochs. A Pytorch 
implementation of our DPCCN system can be found in 
[55].

4.3 � Evaluation metrics
As our task is to improve cross-domain unsupervised 
speech separation, the performance improvement over 
the original mixture is more meaningful. Therefore, 
we report the well-known signal-to-distortion ratio 
improvement (SDRi) [56] and scale-invariant signal-to-
noise ratio improvement (SI-SNRi) [38] to evaluate our 
proposed method.

Table 1  Cross-domain dataset information

“A” and “R” refer to anechoic and reverberant, respectively. “Oracle” indicates whether the oracle (ground-truth) data is available.“∗′′Means the speakers of different sets 
are same

Dataset Acoustics Type #Spks #Utts Hours Oracle

Libri2Mix (Source) English/A Train 251 13,900 58 �

Dev 40 3000 11 �

Test 40 3000 11 �

WHAMR! (Target) English/R Train 101∗ 20,000 30 -

Dev 101∗ 5000 10 -

Test 18 3000 5 �

Aishell2Mix (Target) Mandarin/A Train 340 10,000 11 -

Dev 40 3000 3 -

Test 20 3000 3 �

1  https://​arxiv.​org/​pdf/​1809.​07454​v1.​pdf

https://arxiv.org/pdf/1809.07454v1.pdf
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5 � Results and analysis
5.1 � Cross‑domain baselines
5.1.1 � Baselines
Both Conv-TasNet and DPCCN are taken as our cross-
domain baseline systems. Performance is evaluated on all 
the in-domain Libri2Mix, and cross-domain WHAMR! 
and Aishell2Mix test sets. Results are shown in Table 2, 
where all separation systems are trained only on the 
Libri2Mix.

From Table 2, three findings are observed: 

1)	 Compared with the performance on the in-domain 
Libri2Mix test set, there are huge cross-domain per-
formance gaps exist on both the English and Manda-
rin target domain datasets.

2)	 Separation performance degradation caused by the 
language mismatch is much more severe than the 
acoustic reverberation.

3)	 DPCCN always shows much better speech separa-
tion performance than Conv-TasNet under both in-
domain and cross-domain conditions.

The first two findings confirm that the current speech 
separation systems are very sensitive to cross-domain 
conditions, either for the time-domain Conv-TasNet, or 
the time-frequency domain DPCCN. The third observa-
tion shows the better system robustness of DPCCN over 
Conv-TasNet. We believe that the robustness gain of 
DPCCN mainly comes from using spectrogram to rep-
resent speech. For complicated tasks, such a handcrafted 
signal representation can provide more stable speech 
features than network learning. That’s why we take the 
DPCCN individual outputs as references to calculate 
SCM for pseudo ground-truth selection as described in 
Section 3.2. We believe more reliable separation hypoth-
eses can result in better pseudo ground-truth.

5.1.2 � Training with ground‑truth labels
For results comparison and analysis, we also report the 
supervised separation performance of Conv-TasNet 
and DPCCN that trained with ground-truth labels in 

Table  3, where all separation systems are trained with 
in-domain ground-truth sources of WHAMR! and 
Aishell2Mix. Interestingly, on the reverberant WHAMR! 
dataset, DPCCN and Conv-TasNet achieve almost the 
same results, while on the Aishell2Mix, DPCCN per-
forms slightly worse than the Conv-TasNet. Coupled 
with the better cross-domain separation behaviors in 
Table 2, we take the DPCCN as our primary system, and 
the Conv-TasNet as the reviewer in all our following 
experiments.

5.2 � Performance evaluation of SCT on Aishell2Mix
From Table  2 baseline results, we see the domain mis-
match between English and Mandarin datasets is much 
larger than the two different English datasets. Therefore, 
in this section, we choose to first examine the proposed 
SCT on the Libri2Mix-Aishell2Mix (source-target) unsu-
pervised cross-domain task, including evaluating the 
consistent pseudo-labeling and selection methods, CPS-1 
and CPS-2, and different SCT variants for unsupervised 
model adaptation. Then, the optimized SCT is general-
ized to the WHAMR! dataset in Section 5.3.

5.2.1 � Initial examination of CPS‑1
The DPCCN performance of the first unlabeled mixture 
pseudo label selection method, CPS-1, is first examined 
under SCT-1 framework in Table  4. Results of line 1-3 
are from DPCCN that trained from scratch using CPS-1 
outputs. These outputs are the “D-Pseudo Labeled Set” 
in SCT-1 with top p%SCM target domain Aishell2Mix 

Table 2  SDRi/SI-SNRi (dB) performance of Conv-TasNet and 
DPCCN on Libri2Mix, WHAMR!, and Aishell2Mix test sets. Systems 
are all trained on Libri2Mix

System SDRi/SI-SNRi (dB)

Libri2Mix WHAMR! Aishell2Mix

Conv-TasNet 12.41/11.98 6.83/6.45 2.57/2.08

DPCCN 13.48/13.04 8.99/8.50 5.78/5.09

Table 3  Performance of Conv-TasNet and DPCCN trained with 
ground-truth labels on WHAMR! and Aishell2Mix test sets

System Dataset SDRi (dB) SI-SNRi (dB)

Conv-TasNet WHAMR! 11.03 10.59

Aishell2Mix 9.00 8.32

DPCCN WHAMR! 11.01 10.56

Aishell2Mix 8.86 8.14

Table 4  SDRi/SI-SNRi performance of DPCCN with CPS-1 and 
SCT-1 on Aishell2Mix test set

“-” means training model from scratch with only pseudo labeled data. “ � ” means 
adapting model with the combined pseudo labeled data and the source domain 
Libri2Mix

Top p%SCM Adaptation SDRi (dB) SI-SNRi (dB)

p = 10% - 5.24 4.49

p = 25% - 5.65 5.05

p = 50% - 5.66 5.11

� 5.98 5.32
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data. We find that the separation performance can be 
improved by increasing the pseudo labeled training mix-
tures. And when p = 50% , compared with the p = 25% 
case, the additional performance improvements are 
rather limited even with an additional 25% data. Moreo-
ver, results of the last line show that, instead of training 
DPCCN from scratch, using the combined “D-Pseudo 
Labeled Set” and “Simulation Training Set” (Libri2Mix) 
to refine the source model (shown in Table  2, SDRi/SI-
SNRi are 5.78/5.09, respectively) can further improve the 
target domain separation. In the following experiments, 
we set p = 50% for all the CPS-1 experiments, and use 
Libri2Mix training set together with the “Pseudo Labeled 
Set” to fine-tune the source separation models for target 
model adaptation.

5.2.2 � Evaluating SCT variants with both CPS‑1 and CPS‑2
Unlike only adapting DPCCN model as in the above 
CPS-1 initial experiments, in Table  5, we present the 
performance of both the updated target DPCCN and 
Conv-TasNet in each SCT iteration for all the three 
types of SCT variants. Experiments are still performed 
on the English-Mandarin cross-domain speech separa-
tion task. All source models are pre-trained on the same 
supervised Libri2Mix, then adapted to the Aishell-
2Mix condition using SCT-1 to SCT-3 frameworks 
separately. Besides the CPS-1 and CPS-2, in Table  5, 
we also report “oracle selection” performance using 
ground-truth as reference to calculate SI-SNR of sepa-
ration outputs for selecting the pseudo ground-truth. 

This “oracle selection” performance can be taken as the 
upper bound of our pseudo-labeling with heterogenous 
neural network architecture. Two oracle selection crite-
rions are used in our experiments: for SCT-1, we always 
calculate the best assignment SI-SNR between DPCCN 
outputs and ground-truth, while for SCT-2 and SCT-
3, we use the SI-SNR scores between the ground-truth 
and DPCCN, Conv-TasNet outputs separately to select 
their corresponding individual separation signals as 
pseudo ground-truth, respectively. The pseudo ground-
truth selection threshold η = 5 is unchanged for each 
iteration in “oracle selection.” It is worth noting that, 
the {α,β , η} are kept the same for both the pseudo-labe-
ling of unlabeled training and development datasets.

From the English-Mandarin cross-domain separa-
tion results in Table  5, we can conclude the following 
observations: 

1)	 Overall performance: Compared with baselines in 
Table  2, the best SCT variant, SCT-2 with CPS-2, 
improves the unsupervised cross-domain separa-
tion performance significantly. Specifically, abso-
lute 3.68/3.44 dB and 0.70/0.73 dB SDRi/SI-SNRi 
improvements are obtained for Conv-TasNet and 
DPCCN, respectively. Moreover, the best perfor-
mance of SCT-1 and SCT-2 with CPS-2 are very 
close to the upper bound ones with “oracle selection,” 
even both the training and development mixtures 
of target domain are taken as unlabeled ones. Such 
promising results indicate the effectiveness of our 
proposed SCT for improving the unsupervised cross-
domain speech separation.

2)	 Model robustness: Under all SCT cases, the abso-
lute performance gains achieved by the adapted 
Conv-TasNet are much bigger than the ones from 
the adapted DPCCN. However, the best DPCCN is 
always better than the best Conv-TasNet, this is pos-
sibly due to the better robustness or generalization 
ability of our previously proposed DPCCN in [35].

3)	 Pseudo label selection criterion: The CPS-2 perfor-
mance is better than CPS-1 in almost all conditions, 
which tells us that introducing mSCM constraint is 
helpful to alleviate the pseudo ground-truth errors 
that brought by CPS-1. Combing both SCM and 
mSCM in CPS-2 can produce better high confidence 
pseudo labels.

4)	 Cross-knowledge adaptation: Together with CPS-2, 
the SCT-2 achieves better results over SCT-1, either 
for the best Conv-TasNet results or for the DPCCN 
ones. It proves the importance of cross-knowledge 
adaptation for leveraging the complementary infor-
mation between heterogeneous models to target 
domain models.

Table 5  SDRi/SI-SNRi (dB) performance of Conv-TasNet and 
DPCCN on Aishell2Mix test set under different SCT configurations

“Oracle” means using ground-truth as reference to calculate SI-SNR of separation 
outputs for selecting the pseudo ground-truth. All source models are well 
pre-trained on Libri2Mix. The best setup of {α,β} in CPS-2 are {5, 5} , {8, 5} in 
the 1st and 2nd iteration for all SCT variants, respectively. η is set to 5 for “Oracle 
selection”

SCT System #Iter CPS-1 CPS-2 Oracle

SCT-1 Conv-TasNet 1 5.14/4.63 5.47/4.90 5.98/5.39

2 5.45/4.94 5.99/5.39 6.18/5.57

DPCCN 1 5.98/5.32 5.90/5.25 6.00/5.31

2 6.17/5.50 6.03/5.39 6.10/5.44

SCT-2 Conv-TasNet 1 5.14/4.63 5.47/4.90 5.98/5.39

2 5.36/4.89 6.15/5.52 6.21/5.65

DPCCN 1 6.05/5.52 6.48/5.82 6.79/6.19

2 5.49/5.05 6.43/5.81 6.45/5.91

SCT-3 Conv-TasNet 1 5.14/4.63 5.47/4.90 -

2 5.43/4.93 5.77/5.24 -

DPCCN 1 6.14/5.58 6.22/5.65 -

2 6.02/5.52 6.10/5.56 -
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5)	 Number of SCT iteration: For SCT-1, both Conv-
TasNet and DPCCN are continuously improved 
in the first two iterations. For SCT-2 and SCT-3, 
Conv-TasNet still benefits from the 2nd iteration, 
while DPCCN only needs one iteration model adap-
tation to achieve the best results. This phenomenon 
indicates that the complementary cross-knowledge 
between different models can help DPCCN converge 
faster and achieve better performance.

6)	 Necessity of two-stage CPS-2: With CPS-2, SCT-3 
does not bring any improvements over SCT-2, it 
means that the 2nd CPS-2 stage in SCT-3 is useless. 
Possibly because the updated Conv-TasNet has been 
refined by the first stage CPS-2 outputs, the new indi-
vidual separation hypothesis of this updated model 
has homogeneous acoustic characteristic with the 
ones in the first stage CPS-2, resulting in relatively 
simple and partial separated pseudo ground-truth 
in the 2nd stage CPS-2. Considering this phenom-
enon, we stop trying more CPS stages and iterations 
in SCT pipelines, as feeding more homogeneous data 
is time-consuming and hard to bring additional ben-
efits.

5.3 � Performance evaluation of SCT on WHAMR!
As the SCT-2 with CPS-2 achieves the best results in 
Table  5, we generalize this framework to Libri2Mix-
WHAMR! (source-target) task for a further investigation 
of unsupervised cross-domain speech separation. Both 
source and target domain are English speech mixtures 
but with different acoustic environments. Results are 
shown in Table 6. It’s clear that we can obtain consistent 
observations from this table with the ones on Aishell-
2Mix, which verifies the good robustness and generaliza-
tion ability of SCT under different cross-domain speech 
separation tasks. This nature of SCT is very important for 
real unsupervised speech separation applications. Our 
following experiments and analysis are all based on the 

best SCT variant, SCT-2 with CPS-2, unless otherwise 
stated.

5.4 � Overall performance evaluation
To better understand the proposed SCT, we re-organize 
the key experimental results in Table 7 for an overall com-
parison, including results of cross-domain baselines (in 
Table  2), the best SCT configuration (SCT-2 with CPS-
2, in Tables  5 and 6), and the supervised results (upper 
bound) that trained with ground-truth labels (in Table 3). 
It is clear that the proposed SCT improves cross-domain 
separation performance significantly. Compared with 
Conv-TasNet, the SCT gain of DPCCN is much smaller. 
This may because the baseline performance of Conv-Tas-
Net is much worse, when adapted with pseudo-labeled 
data pairs, Conv-TasNet will gain much more benefits. 
Besides, either for Conv-TasNet or DPCCN, the selected 
data during SCT actually has similar acoustic character-
istics. This means that after SCT adaptation, the target 
domain performance of Conv-TasNet and DPCCN would 
reach to a similar level (as shown in the SCT column). 
In addition, results in Table 7 indicate that there is still a 
big performance gap between SCT and the upper bound 
ones, which motivates us to further improve the current 
SCT in our future works. Even though, considering the 
huge performance gain of SCT over baseline, we still 
believe the SCT is promising for tackling unsupervised 
speech separation tasks.

5.5 � Heterogeneous separation results fusion
Motivated by the design of SCT, we believe that the sepa-
ration results of the final adapted target domain models 
also have complementary information, because they are 
derived from two different neural networks with hetero-
geneous structure. Therefore, a simple linear fusion of 
separated signal spectrograms is preliminarily investi-
gated to further improve the SCT.

Results are shown in Table  8, where � and 1− � are 
linear weights for the signal spectrograms of adapted 
DPCCN and Conv-TasNet outputs respectively. The 

Table 6  SDRi/SI-SNRi(dB) performance on WHAMR! test set with 
SCT-2

“Oracle” and η have the same meaning as in Table 5. All source models are well 
pre-trained on Libri2Mix. The best setup of {α,β , η} are {8, 5, 8} and {12, 5, 8} in 
the 1st and 2nd SCT iteration, respectively

SCT System #Iter CPS-2 Oracle

SCT-2 Conv-TasNet 1 8.28/7.85 8.64/8.28

2 8.48/8.06 8.68/8.27

DPCCN 1 9.26/8.81 9.31/8.86

2 8.84/8.40 8.95/8.52

Table 7  Overall SDRi/SI-SNRi(dB) performance with different 
configurations

“Baseline” means model trained on source domain Libri2Mix while evaluated 
on target domain Aishell2Mix and WHAMR!. “SCT” is the best adaptation 
configuration, i.e. SCT-2 with CPS-2. “Supervised” means model trained with 
ground-truth labels

Dataset System Baseline SCT Supervised

Aishell2Mix Conv-TasNet 2.57/2.08 6.15/5.52 9.00/8.32

DPCCN 5.78/5.09 6.48/5.82 8.86/8.14

WHAMR! Conv-TasNet 6.83/6.45 8.48/8.06 11.03/10.59

DPCCN 8.99/8.50 9.26/8.81 11.01/10.56
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pairwise cosine similarity is used to find the best match 
spectrograms that belong to the same speaker during 
linear fusion. Compared with the best SCT-2 results 
in Tables 5 and 6, this simple fusion is still able to bring 
slight performance improvements. This indicates that, 
it is possible to exploit the complementary information 
between SCT outputs to further improve the final sepa-
ration results. It will be interesting to try other and more 
effective separation results fusion methods in future 
works.

5.6 � Data quantity analysis of pseudo ground‑truth
The key success of the proposed SCT depends on the 
high confidence pseudo-labeling. It’s very important to 

analyze the data amount statistics of the selected pseudo 
ground-truth during SCT in different unsupervised sep-
aration tasks. Figure 3 shows the statistics that used to 
adapt the heterogeneous networks during each iteration 
of SCT-2 (with CPS-2) in Tables 5 and 6, including the 
selected training and development data of unlabeled 
Aishell2Mix and WHAMR! datasets. For further com-
parisons, we also show the corresponding upper bound 
data statistics generated by the “Oracle selection” as ref-
erences. Note that, as the cross-knowledge adaptation is 
applied during SCT-2, the data amounts of “D-Pseudo 
Labeled Set” and “T-Pseudo Labeled Set” are the same 
but with different ground-truth individual signals, 
so we use “SCT-2” to represent both of them, and the 
“Oracle Conv-TasNet” and “Oracle DPCCN” in Fig.  3 
actually represent the oracle amount of pseudo data 
that selected to adapt the Conv-TasNet and DPCCN, 
respectively.

From Fig.  3, three findings are observed: (1) the 2nd 
SCT-2 iteration can produce more high confidence 
data, and the selected data quantity is close to the upper 
bounds with “Oracle selection,” indicating the heteroge-
neous structure in SCT and the thresholds of CPS-2 are 
reasonable; (2) on Aishell2Mix, both the selected train-
ing and development data increments in the 2nd iteration 
are higher than the ones on WHAMR!, which means the 

Table 8  Performance of heterogeneous separation results fusion 
on Aishell2Mix and WHAMR! test sets

Dataset � SDRi (dB) SI-SNRi (dB)

Aishell2Mix 0.5 6.55 5.93

0.8 6.57 5.93
0.9 6.53 5.88

WHAMR! 0.5 9.19 8.79

0.8 9.34 8.92
0.9 9.32 8.89

Fig. 3  Data quantity of selected pseudo ground-truth of SCT-2 (with CPS-2) versus the “Oracle selection” on Aishell2Mix and WHAMR! unlabeled 
training and development sets
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multiple SCT-2 iterations are necessary for tasks with the 
larger cross-domain mismatch. (3) for “Oracle DPCCN,” 
the selected data quantities of two iterations are almost 
the same, indicating the pseudo-labeled mixtures in each 
iteration are a large number of homogeneous data that 
results in an over-trained DPCCN model. This is also the 
reason of worse results in the 2nd iteration that shown 
in Tables  5 and 6. All these above findings give a well 
support to the separation results as presented in both 
Tables 5 and 6.

5.7 � Gender preference analysis
As we all know, the speech mixed with different gender 
speakers is easier to separate than that with the same 

gender speakers. In this section, we investigate the gen-
der distribution of selected pseudo-labels on the Aishell-
2Mix development set. The gender information of top 
500 mixtures with the best CPS-2 setup, α = 8 and 
β = 5 , is presented in Fig. 4, where each spike pulse rep-
resents the gender in each mixture changing from differ-
ent to the same.

From Fig. 4, it is clear that the proposed CPS-2 prefers 
to select the mixtures with different gender speakers. The 
sparse spike pulse shows the extremely low proportion 
of same gender mixtures in the entire selected speech, 
and its distribution tends to denser when the confidence 
of the selected mixture becomes lower (larger selection 
order). These phenomena are consistent with our prior 

Fig. 4  Gender information of top 500 CPS-2 results on Aishell2Mix development set. “Diff.” represents the different gender

Fig. 5  SI-SNRi (dB) of DPCCN and Conv-TasNet separation results of the 310 “bad cases” varies with the separation consistency measure
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knowledge, i.e., the speech mixed by different gender 
speakers is easier to separate and its separated signals 
from heterogeneous models show a higher separation 
consistency.

5.8 � Bad cases analysis
Finally, we perform a bad cases analysis of the separa-
tion results on the Aishell2Mix development set in 
Fig.  5. All these unlabeled mixtures in this dataset 
are first separated by the best adapted target domain 
DPCCN and Conv-TasNet models in Table  5 (SCT-2 
with CPS-2). Then the CPS-2 with α = 8 , β = 5 is 
used to select the pseudo labels and 1716 mixtures’ 
SCI tuples are selected in total. Next, we calculate the 
standard separation performance (SI-SNRi) of both the 
DPCCN and Conv-TasNet separation outputs by tak-
ing the real ground-truth to evaluate each mixture per-
formance, and we refer them to SI− SNRiDPCCN and 
SI− SNRiConv−TasNet for simplicity. Then, we compare 
each SI-SNRi with the average SI-SNRi (5.52 dB, the best 
performance of Conv-TasNet in Table 5) of Aishell2Mix 
test set to determine whether the current mixture sepa-
ration is a “bad case” or not. For each selected mixture, if 
its {SI− SNRiDPCCN || SI− SNRiConv−TasNet} < 5.52 dB , 
we consider it a failure separation (F) and the corre-
sponding mixed speech is taken as a “bad case,” other-
wise we take it as a succuss separation (T). With this 
rule, total 310 of 1716 ( 18.1% ) mixtures are taken as 
“bad cases.”

The reason behind this “bad case” decision rule is that, 
in the speech separation field, there is no measurement 
to evaluate each speech separation is 100% accurate or 
not. Therefore, we think that, the real separation per-
formance of the best separation model can be taken as a 
proper heuristic signal distortion threshold for a rough 
“bad case” analysis. And in our SCT-2, when compared 
with the best DPCCN performance (5.82 dB) in Table 5, 
the Conv-TasNet performance, 5.52 dB is a stricter one 
for the “bad case” decision.

Figure  5 shows how the DPCCN and Conv-TasNet 
separation outputs of the 310 “bad cases” SI-SNRi var-
ies with the separation consistency SCM. From these 
scatter points, we see that, with our proposed CPS-2, 
the selected 310 mixture pseudo labels still contain low-
quality ones that are not suitable to be taken as ground-
truth, even though all these mixtures have relatively high 
consistency confidence. From the left part of this figure, 
we find some “bad cases” with high separation consist-
ency SCM > 12 dB but their real separation performances 
are very low (SI-SNRi < 2 dB ). However, on the contrary, 
the right part figure shows some low SCM mixtures are 
also separated very well. Therefore, we speculate that, 
these “bad cases” may not be too bad if they are within 
the error tolerance of system training data, they may 
be taken as small noisy distortions of the whole pseudo 
labeled training set and may help to enhance the model 
robustness. That’s why we still obtain promising perfor-
mance in Table 5 using the proposed SCT.

Figure 6 demonstrates other detailed separation statis-
tics of the same 310 “bad cases” on Aishell2Mix develop-
ment set from another perspective. The T,F means the 
success, failure separation as defined in the above state-
ments. Each “bad case” covers three kinds of T,F combi-
nation, such as, Conv− TasNet(T) ∩ DPCCN(F) means 
for each unlabeled mixture, the separation of Conv-Tas-
Net is success while DPCCN is failure.

From Fig. 6, we see 56.8% of these “bad cases” are con-
sistent failure separations for both DPCCN and Conv-
TasNet. However, there is still around half of the data 
can be separated well by one of these two heterogene-
ous systems, as shown in the two T∩F combinations. 
This observation clearly proves the large complemen-
tary information between two heterogeneous separa-
tion models, as the time-domain Conv-TasNet and the 
time-frequency domain DPCCN used in our SCT. And 
it also inspires us to improve the SCT-1 to SCT-2 using 
the cross-knowledge adaptation. Besides, for the 31.3% 
vs 11.9% T∩F combination, we see there are much more 

Fig. 6  Detailed separation statistics of the 310 “bad cases” in Aishell2Mix development set
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DPCCN success mixture separations than the Conv-
TasNet on this difficult-to-separate 310 mixtures. This 
means DPCCN is a better candidate for robust speech 
separation task, using DPCCN as the primary model 
and its outputs as references in the whole SCT process is 
reasonable.

6 � Conclusion
In this paper, we proposed an iterative separation con-
sistency training (SCT) framework, a practical source 
model adaptation technology for cross-domain unsuper-
vised speech separation tasks. By introducing an effective 
pseudo-labeling approach, the unlabeled target domain 
mixtures are well exploited for target model adaptation, 
which successfully reduces the strong ground-truth reli-
ance of most state-of-the-art supervised speech separa-
tion systems.

Different from previous works, SCT follows a het-
erogeneous structure, it is composed of a masking-
based time-domain separation model, Conv-TasNet, 
and a mapping-based time-frequency domain separa-
tion model, DPCCN. Due to this heterogeneous struc-
ture and the specially designed separation consistency 
measures, SCT can not only perform the pseudo-labe-
ling of unlabeled mixtures automatically, but also can 
ensure the selected pseudo ground-truths are high 
quality and informative. Moreover, by introducing the 
cross-knowledge adaptation in SCT, the large comple-
mentary information between heterogeneous models is 
maximally leveraged to improve the primary separation 
system. In addition, the iterative adaptation nature in 
SCT provides an increased chance to improve the pri-
mary model when there is a large amount of unlabeled 
mixtures available. Finally, we find this heterogeneous 
design of SCT also has the potential to further improve 
the final separation system performance by combing 
two final adapted separation model at the level of their 
outputs.

We verified the effectiveness of our proposed methods 
on two cross-domain conditions: the reverberant Eng-
lish and the anechoic Mandarin acoustic environments. 
Results show that, under each condition, both the het-
erogeneous separation models are significantly improved, 
their target domain performance is very close to the 
upper bound ones, even the target domain training and 
development sets are all unlabeled mixtures. In addition, 
through the bad case analysis, we find that the SCT will 
definitely introduce some error pseudo ground-truth to a 
certain extent. This limitation of current SCT still needs 
to be improved in our future works before we apply it to 
real speech separation applications.
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