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Abstract 

Speech is the most common form of human communication, and many conversations use digital communication 
links. For efficient transmission, acoustic speech waveforms are usually converted to digital form, with reduced bit 
rates, while maintaining decoded speech quality. This paper reviews the history of speech coding techniques, from 
early mu-law logarithmic compression to recent neural-network methods. The techniques are examined in terms of 
output quality, algorithmic complexity, delay, and cost. Focus is on which aspects of speech can be exploited for high-
quality transmission. The choices made to code speech are motivated by efficiency, the needs of applications, and 
access to information in the speech signal that is useful for both intelligibility and naturalness in the reconstructed 
speech at the decoder.

1  Introduction
A fundamental aspect of human nature is the need to 
communicate with each other, and speaking and listening 
provide the most common ways to convey information. 
This paper examines the technical methods that have 
been used to facilitate this communication over common 
transmission links. Issues of interest include the follow-
ing: (1) the precision needed to quantify relevant speech 
signal parameters in the time and frequency domains, (2) 
estimating which aspects of the input speech are inten-
tionally controlled by speakers and utilized by listeners, 
(3) how to accommodate the huge variability in speech 
communication due to environmental conditions and dif-
ferent speakers, (4) how to harness the power of comput-
ers, and (5) how to design coders efficiently.

Speech coding has two parts: coder for analysis of the 
input and decoder to synthesize or reconstruct the out-
put speech; overall systems are called codecs. A continu-
ous input speech signal is analyzed and transformed into 
a bit sequence, which can be stored or transmitted over a 

communication channel. The decoder converts received 
bits into an analog reconstructed speech signal, suitable 
for listening. Common bit rates are 64 kilobits/s (kbps) 
for many landline networks and 10–13 kbps for cellular 
telephony. One usually distinguishes narrowband trans-
mission (e.g., landline telephony at 8 kHz sampling rate) 
vs. wideband (16 kHz, for Internet applications). While 
speech has some content above 8 kHz, high-quality 
entertainment systems are the main applications for rates 
above 16 kHz; for example, compact disks use 44.1 kHz 
and some modern coders half that rate. For comparison, 
the information content in speech is much lower, at about 
100 bps [131], which suggests that further improvements 
to coding are surely feasible. This paper examines how 
coders function, focusing on properties of speech signals 
that can be exploited for speech coding.

To minimize transmission rates, coders typically use 
statistical models to reduce redundancy in signals, often 
exploiting signal correlations in time and frequency. 
Some random signals such as white noise have no cor-
relations to exploit. Speech, on the other hand, is clearly 
redundant, as human acoustic communication func-
tions in diverse conditions, e.g., noisy environments, 
unfamiliar people, and foreign accents. As sources of 
redundancy, note that natural speech consists of peri-
odic bursts or noise exciting a speaker’s vocal tract (VT), 
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which can be modelled as a set of short and narrow tubes 
[21]. These physical conditions and constraints lead to 
many signal redundancies. For speech, VT shape changes 
slowly relative to signal sampling rates, often yielding 
successive brief portions of speech, called pitch periods, 
which are caused by periodic closures of the speaker’s 
vocal cords and have strong correlation with each other. 
The acoustics of narrow tubes causes resonances spaced 
approximately 1 kHz apart for a typical VT of length 17 
cm. This is related to the speed of sound, approximately 
340 m/s in typical conditions, and to energy reinforce-
ment when the VT acts as a quarter- or half-wavelength 
resonator [15].

1.1 � Types of speech coders: waveform and vocoder
Traditionally, there have been two major approaches to 
speech coding: waveform matching and parametric voco-
der (“voice coder”). The first replicates the real-valued 
time waveform, or its complex spectrum, directly, sam-
ple by sample, often based on some form of a minimum 
average distance criterion, such as signal-to-noise ratio 
(SNR), between the coder input and decoder output. 
Such an approach can apply to many signals, not just 
speech, although the choice of the distance measure may 
be weighted for speech applications, to exploit the nonu-
niform time-frequency resolution of the human auditory 
system. Neural network speech coders are waveform 
coders.

Vocoders, on the other hand, exploit a model of human 
speech production and perception, to greatly reduce bit 
rate, by representing dynamic speech information at a 
much lower frame rate (e.g., 100 Hz) than the sampling 
rate (e.g., 8–16 kHz) of speech. Like most analog sig-
nals, speech is sampled uniformly, which preserves the 
low-pass spectrum up to half the sampling rate (Nyquist 
rate [120]). However, as speech results from VT motion 
that is relatively slow compared to the sampling rate, its 
information evolves slowly, allowing coding represen-
tation in vocoders in terms of frames, which are short-
time sections of 10–30 ms. Vocoders usually sacrifice 
some output speech quality by representing VT spectra 
and excitation simply, leading to loss of natural spectral 
details, while retaining intelligibility.

A traditional speech codec often relies on signal pro-
cessing pipelines and specific design choices that exploit 
in-domain knowledge of psychoacoustics, to reduce cod-
ing bit rate and/or computational complexity. Vocoders 
rely on the specific assumption that the source audio is 
speech and introduce strong priors in the form of a para-
metric model. Unlike waveform codecs, the vocoding 
goal is not to obtain a faithful reconstruction sample by 
sample but to generate audio perceptually similar to the 
original. Vocoders date to the 1950s [20], exploiting a 

source-filter model of an excitation of noise or periodic 
pulses, with a VT filter [21]. Vocoders were refined to 
model VT resonances (called formants) [105], as well as 
using a more advanced model of spectral phase [24]. The 
common linear predictive coders (LPC) are discussed in 
detail in Section  4.4. Examples of modern vocoders are 
STRAIGHT [49] and WORLD [86]; WORLD uses hun-
dreds of spectral and aperiodic features.

For speech, both the sampling rate and the frame rate 
use a uniform temporal representation of the dynamic 
speech signal [29], but the sampling rate is proportional 
to the desired spectral bandwidth, whereas the frame rate 
selects useful data corresponding to VT motion. A typical 
sampling rate is 8 kHz, e.g., for narrowband telephony, as 
it has little energy above 3.2 kHz; other applications have 
higher rates, e.g., 16, 32, and 48 kHz (wideband, super 
wideband, full band, respectively; e.g., G.729 standard 
[101];). A frame rate of 100 Hz is a compromise that cor-
responds to the much slower VT motion, using about 
eight updates per phoneme, as phonemes in speech aver-
age approximately 80 ms. This 100-Hz rate is common 
in most speech applications, including automatic speech 
recognition (ASR) [135] and text-to-speech synthesis 
[126]. As for bit rates, most communication systems 
employ a fixed rate, but hierarchical coders allow the user 
to select a suitable decoding rate, depending on avail-
able downloading bandwidth. These coders have different 
layers of information, where the lowest rate allows basic 
intelligible reconstructed speech, whereas use of higher 
decoding rates employs more layers of data available for 
higher quality.

Coders may use statistics to accommodate the huge 
variability in speech, i.e., across speakers, acoustic con-
ditions, and speaking contexts. A sampled speech signal 
si is a discrete-time stochastic process, often character-
ized by a conditional probability density function (pdf ) 
f(si |si−1 , si−2 , · · · si−N). Successive samples in speech 
can have significant correlation over very large history 
N, e.g., several seconds of speech, but many applications 
limit analysis to a range of 10 samples, for efficiency. 
For example, LPC typically examines a range of N = 10 
samples in telephony [79], as spectral envelope detail 
for speech averages one resonance per kHz to model 
(two real parameters can represent the center frequency 
and bandwidth of each resonance); this allows detailed 
spectral amplitude (all-pole) models of order 10. Recent 
powerful artificial neural networks (ANNs) have found 
ways to exploit much larger ranges of N, as discussed in 
Section 12.

Vocoders use a model for human speech production; 
the most common is the source-filter model, where 
speech is interpreted as the output of a VT filter, and 
the input can be an excitation of two or three types: (1) 
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quasiperiodic puffs of air from the lungs at the glottis, (2) 
steady airflow noise at the outlet of a constriction in the 
VT, or (3) bursts of noise at a periodic rate. Basic LPC 
uses a binary choice for excitation, either pulses or noise, 
avoiding the need to distinguish the 2nd and 3rd types; 
in text-to-speech synthesis applications, such classifica-
tion is simple from text analysis. The periodicity of the 
(most common) first type of speech is the fundamental 
frequency (F0), the rate at which vocal cords vibrate. F0 is 
a very important aspect of periodic (voiced) speech, as all 
harmonics are multiples of F0, which allows very efficient 
coding of excitation.

The choice of vocoder model depends upon those 
aspects of speech that are more relevant than others and 
that can be exploited for efficient coding. Waveform cod-
ers, on the other hand, transmit data for each sample, 
without needing explicit decisions as to which aspects are 
more pertinent. To identify details in speech to focus on 
for coding, one may fruitfully seek aspects that are both 
intentionally controlled by speakers for communicative 
purposes and readily utilized by listeners. Most speech 
models exploit slowly varying VT resonances and F0, as 
these are very efficient representations. By estimation of 
parameters of VT models (e.g., LPC all-pole models) and 
of F0 every speech frame, one can transmit speech data 
at low bit rates.

1.2 � Which acoustic features are important for speech 
coding?

Speech has much acoustic detail that is not under direct 
speaker control, owing to complex interactions in airflow 
and energy losses (friction, thermal) [21]. Much minor 
acoustic detail is incidental, unintended by speakers, 
and ignored by listeners, without affecting distinctions 
of phonetic content or speaker aspects. Most speech 
applications, including coders, focus instead on spectral 
amplitude, which is directly controlled by VT position-
ing, and place a lesser role for spectral phase [93]. There 
is much variability in phase in speech; as phase is not 
intentionally controlled by speakers, listeners pay atten-
tion primarily to frequency locations of spectral peaks. 
As a result, many vocoders emulate this behavior and 
focus on spectral envelope detail, especially for low-rate 
coding. To increase quality, speech applications that can 
afford higher bit rates include more phase detail, which 
can have little effect on intelligibility but is important for 
naturalness.

Two waveforms with the same amplitude but different 
phase may sound the same or different to listeners. Pre-
serving phase detail is a simple and safe strategy, followed 
in many waveform coders, but it is inherently inefficient. 
Low-rate coders aim for intelligible decoded speech, 
while high-rate coders have increased quality. To achieve 

lower bit rates in speech coding may require a better 
understanding of phase. Currently, coders often approxi-
mate aspects of voiced excitation with thousands of bits/s 
in algebraic vector quantization or via use of millions of 
neural network parameters. Lack of understanding of VT 
excitation and phase has limited more efficient coding of 
speech.

Besides phase modelling, low-rate vocoders often are 
weak in preserving speaker information, e.g., identity 
for speaker verification and health status. Speech cod-
ers tend to replicate some speaker-specific data, e.g., that 
related to timing and pitch, but there is much unknown 
about how speech encodes much of data about speaker 
identity. Waveform coders inherently often preserve this 
information, but without any explicit understanding.

If one looks to ways that are currently used to identify 
speakers as a guide for how speech coders might preserve 
relevant speaker data, one may be disappointed. Speaker 
verification has often used massive statistical approaches 
to distinguish speakers, via methods such as eigen-
voices, x-vectors, principal components analysis, Gauss-
ian mixture models, and joint factor analysis [50]. Such 
optimization methods have not found their way yet into 
mainstream speech coders; they appear to be useful for 
classification but less so for the objectives of speech cod-
ing. The well-known phonetic features of F0 and spectral 
envelopes have been greatly exploited in speech coding 
but seem to have less benefit in distinguishing similar 
speakers. For emotional and health indicators in speech, 
the literature suggests that intonation is a prime factor 
[64], and most coders preserve intonation well.

1.3 � Evaluation criteria for speech coding
The success of a speech coder is often measured in terms 
of its bit rate and complexity but mostly by the intel-
ligibility and quality of the decoded speech. Both these 
characteristics are most reliably evaluated by perceptual 
experiments, asking listeners for their judgments. As 
such is costly and time-consuming; objective methods 
have been sought to estimate speech quality, e.g., per-
ceptual evaluation of speech quality [40, 104], short-time 
objective intelligibility [124], and ITU-T P.863 [2]. One 
subjective measures are the MUltiple Stimuli with Hid-
den Reference and Anchor test [43]; the common mean 
opinion score is typically above 4 for good waveform cod-
ers and above 3 for vocoders [121].

Intelligibility and quality are highly correlated but dif-
ferent. For example, one simplistic way to eliminate much 
noise in distorted speech is to filter out low frequencies 
(where most environmental noise occurs), which makes 
speech sound less noisy, but often loses phonetic infor-
mation critical for intelligibility. While intelligibility is 
readily measured by word error rate, the percentage of 
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words misunderstood, speech quality is far more com-
plex. Noise, distortion, naturalness, reverberation, and 
intelligibility all affect the perceived quality.

When estimating output speech quality, one traditional 
(but limited) objective measure for waveform coders has 
been SNR [58], which treats all time and frequency sam-
ples equally, with the average squared difference between 
the input and reproduced signals as criterion. This is 
simple and commonly used but is an imperfect measure 
for speech quality, as it ignores many relevant nonlin-
ear perceptual phenomena, which include masking, the 
mel scale [13], and other logarithmic effects in percep-
tion. Some coders weight SNR so that the coding noise is 
shaped to exploit masking properties of human percep-
tion, e.g., “hide” quantization noise in frequency ranges 
of speech where speech is strong, such as harmonics in 
formants [9]. Nonetheless, many waveform coders explic-
itly use maximal SNR as their estimate of success, by rep-
licating either the speech time waveform or its spectrum, 
sample by sample. SNR is not pertinent for vocoders, as 
their reproduction is not sample by sample; thus, other 
success measures, e.g., spectral envelope distortion, are 
needed [59].

Among modern waveform speech coders are genera-
tive decoders and end-to-end neural audio coders; these 
can handle many audio signals, not just speech, as they 
often do not employ explicit speech models. Such neural 
models include WaveNet [90], its variants WaveGRU​ in 
Lyra [56], WaveRNN in LPCNet [130], and SampleRNN 

[82]. These will be further discussed in Section  12. The 
E-model can determine the effect of packet loss on voice 
quality if the RTP/UTP voice-over-Internet protocol 
(VoIP) is used in digital networks [85] Table 1.

2 � Sampling and frame rates
As almost all signal processors are digital, a first step for 
analysis is analog-to-digital conversion (ADC). To pro-
duce analog speech to listen to, the final step in a speech 
codec uses the inverse digital-to-analog conversion 
(DAC). Many physical phenomena, including speech, can 
be viewed as signals that vary continuously in time, but 
digital computers require binary bit sequences. Analog 
speech occurs as air pressure waves emitted from a 
speaker’s vocal tract (VT). Such an analog signal is rep-
resented uniformly in time at sampling rate Fs, e.g., 8 kHz 
for telephone applications, which is chosen to preserve 
the signal spectrum up to Fs/2 Hz [70]. Many telephony 
waveform coders, e.g., mu-law, ADPCM, adaptive trans-
form coding (ATC), and sub-band coding (SBC), send 
digital samples at 8 kHz, leading to typical bit rates of 
8, 16, 32, and 64 kbps, as discussed below. Early phone 
applications were limited by carbon microphones and 
high-frequency line losses, leading to only retaining the 
300–3200 Hz range [25]; the resulting 8-kHz sample rate 
has persisted for decades, owing to the huge investment 
in transmission networks.

Information content in speech occurs at a much lower 
rate than the sampling rate. Taking advantage of this, 

Table 1  Summary of speech coding methods

Method Type Characteristics Advantages Disadvantages

Basic PCM Waveform Uniform ADC Very simple High bit rate

Logarithmic PCM Waveform Log amplitude compression No latency Medium-high bit rate

Adaptive PCM Waveform Quantizer follows energy 
changes

Simple Medium-high bit rate

Differential PCM Waveform Short-time spectral predictor Exploits speech spectral enve-
lope detail

Medium bit rate

Linear predictive coding Vocoder All-pole spectral model Low bit rate; standard model for 
cellular telephony

Loss of phase in basic model

Adaptive transform coding Waveform Transmits much spectral detail Good speech quality High complexity

Sub-band coding Waveform Band-pass filters Good speech quality High complexity

Sinusoidal (harmonic) coding Waveform Codes individual harmonics Good speech quality Requires F0 estimator

Channel vocoder Vocoder Flat spectrum in each channel Low rate Reverberation; loss of phase

Formant vocoder Vocoder Direct formant model Low rate Requires estimates of formant 
frequencies

Variational autoencoder Neural network Encoder/decoder Basic neural model Costly

Flow neural model Neural network Transforms Gaussian noise 
sequences

Can use parallel processing More difficult to train

Generative adversarial network Neural network Adversarial discriminator and 
generator

Fast processing Lower quality than other neural 
methods

Autoregressive neural model Neural network Exploits long conditional pdfs Very high quality High latency; costly
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vocoders transmit data at lower frame rates, portioning 
speech into successive (often overlapping) time frames 
of 10–30 ms, with many speech applications operating 
at a frame rate of 100 Hz [120]. The span of analysis for 
each frame is called a window; window size varies with 
the need of the application, being short for VT state esti-
mation and longer for F0 estimation. Acoustic detail for 
phonemes lies in short-term amplitude variations within 
individual pitch periods, as the impulse response of the 
VT relates to its shape. Estimating the spacing between 
repeated periods of F0, on the other hand, needs a win-
dow of multiple periods. Speaking rates are rarely above 
250 wpm, and phoneme durations average about 80 ms. 
One-hundred frames/s gives several frames per pho-
neme, which is thus suitable to track VT motion across 
phonemes, called coarticulation [26].

A coder usually removes redundancy from its input 
signal by representation of dynamic model parameters 
that are estimated each frame. Energy, VT resonances, 
F0, and related parameters vary with articulation; coding 
information at such a frame rate allows large data reduc-
tions in vocoders. There are many coding variations, e.g., 
standard G.711 encapsulates two sets of 10 ms into one 
20-ms packet [42].

3 � Acoustic aspects of speech that are relevant 
for coding

Before discussing details of different coders, it is useful to 
examine the nature of speech signals, to discover aspects, 
e.g., redundancy, which coding may exploit. Speech sig-
nals have a variety of information, e.g., the text of what 
one says, who is talking, the language in use, and emo-
tional and health conditions of the speaker. However, all 
this is encoded in the speech signal in a highly complex 
fashion. Preserving pertinent information in coding aims 
to lower the number of bits in its digital representation 
while retaining both the intelligibility and naturalness of 
the reconstituted output signal.

The phonemic content of speech resides primarily in 
the local dynamic behavior of its spectral resonances, but 
intonation, which spans much longer time ranges, also 
has a significant impact. Aspects of speech that involve 
speaker identity and that may reflect speaker condition 
are far more complex but evolve very slowly in the speech 
signal. Thus, it is helpful to examine human speech pro-
duction and perception in more detail.

Human listeners interpret the diverse information in 
speech according to their learned perceptual processes 
[122]. When machines process (e.g., code or recognize) 
speech, they use methods of signal analysis, i.e., trans-
form input audio to forms more useful to allow efficient 
representation. This paper focusses on signal process-
ing that has been used for speech coding, rather than on 

classification or general signal analysis. Thus, the empha-
sis here is not on general neural networks, nor on the 
many pattern recognition classifiers (e.g., k-means, dis-
tance measures, maximum likelihood [27]), as these are 
not specific to speech coding. This paper examines effi-
cient speech signal transformations, analysis concepts, 
and their motivations and leaves most mathematical and 
algorithmic details to the cited references. Some coding 
methods emulate aspects of human audition, but others 
simply reduce redundancy.

3.1 � Phonemes
A speech signal consists of variations in air pressure 
caused by waves from a speaker’s VT (Fig. 1). The signal 
results from a complex sequence of human processes, 
including some that are still poorly understood [21]:

1)	 A speaker transforms ideas into conceptual word 
sequences.

2)	 Commands to muscles invoke VT motion, with the 
speaker aiming for a series of VT shapes correspond-
ing to brief individual linguistic units called pho-
nemes.

3)	 Air is pushed from the lungs.
4)	 After propagating through space, sound pressure var-

iations received by ears cause a listener’s eardrums to 
pass these vibrations to the basilar membrane in the 
cochlea.

5)	 These induce auditory neural firings to the brain, via 
thousands of cochlear hair cells.

Speech is a communicative process, intended to pass 
a message to listeners. The speaker controls the VT to 
facilitate this transfer of information. At one linguistic 
level, a speech signal consists of a sequence of phonemes 
whose durations and spectral characteristics vary in time. 
The speaker moves the VT to achieve a series of positions 
that produce a sequence of phoneme sounds suitable for 
interpretation by listeners [83].

Most languages have a set of about 30–40 phonemes 
from two main classes: vowels and consonants, each dis-
tinguished by acoustic properties of periodicity, timing, 
and spectral detail [67]. Coders that replicate these prop-
erties well have good intelligibility. Naturalness, on the 
other hand, is far more difficult to quantify, which has led 
to a diverse range of speech coders.

Most phonemes use vocal cords vibrating at F0 Hz; 
these are called voiced phonemes. Puffs of air from the 
lungs, spaced roughly uniformly in time, excite the VT, 
which acts as a filter, to produce this strong speech. If the 
VT has a major constriction, the periodic airflow creates 
a voiced fricative in the form of repeated bursts of spec-
trally shaped noise. Such obstruent phonemes consist of 
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broadband noise, initiated at the outlet of a VT constric-
tion and exciting the upper VT above the constriction. 
If the VT has no major constriction, on the other hand, 
speech has repeated segments called pitch periods; these 
sonorant phonemes include vowels, nasal consonants, 
and related consonants (liquids and glides). If the vocal 
cords are not vibrating, resulting sounds are unvoiced 
obstruents.

During speech, the VT is always changing shape, 
owing to a combination of lagging effects from earlier 
phonemes, positioning for each current phoneme, and 
anticipating future phonemes. These dynamics cause 
coarticulation effects in which pitch periods in sonorants 
are only quasi-periodic, not perfect copies. Articulatory 
and acoustic effects of coarticulation from neighboring 
phonemes can extend over several phonemes [26]; e.g., in 
the phoneme sequence /stru/, lips are rounded through-
out, in anticipation of vowel /u/.

Vocoders estimate relevant and dynamic aspects of 
speech production, such as energy, spectral detail, and 
periodicity [72]. These three properties of speech are 
often used because they have phonetic relevance, are 

readily controlled by speakers and interpreted by listen-
ers, and allow for low-rate representation.

3.1.1 � Properties of phonemes: articulatory and acoustic
It is useful to examine both articulatory and acoustic 
aspects of speech, as low-dimensional parameterization 
is feasible for phonemes, which can allow great reduction 
in coding bit rates, e.g., 8 phonemes/s vs. 8000 samples/s. 
However, estimation of many traditional categorical pho-
netic features such as tongue height, voicing, nasality, 
resonances, and F0 is often unreliable [19, 100]. Thus, 
both ASR and speech coding generally avoid features, 
instead using parameters, which are directly calculated 
from time-frequency (T-F) analysis without classification 
estimations, such as average energy, LPC, and MFCC (see 
later). Nonetheless, phonetic features are worthwhile to 
examine, as they can be efficient representations and may 
provide ways toward future low-rate coders.

Tongue height in vowels correlates inversely with the 
center frequency of the lowest-frequency resonance of 
the VT, called the first formant (F1) (Fig.  2). (Fi is the 
center frequency of the i-th resonance; note that F0 is 
not a formant). These center frequencies have far more 

Fig. 1  Example of a speech waveform in time; four successive sections of 100 ms each. Two quasiperiodic strong vowels (10–115 and 260–400 ms) 
have a nasal (115–260 ms) between them (/ana/)
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relevance for communication than the bandwidths of res-
onances. For phoneme discrimination, listeners pay close 
attention to the frequencies of prominent spectral peaks. 
Other speech production effects include the following: 
lateral tongue position correlates with F2, and a retroflex 
tongue tip causes a lowering of F3. Other articulatory 
behavior of the VT (e.g., velum lowering, lip rounding) 
has various known effects on speech spectra. VT formant 
bandwidths and spectral zeros (antiresonances) have less 
value in communicating information [23]. Thus, low-rate 
coders focus on modelling spectra at peak frequencies.

For obstruent consonants (stops and fricatives), a clo-
sure or constriction point (e.g., labial, alveolar, velar) cre-
ates roughly tubular shapes in the VT that are relatively 
isolated acoustically from each other, with related spec-
tral effects. As shorter tubes in obstruents cause reso-
nances at higher frequencies, the need to model detail 
in spectra is less than for sonorants [52]. Modelling 2–4 
strong low-frequency resonances well is essential for 
sonorants, but obstruents can be well represented by a 
simple bandpass model, specified primarily by its lower 
cutoff frequency. Much speech research has shown that 
timing and the spectral distribution of energy are criti-
cal to both speech production and speech perception [21, 
122].

3.2 � Intonation
While spectral detail, e.g., frequencies of major energy, 
which is narrowly localized in time is critical to pho-
neme representation, speech has relevant information 
on time scales much longer than brief phonemes. Intona-
tion, which consists of signal amplitude, F0, and sound 
durations, is used greatly in human communication and 
must be replicated properly in speech coding. Intonation 
is nonetheless often ignored in most ASR classification, 

owing to difficulty integrating acoustic information on 
different time scales. Waveform speech coders include 
intonation directly, by replicating fine details of the 
speech time signal. On the other hand, most vocoders 
explicitly estimate F0, sending its values along with spec-
tral detail for each frame; e.g., LPC sends the all-pole 
model parameters called LPC coefficients, while channel 
vocoders send amplitudes of band-pass filter outputs [31].

The temporal domain of intonation is words and 
phrases, e.g., several seconds, much longer than coarticu-
lation, which is usually much less than 1 s. For purposes 
of intonation, one averages acoustic measures over time 
scales of frames of 10–30 ms. Such temporal ranges are 
appropriate to handle both coarticulation and intonation.

3.2.1 � F0 estimation
Among the aspects of intonation, amplitude is easiest 
to calculate, via a simple average of waveform peaks or 
energy during each frame. Duration is rarely estimated in 
current coders, as there is little need to seek unit bounda-
ries in coders that send data every frame, and neural cod-
ers generally avoid such prior processing. The 1980s saw 
several segmental, or phonetic, speech vocoders [106], 
which grouped successive speech frames that were simi-
lar spectrally into phonetic segments, e.g., parts of pho-
nemes, thus allowing nonuniform, lower transmission 
rates once per segment. Modern coders tend to avoid 
such specific decisions as to segment boundaries, as 
their estimation is often unreliable [91], and there is lit-
tle demand for very-low-rate coders, as most users prefer 
quality to incremental cost reductions.

Unlike amplitude and duration, F0 requires a complex 
algorithm to reliably estimate pitch-period duration, 
which varies widely. While spectral peak detail (reso-
nance positions) is a prime determining factor in speech 

Fig. 2  Example of a wide-band speech spectrogram. Note the horizontal dark bands (formants), roughly spaced every 1 kHz; vertical axis is 
frequency in kHz; horizontal axis is time in seconds
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quality, perhaps the single most important individual 
feature of voiced speech is F0. If a speech coder does not 
replicate periods correctly, listeners immediately detect 
flaws in the decoded speech. In theory, a periodic signal 
has a spectrum consisting of discrete lines at harmonics, 
which are multiples of F0. In practice, a sonorant pho-
neme (the most common speech sound) can be analyzed 
as a windowed periodic signal, whose resulting spectrum 
is smeared over a frequency range inversely proportional 
to the window duration (also called the “leakage effect”), 
which causes the spectral lines to spread out, e.g., 50 Hz 
width [16]. The amplitudes of the harmonics are weighted 
by the spectral envelope of the VT filter. Searching for 
equally spaced harmonic peaks in speech spectra is one 
way to estimate F0 [100]. Since speakers change F0 rela-
tively slowly (usually much less than an octave during a 
phoneme), F0 estimators may assume small changes from 
period to period, except when switching between voiced 
and unvoiced speech.

The spectral envelope is a function of VT shape, which 
is independent of F0. F0 estimation often simplifies the 
speech spectrum by “flattening” its envelope and/or elim-
inating phase effects. For the latter, autocorrelation of the 
speech signal obtains a zero-phase and squared-ampli-
tude spectrum, as it is the convolution of a signal with its 
time-reversed version [69]. In autocorrelation, speech is 
multiplied by a delayed version of itself, and then aver-
aged, yielding maxima at multiples of the pitch period. 
LPC analysis often uses autocorrelation as an efficient 
way to estimate a spectral envelope. A less costly ver-
sion of autocorrelation is the average magnitude differ-
ence function, which subtracts the speech waveform from 
itself, delayed by possible values of pitch periods.

Flattening the spectrum may use an LPC inverse fil-
ter, whose output preserves harmonic structure [81]. 
Cheaper ways use a simple nonlinear, time-domain dis-
tortion that retains pitch-period peaks, while suppressing 
other detail, e.g., a (full- or half-wave) rectifier, or using 
a threshold that eliminates all waveform details below 
a certain level [100]. Here, one wishes to render speech 
into a version resembling a flat, line spectrum, which cor-
responds to a uniform impulse train in time, which is the 
easiest to measure for F0.

3.3 � Summary of useful speech features
Many years of research have shown that certain pho-
netic features present in speech signals are clearly useful 
for representations in speech applications. One cannot 
formally prove that any of these are explicitly controlled 
by speakers or directly exploited by listeners, but very 
strong correlations with human communication are 
linked to the following: formants, F0, overall energy, and 
periodicity [22]. As reliable estimation of some of these 

categorical features, e.g., formants and F0, has been dif-
ficult in common practical acoustic environments, we 
see below that parametric measures, calculated directly 
by formula, have become common in speech coding. It is 
nonetheless clear that exploiting versions of the spectral 
distribution of speech energy helps coding performance; 
e.g., LPC replicates major VT resonances with less than a 
dozen parameters, allowing listeners to perceive decoded 
speech well with low bit rates [79]. Thus, preserving 
these features, under reduced bit rates, is a main task for 
speech coders.

4 � Time‑domain speech coding
The simplest speech coders operate on the time wave-
form directly. Several of the waveform techniques in 
this section apply to a wide range of signals other than 
speech, e.g., video, rainfall, and X-rays, while other tech-
niques exploit specific aspects of speech.

4.1 � Analog‑to‑digital conversion (ADC)
Section  2 briefly discussed digitization as the first step 
in speech coding. The parametric choices for ADC/DAC 
are as follows: sampling rate, type of quantization (e.g., 
uniform vs. logarithmic), number of bits, and assumed 
input amplitude range. A basic quantizer samples a signal 
uniformly in time at a chosen rate (Fs Hz), i.e., selecting 
a sequence of real numbers that correspond to the val-
ues of the input signal at times spaced every Ts = 1/Fs; 
sampling signals non-uniformly in time adds complexity 
that is rarely useful [114]. Fs is chosen to exceed twice the 
highest frequency (the Nyquist rate) in the input signal, 
as uniform sampling in time produces copies of the sig-
nal spectrum spaced at intervals of Fs [16]. When energy 
is present above Fs/2, these copies overlap, causing cor-
ruption called aliasing. Coders cannot recover from such 
distortion, so they usually try to minimize energy above 
Fs/2 via use of an analog low-pass filter prior to ADC 
[120].

Most physical signals of interest, including speech, 
have energy primarily at low frequencies. As the stand-
ard telephone system heavily attenuates energy above 3.2 
kHz [25], an 8-kHz sampling rate is very common. Audio 
signals, in general, lack energy below 200 Hz, but cod-
ers rarely exploit that small gap. Sub-band speech cod-
ers (Section 6) divide the spectrum into distinct smaller 
frequency ranges, via digital band-pass filters, which can 
then each use lower sampling rates than Fs. The Nyquist 
principle of using Fs sample/s for a bandwidth of Fs/2 
can apply not only to low-pass signals but also to band-
limited signals, but the frequency bands must be chosen 
to minimize aliasing; e.g., decimation to reduce sampling 
rates in the narrow bands puts equally spaced copies of 
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each spectral band, and thus, choices for filters must 
minimize alias overlap [12].

A major ADC parameter of interest is the number N 
bits/sample for quantization. Time sampling prevents 
retaining spectra outside the selected frequency range 
(0–Fs/2), while quantization causes amplitude distortion 
for each sample, as one represents each real-valued signal 
sample with a number selected from a finite set of pos-
sible values. These values can be uniformly spaced by a 
step size, i.e., equal to the range divided by the number of 
levels, 2^N, which is constant in time, or a step size that 
varies with amplitude and/or with time. The sampling 
precision is a compromise between cost (more bits to 
send) and quality. For audio signals, one usually selects 
N = 8 for mu-law telephone applications (see below), 
because listeners cannot detect the presence of such low 
quantization noise in normal speech at that precision 
[29].

4.2 � Logarithmic compression
The simplest waveform coder (uniform ADC) is called 
pulse-code modulation (PCM). The basic digital tel-
ephone network instead uses mu-law or A-law logarith-
mic ADC, which compresses each sample’s amplitude on 
a scale approximating a logarithm (64 kbps: 8 bits/sam-
ple [120]). The actual compression is linear at low ampli-
tudes, as log (0) is infinite. This process has no memory, 
and thus no coding delay (latency). The amplitude warp-
ing exploits the average signal amplitude pdf, which is 
Laplacian (exponential) [92], as coders are most efficient 
when using all quantizer levels equally on average. Thus, 
the encoder does an approximate logarithmic compres-
sion, and the decoder does an exponential expansion. 
Coders often have this inverse relationship to decod-
ers, i.e., the decoder “undoes” what the coder has done. 
The analysis process is thus to compress the input to the 
quantizer, so that the ADC quantization noise is reduced.

4.3 � Time‑adaptive coding
Memoryless mu-law compression is simple and efficient, 
but does not exploit dynamic amplitude variations in 
speech. For example, vowels are much more intense than 
consonants, and when the vocal cords close, the VT has a 
large excitation, i.e., each pitch period starts strongly and 
fades in time [21]. Thus, using a quantizer that changes 
dynamically to match step-size to the varying energy in 
speech would maintain a good signal-to-quantization-
noise ratio (SNR) throughout the frequent wide energy 
swings in speech. A simple version is adaptive pulse-code 
modulation (APCM) [16]. The only analysis needed is a 
short-term estimate of dynamic speech energy, at a suit-
able frame rate, averaging periodically within a limited 
time window.

Speech is a nonstationary random process, and analy-
sis is usually repeated over brief windows that are shifted 
periodically in time at a suitable frame rate. APCM sim-
ply uses average energy per frame to adjust quantizer 
step size, while other adaptive techniques use more 
detail. Unlike most speech applications, frame updates 
for APCM can vary well beyond the traditional 100 Hz, 
for the so-called syllabic and instantaneous processing; 
the former averages long spans of speech samples; the 
latter uses short analysis windows and thus needs more 
frequent updates.

APCM exploits temporal correlations in a coarse fash-
ion, e.g., total energy. At some additional cost and much 
more useful for efficiency are predictive coders [120]. 
Most audio, including speech, is dominated by energy 
found mostly at low frequencies. Coders must still retain 
high frequencies for full representation, but the pre-
dominance of low frequencies allows use of a differential 
coder, coding the (smaller) difference between successive 
samples, rather than samples themselves. These coders 
exploit waveform detail within individual pitch periods of 
voiced speech, which is the result of VT filtering. Such 
predictive coders model the spectral envelope of win-
dowed speech. A predictive coder encodes the difference 
between each successive speech sample and an estimate 
of that sample based on the recent history of the signal. 
For most of speech (sonorants), this difference is much 
smaller than waveform samples themselves. With smaller 
step sizes, there is less quantization noise.

In minimizing noise, and thus maximizing SNR, all fre-
quencies are often treated equally. However, human per-
ception has nonuniform time-frequency resolution, and 
many coders “hide” portions of quantization noise in T-F 
sections where speech energy is high, to exploit masking 
effects, e.g., noise feedback coding [80].

4.4 � Linear predictive coding (LPC) and adaptive 
differential PCM (ADPCM)

The most common form of speech coding that com-
bines adaptation and prediction is linear predictive cod-
ing, where the coder forms a predicted estimate of each 
waveform sample as a linear combination of N immedi-
ately prior samples; N = 10 in most telephony applica-
tions, as this accommodates 4–5 VT resonances, using 
two parameters per formant (Fig. 3). In sonorants, the 
primary excitation in each period is at vocal cord clo-
sure [21], so that ensuing samples are mostly based on 
the impulse response of the VT, as modelled by N coef-
ficients/frame. As each resonance corresponds to two 
complex-conjugate poles in the z-plane, a 10th-order 
LPC all-pole (autoregression (AR)) model is standard 
for telephony. Modelling the spectral envelope with 
only ten parameters is a significant reduction of data 
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for transmission, compared with a Fourier representa-
tion. The VT excitation is handled with amplitude, F0, 
and a voiced/unvoiced bit. The analysis prediction filter 
for LPC is all-zero (moving average), and the decoder 
synthesizer is all-pole (Fig. 4). This model is less accu-
rate for non-sonorants, as their noisy excitation is con-
tinuous, rather than concentrated at vocal cord closure; 
however, this is of minor concern, as listeners pay far 
less attention to phase in noisy obstruents [94].

Speech is a stochastic process. Let S = {s1,s2,...,sN} be 
a vector of N successive speech waveform samples. The 
speech pdf p(S) can be factored into a product of con-
ditional probabilities p(S) = Prod p (st|st−1, st−2, . . . , 
s2, s1). Each speech sample st is conditioned on previous 
samples. Dependence exists over a wide time range, but, 
for efficiency, one usually limits N to 10. A common sto-
chastic modelling approach has an objective to minimize 
the Kullback-Leibler divergence between the “ground 
truth” (actual) speech joint pdf p (si , · · · , si−N) and its 
model distribution q (si, · · · , si−N) [56]; this is equivalent 
to the cross-entropy (CE) between these distributions 
[116]. CE is a common loss function for ANN training, 
e.g., maximum likelihood-based teacher forcing.

The difference between each speech sample and its 
predicted estimate is the LPC residual error, and aver-
age minimum mean-square error (MMSE) between 
input and output signals is used to determine the model 
parameters, i.e., the multiplier weights of the linear pre-
diction combination [79]. This quadratic error is mini-
mized by a solution of linear equations; optimal weights 
are found using a partial derivative of the error equalling 

zero. MMSE focuses on matching spectral peaks, which 
is desirable perceptually. The all-pole speech synthesizer 
(decoder) corresponds to the inverse of its (feedforward, 
all-zero) differential analysis model.

ADPCM (e.g., G.726 standard) uses this coding ana-
lyzer to transmit the residual error at Fs Hz [109], 
whereas basic LPC uses a very coarse excitation model 
for its all-pole synthesizer. A simple version of ADPCM 
is continuously variable slope delta modulation, which 
handles very noisy audio conditions better than LPC 
[61]. Basic LPC sends only data at the 100-Hz frame rate; 
one bit notes voiced vs. unvoiced (i.e., periodic impulse 
or noise excitation). Some ADPCM uses an autoregres-
sive moving-average model, as speech has spectral zeros 
[102], but the LPC model is far simpler if all-pole, and lis-
teners focus far more on spectral peaks than valleys, as 
perception is dominated by the presence of energy, rather 
than its absence [122]. “Moving average” means a finite-
duration impulse response, whereas autoregressive mod-
els have output depending on prior samples.

Calculation of the LPC model usually involves inversion 
of a matrix of an autocorrelation of the windowed speech 
time waveform. Full matrix inversion is not needed as 
the symmetry of this matrix can be exploited to calculate 
the inverse efficiently, e.g., by the Levinson-Durbin algo-
rithm. Averaging the product of signal samples spaced 
by very short-time delays yields an efficient representa-
tion for signals that have simple spectral structure, e.g., 
an amplitude envelope that has a few resonances, which 
is appropriate for speech. Owing to its emphasis on spec-
tral peaks, the resulting LPC spectrum models resonance 

Fig. 3  Basic differential coding. An all-zero predictor P(z) produces a reduced (and more random) quantizer input; all-pole decoder reconstructs the 
VT spectral shape
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center frequencies very well but tends to underestimate 
resonance bandwidths (frequency spans between −3-dB 
formant amplitude values [127]). For most applications, 
this is not a significant disadvantage. The all-pole LPC 
model continues to be used in modern cellular telephony, 
but higher quality output speech is obtained via use of 
more advanced excitation models (see next subsection) 
than the basic binary voiced/unvoiced model. It is widely 
used in the Global System for Mobile Communications 
(GSM) [87] and in VoIP [35].

4.4.1 � Advanced excitation models for LPC
Modern telephony (e.g., GSM) uses bit rates around 10 
kbps and employs the original LPC VT model but uses 
ACELP (algebraic code) excitation to send more detail 
about the residual [108], at bit rates that are lower than 
16–32 kbps ADPCM (Fig.  5). Early LPC [79] used a 
binary impulse-or-noise selection as input to the all-pole 
VT filter synthesis model; such output speech is intel-
ligible but has a mechanical (“buzzy”) quality. Human 
speech is never truly periodic; the so-called pitch periods 
always vary in time, sometimes slightly and often more 
during coarticulation. These variations are not random 
but are difficult to model; so when researchers applied 

Fig. 4  Basic LPC decoder. All-pole synthesizer is excited by a binary choice between random noise (for unvoiced speech) and impulses (for voiced 
speech)

Fig. 5  CELP generates reconstructed speech y(n) via a basic LPC all-pole filter of order 10, excited by brief excitation patterns in a 10-bit vector 
quantization (VQ) codebook. The LPC filter itself is also selected from a trained codebook
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jitter (amplitude randomness) or shimmer (duration ran-
domness) [39] to pitch-period impulses, quality showed 
little improvement.

Since harmonics are sharper at low than high frequen-
cies, another candidate excitation consisted of low-pass-
filtered impulses and high-pass-filtered noise, which only 
slightly improved quality [68]. This spectral difference in 
natural harmonics is related to plane-wave propagation 
in the VT, which is most valid at low frequencies, where 
long wavelengths block oblique wave propagation. After 
these simple (inexpensive) modifications to the LPC exci-
tation model, a much more computation-intensive multi-
pulse (MP) approach [65] became the state of the art in 
the late 1980s. MP-LPC approximates the actual LPC 
residual error signal, transmitted in high-rate ADPCM, 
with a reduced skeleton-type excitation, sending ampli-
tudes and times of individual impulses to be used as 
excitation. The temporal locations and amplitudes of 
excitation impulses were selected to minimize a weighted 
squared error between the input and output speech. This 
MMSE was weighted to emphasize precision at strong 
spectral regions, where listeners pay most attention.

For CELP, an excitation sequence selected from a 
trained codebook is input to a cascade of linear predic-
tion and pitch filters to reconstruct speech. The LP filter 
restores the spectral (short-term correlation) informa-
tion, while the pitch filter creates periodicity. Modern 
ACELP coders use an algebraic codebook with a prede-
fined regular structure, in which excitation pulses, all of 
the same amplitude, are organized by tracks. (Further 
discussion is in Section 5.)

4.4.2 � Line spect​ral pairs
For efficient vocoder transmission, the ten traditional 
LP coefficients are usually transformed into a set of ten 
reflection coefficients or line spectral pairs (LSPs) [119]. 
The LP polyn​omial A(z) = 1 — sum {k = 1 to p} a_k z^{-
k} describes a direct-form digital filter, where the ten a_k 
LPC coefficients do not have good quantization proper-
ties, e.g., require too many bits to avoid perceived spec-
tral distortion in the reconstructed speech. A lattice 
filter with reflection coefficients [79] instead models the 
same VT filter, but with values bounded by +/−1, guar-
anteeing stable synthesis, as in models of actual traveling 
waves in the VT.

Even more efficient are LSPs, which use two equations 
to replace A(z): P a palin​dromi​c polyn​omial and Q an 
anti-palindromic polynomial:

where A(z) = 0.5 [P(z) + Q(z)]
P(z) = A(z)+z^{-(p+1)} A(z^{-1})}
Q(z) = A(z)-z^{-(p+1)} A(z^{-1})}
P corresponds to a model of the VT with the glott​is 

closed and Q with the glott​is open.

The roots of P and Q lie on the unit circle in the com-
plex z-plane, and their roots alternate around the circle. 
The coefficients are simply angles in z and thus real and 
in conju​gate pairs.

5 � Vector quantization (VQ) methods
Block encoding is more efficient than memoryless 
(instantaneous or scalar) coding [134], as sending indi-
vidual data samples independently ignores correlations 
among multiple parameters of a data representation. Suc-
cessive speech samples in either time or frequency, as 
well as other representations, e.g., LPC parameters, are 
often highly correlated. Optimal scalar quantization can 
be extended to a high-dimensional space via the gener-
alized Lloyd algorithm [75], which is similar to k-means 
clustering, where data points are assigned to clusters so 
that the sum of the squared distances between the data 
points and their centroid model is minimized [74]. In VQ, 
a point in a high-dimensional space is mapped onto a dis-
crete set of L code vectors. Structured vector quantizers, 
e.g., residual, product, or lattice, seek a trade-off between 
computational complexity and computational efficiency.

Consider any set (e.g., block or vector) of N numbers 
representing a portion of a signal from a random process 
such as speech, i.e., x (1), x (2), … x(N). These could be N 
successive time samples or N spectral values. If the signal 
is not white noise, samples have correlation to exploit in 
efficiently coding the block as a unit (LBG algorithm [6, 
33]).

If the data have a sequential relationship, one may 
use Bayes theorem: P(A, B, C, D, … Z) = P(A) P(B|A) 
P(C|A,B) … P(Z|A,B, … Y); any joint pdf is the product 
of such a series of conditional densities. This is especially 
useful for Markov models, which greatly simplify this 
product, under some strong assumptions, and has been 
widely used for ASR [135].

Training starts with a large set of M blocks of exam-
ples, using many speakers and acoustic conditions. From 
these, L vectors (a codebook) are selected or generated 
to represent the range of all possibilities. For LPC-VQ, 
N-th-order LPC vectors from many frames of speech 
provide the training data. As in ADC quantization, where 
each speech sample is reduced to a discrete value from 
a finite set of scalar output levels, a VQ coder selects, 
from the L-element codebook, the closest vector for each 
speech frame. A suitable distance measure determines 
vector proximity. L is often 1024, allowing transmission 
of a single 10-bit code rather than N LPC coefficients, 
each needing more than 5 bits.

The VQ training minimizes the distance measure that 
is an average of the distances between each of the M 
training vectors and the codebook vector that is closest 
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to each vector in the L subset. At each training iteration, 
the current codebook yields this evaluation measure, and 
then, the codebook is revised with updated centroids, 
perturbed in directions to reduce the measure.

If the representation space has evident structure, e.g., 
spectral patterns for different phonemes, more efficient 
searches are possible. For example, the codebook may be 
searched as a binary tree, log_2 L comparisons, if organ-
ized suitably, but L comparisons may be needed in the 
coding stage to find the optimal vector. To reconstruct 
from a coded signal, the decoder, using the same code-
book, simply finds the corresponding vector for each 
frame from its transmitted log_2 L-bit code. Such VQ 
can apply to both the spectral envelope and the residual 
of LPC (Fig. 5), although the envelope codebook is easier 
to organize for faster search.

6 � Sub‑band analysis
Modern telephony speech coding uses a version of LPC 
with advanced excitation such as ACELP, with bit rates 
around 10 kbps. Alternative waveform coders operating 
at slightly higher rates are SBC and ATC. Both of these 
exploit the same typical redundant aspects of speech 
spectra, i.e., a few prominent resonances with quasiperi-
odic or noise excitation, but not with a differential pre-
dictor. Aspects of both are commonly found in modern 
coders, such as Opus [129], as well as older systems, such 
as MP-3 [5]. As SBC and ATC do not assume a speech 
source-filter model, they are suitable for general audio 
coding.

Sub-band coding (SBC) ([12]; e.g., G. 722 standard) 
exploits human audition’s better resolution at lower fre-
quencies, as well as the predominance of lower frequency 
energy in most audio. Input speech passes through a set 
of M bandpass filters, covering the full range of spectra 
but with usually narrower bands at lower frequencies, 
and each filter output (channel) is coded with APCM, 
with quantizer step sizes and bit assignment adjusted for 
lower energy at higher frequencies (Fig. 6). Each channel 
is decimated, for its much narrower bandwidth, and then 
interpolated back at the decoder, which sums all channel 
signals to form the reconstructed waveform. This usually 
requires more bits than ACELP but is found in wideband 
applications [46]. A low-rate version is called channel 
vocoder, which has similar quality to basic LPC speech, 
but is obsolete, as it cannot upgrade its excitation as LPC 
can.

SBC has M output channels, all much narrower than 
the original speech bandwidth B Hz, i.e., an average of 
B/M Hz, although typical use of the mel scale means a 
nonuniform distribution. This requires decimation to 
reduce the sampling rate in each transmitted channel, so 
that the overall combined rate does not increase [16]. The 
cutoff frequencies for each channel using specific filter 
design can minimize aliasing that can occur as a result of 
the downsampling [128].

A related downsampling occurs in neural vocoders 
(Section 12), as each network layer may typically output 
half as many samples as its input layer; successive lay-
ers then can lower the number of samples to transmit 
significantly. However, this analogy to decimation does 

Fig. 6  Sub-band coder with M equal-bandwidth filters; the output of each filter in the encoder is downsampled M:1 and then upsampled 1:M in 
the decoder. In each channel, the analysis and synthesis filters are the same
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not apply for ANNs to the mechanism of bandwidth and 
aliasing, as the operation of ANNs is nonlinear. Similarly, 
while SBC decoder interpolation simply inserts zero val-
ues between the decimated samples, and then bandpass 
filters (before summing all channels), the upsampling 
found in ANN decoders is far more complex. The idea of 
treating frequency bands separately, according to their 
utility in speech communication, persists in some neural 
approaches [88].

7 � Adaptive transform coding (ATC)
Also used in medium-rate applications is a direct encod-
ing of the speech spectrum in adaptive transform coding 
[136]. Rather than having a small set of filter channels 
as in SBC, one codes samples directly from a spec-
tral transform (Fourier transform or modified discrete 
cosine transform — MDCT), assigning individual APCM 
encoding to each sample. MDCT is an extension of basic 
spectral representation to overlapping blocks [133]; 
MDCT is common in VoIP, e.g., the G.​729.1 coder. ATC 
uses a block approach, requiring a delay of one frame in 
streaming (real-time) applications. Basic LPC also has 
this same frame delay, but some high-order LPC uses 
instantaneous updating that does not invert a covariance 
or autocorrelation matrix each frame; in that case, the 
delay is only the brief predictor history of 10 samples [8]. 
The ATC decoder synthesizer simply inverse-transforms 
back into a time waveform.

A challenge for ATC is to efficiently estimate each sam-
ple’s coder parameters (step sizes and numbers of bits), 
so that the decoder uses specific APCM, without sending 
much side information. The numbers of bits for samples 
are assigned in approximate proportion to sample energy. 
One usually estimates both F0 and a rough spectral 
model (e.g., LPC envelope) for this, which allows reduc-
ing the average number of bits per sample to as low as 
1–2 vs. 3–4 for ADPCM.

In ATC, choosing a short block size allows for low 
latency but can yield poor frequency resolution. Coef-
ficients can be grouped to resemble the criti​cal bands 
of human audition. Opus uses pyrami​d vecto​r quant​
izati​on — a spherical VQ. This encoding leads to code 
words of fixed (predictable) length, which enables 
robustness against bit errors and does not require entro​
py encod​ing. An open-source, low-delay audio coder 
called CELT (Constrained Energy Lapped Transform 
[129]) uses band folding, which delivers a similar effect 
to spect​ral band repli​cation by reusing coefficients of 
lower bands for higher ones. Band folding was used 
as well in older codecs like the GSM codec [45]. The 
MPEG Unified Speech and Audio Coding standard uses 
piecewise constant envelope models known as scale 
factor bands [41].

8 � Harmonic sinusoidal coding
Voiced speech requires far more coding precision than 
unvoiced speech, as listeners pay little attention to phase 
in unvoiced speech. Thus, one direct vocoder method 
called sinusoidal coding encodes parameters for harmon-
ics in each frame of voiced speech. Spoken audio is rec-
reated as a sum of harmonically related sine waves with 
coded amplitudes and phases. The open-source Codec2 
[107, 118] uses this for bit rates of 450 bps–3.2 kbps.

9 � Mel‑spectral analysis
Audition is highly nonlinear; in particular, spacing along 
the basilar membrane of the inner ear corresponds, above 
1 kHz, to frequency on a logarithmic scale. This nonlin-
ear mapping is called the mel scale, which is also viewed 
as 24 critical bands covering the full spectral auditory 
range [139]. Since 1990, the most common method of 
speech analysis for ASR has been the mel-frequency 
cepstral coefficients (MFCC [13];). Cepstral analysis was 
first developed for deconvolution, i.e., separating the two 
components of a convolution, such as the output s(n) of 
a VT filter with impulse response h(n) driven by a VT 
excitation e(n). As speech is often viewed as periodicity 
or noise exciting a VT model, such a cepstral process can 
estimate both the excitation input and the VT filter. The 
high computational complexity of such a cepstral coder 
has prevented its practical use in speech coding, how-
ever. We discuss these ideas here, as recent neural speech 
coders often employ mel-spectrogram features.

MFCC combines spectral analysis with aspects of audi-
tion. It transforms each set of N speech samples s(n) into 
spectral amplitude (discarding phase), weights (multi-
plies) all spectral values using about 26 triangular-shaped 
“filters” spaced by the mel-scale, takes an amplitude 
logarithm, and then, inverse transforms back to the time 
domain, as a set of c(n) coefficients in time. Simpler loga-
rithmic band-pass filter energies — a version of MFCC, 
but without the final inverse frequency transform step — 
have been increasingly used in ANN ASR [36].

The mel scale is useful in speech coding, as it focuses 
speech data along an axis more suitable for perceptual 
evaluation, as the coding output is destined for human 
ears. However, a mel spectrogram shows only amplitude, 
and phase must be handled separately. ANN methods for 
speech coding often take inputs in the time-frequency 
domain from a short time Fourier transform, MDCT, or a 
mel spectrogram [98].

10 � Hybrid speech coders
Vocoders provide intelligible speech at low bit rates, e.g., 
2.4 kbps, but their elimination of phase limits quality. 
The common 2.4-kbps rate is a holdover from the days 
of the original 300-bps modems, using a power-of-two 

https://en.wikipedia.org/wiki/G.729.1
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https://en.wikipedia.org/wiki/Entropy_encoding
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https://en.wikipedia.org/wiki/Spectral_band_replication
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multiple; similarly, the common use of 8 and 16 kbps 
coders derives from submultiples of the 64-kbps teleph-
ony standard. Waveform coders yield excellent recon-
structed speech but typically require more than 6 kbps. 
Hybrid systems combine elements of both classes of 
coder to allow many practical applications, over a range 
of bit rates. ACELP is a common hybrid coder, found in 
telephone networks, using the basic spectral LP model 
of vocoders but having excellent phase via use of an 
advanced excitation model. Many other systems combine 
elements of VQ, SBC, ATC, ADPCM, and LPC. Hybrid 
coders are used in most mobile telephony and VoIP 
standards, e.g., the AMR (adaptive multi-rate) coder [3]. 
Various governmental organizations have established 
standards for speech coding, including the International 
Telecommunications Union (ITU), European Telecom-
munications Standards Institute (ETSI), Moving Picture 
Experts Group (MPEG), and Telecommunications Indus-
try Association (TIA) [62]. ITU has focused on landline 
telephony, MPEG on multimedia, and ETSI and TIA on 
digital cellular.

Opus [129] is a hybrid coder that provides good qual-
ity above 6 kbps. Opus is one of the main audio coders 
on YouTube for streaming and by Zoom. Opus and EVS 
(Enhanced Voice Services — successor to AMR-WB [18]) 
are state-of-the-art audio codecs, with various bit rates 
from 5.9 to 128 kbps, with four sampling rates (8, 16, 32, 
and 48 kHz). Opus uses a combination of an LPC com-
ponent (called SILK, as used by Skype) and an ATC part 
(CELT). A speech residual is coded as a sum of pulses, 
plus a pulse-dependent dither signal. Both SILK and 
CELP coders are hybrid coders, with weighted waveform 
matching loss functions. Lyra is a generative model that 
encodes quantized mel-spectrogram features of speech, 
which are decoded with an autoregressive WaveGRU 
model to achieve excellent output at 3 kbps [56].

When the receiver in a speech coder is resource-con-
strained, it can use a parametric vocoder for output; 
otherwise, higher quality is possible with neural coders 
(see below). Parametric vocoders often use a modified 
version of the Griffin-Lim algorithm [34] for synthesis; 
it provides a higher quality than use of an LPC synthesis 
model, which is more limited in both excitation and its 
all-pole spectrum. It does phase reconstruction based on 
redundancy in the short-time amplitude Fourier trans-
form but often requires many iterations, repeatedly con-
verting between frequency and time domains, until it 
converges.

11 � Formant vocoders
Another possibility for speech coding would be to esti-
mate traditional features such as formants and F0, 
which could allow large reductions in bit rate, e.g., from 

waveform coders of 8-16 bits/sample at a 8-kHz Nyquist 
rate (for telephone speech), to as low as a dozen param-
eters (using a few bits each) at a 100-Hz frame rate. 
There have been numerous efforts to estimate frequen-
cies for the lowest 3–4 formants in sonorants [19]. Early 
ASR efforts were expert systems using formant trackers 
[103] but had limited success, partly due to the fact that 
formants vary greatly in energy, e.g., /u/ has very little 
energy above F2. So, this option is rarely used.

12 � Neural speech coding
In the last two decades, much of speech processing has 
turned to machine learning (ML) models, such as artifi-
cial neural networks (ANNs), especially ones with more 
than three layers, called deep neural networks (DNNs). 
The main motivation has been the ability of ANNs to 
learn relevant patterns through simple automatic training 
methods using stochastic gradients and large amounts 
of training data. Early ML applications were in pattern 
recognition, first for images and then for audio, as the 
original work in multilayer perceptrons (MLPs) for clas-
sification [84].

Unlike biological neurons, which typically output a 
binary signal — a brief firing (shorter than 1 ms) to a suf-
ficient linear combination of weighted inputs, with a nil 
baseline, artificial neurons (often called nodes) may be 
designed to output a wide range of transformed data. In 
particular, reconstructed speech can be obtained from 
ANNs. As the focus of this paper is speech coding, we 
will present a brief introduction to ANNs here, to help 
understand how they are used in speech coding.

12.1 � Description of artificial neural networks
An ANN is a nonlinear algorithm that maps an input 
sequence of data to an output sequence [14]. For speech 
coding, the input is either time samples of a speech wave-
form or a set of frame-based spectral representations, 
e.g., log-spectral magnitudes or MFCCs, and the out-
put is a sequence of reconstructed speech samples. An 
ANN has stacked and connected layers, each with a set 
of nodes. Each node typically receives input values from 
nodes in a previous (lower) layer, weights and sums them, 
and passes this scalar combination to a nonlinear func-
tion. The output of each node is usually a monotonic 
function of its weighted inputs, in a rough model of bio-
logical neurons. In a natural neuron, many dendrites feed 
input values to an axon, whose output is binary [44]. Each 
neuron “fires” (output of 1) when the weighted sum of its 
inputs exceeds a specific bias or threshold (otherwise 0).

In an ANN, the nonlinear threshold operator, called 
an activation function, is a smooth, monotonic map-
ping such as a logistic sigmoid or a hyperbolic tangent 
function [115]. It often has a bounded output [0, 1]; an 
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exception is the ReLU (rectified linear unit). Such func-
tions allow use of derivatives for gradient descent search 
in iterative training of the ANN parameters (weights and 
biases) [1]. The basic ANN is an MLP, with a few layers of 
nodes (Fig. 7). Practical ANNs often have many millions 
of nodes, including operations other than thresholded 
linear weighting, e.g., pooling, which  selects a maximal 
value from among inputs [110].

Each perceptron node with N inputs specifies a hyper-
plane in N-dimensional space, by the linear combination 

of its weighted inputs: a 0/1 output specifies either side 
of the hyperplane. Varying the bias level allows opera-
tions that are more complex than a binary choice. Such 
complexity is needed to handle the huge variability seen 
in many applications, including speech coding. How-
ever, the resulting complexity hinders heuristic interpre-
tation of ANN actions. An ANN is not a “black box,” as 
its parameters are accessible to designers, but its typi-
cal huge size and complex operation greatly hinder any 
attempt to debug.

Fig. 7  Possible regions for MLPs (from [76]); given the extreme complexity of regions in most ANN applications, many layers are needed (three are 
shown here). The challenge of partitioning for complex spaces is illustrated for simple cases of handling targets that distribute in non-convex ways. 
The middle column poses a case of two classes (A, B) that are not contiguous, and the next column theorizes a case where classes A and B may 
have more arbitrary shapes, blocking simple classification. Possible class regions are shown and shaded or not
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12.2 � Training criteria: loss functions
ANN parameters are trained to minimize a differenti-
able loss function, i.e., a cost aimed to facilitate success-
ful network outputs. The ideal alternative procedure, 
i.e., direct minimization of errors or distortion, is often 
difficult as the relationship between network parame-
ters and success criteria is complex, unlike minimizing 
the simple quadratic error in basic LPC. Costs such as 
cross-entropy are common [137] but are usually modi-
fied to avoid overfitting, where models become too 
close to specific limited training data and insufficiently 
general to handle the huge variability in signals such as 
speech.

Entropy is a physical property associated with random-
ness, and the concept is used in coding to relate to pdfs 
and model training criteria. Shann​on’s sourc​e codin​g 
theor​em [113] states that the optimal code length for a 
symbol to transmit is −log P, where P is its probability. 
Common entropy coding methods are Huffm​an coding 
and arith​metic​ coding [60]. Entropy implies the mini-
mum bitrate achievable with lossless coding. Coding 
often transforms input data into latent features with the 
smallest possible entropy under a certain level of distor-
tion, yielding a nontrivial rate-distortion optimization 
problem [123]. During training, atypical outliers can 
cause a predictive model pdf with heavy tails and thus 
signal reconstruction with high entropy, which can yield 
noisy output.

One issue in ANN training is the sensitivity associ-
ated with attributes of a typical log-likelihood objective 
function [97]. This objective function incurs a significant 
penalty if the model assigns a low probability to observed 
data. In autoregressive structures, this encourages an 

overly broad predictive distribution when some training 
data are difficult to predict accurately.

Available training data are rarely adequate to anticipate 
most possible future inputs. To generalize, one often aug-
ments the primary loss function with a regularization 
term [30]. Regularization perturbs or diversifies train-
ing data, to generalize models and limit excess model 
flexibility. Data augmentation is also common, in which 
actual training data are modified by artificial distortion, 
e.g., additive noise, and/or deletion of random portions 
in time and in frequency, to increase the training set 
[117]. ANN training is subject to many problems, includ-
ing mode collapse (Section  12.6), posterior collapse 
(where a generative model learns to ignore a subset of the 
latent variables), and vanishing gradients. For example, 
in each iteration of training an ANN, network weights 
are updated in proportion to the parti​al deriv​ative of the 
error function with respect to the current weight; with 
many layers, the gradient may be vanishingly small.

12.3 � Types of ANNs
Basic ANNs are fully connected feedforward (FFNN), i.e., 
all nodes in each layer are input to all nodes in the next 
layer [125]. This, however, is too general for most applica-
tions, as data to model, including speech, tend to have a 
diversity of local and global aspects, which do not require 
large general structures. For example, voiced speech sam-
ples are highly correlated: (a) over 10–20 samples (owing 
to VT shape), (b) over many dozens of samples (pitch peri-
ods), and (c) among phonemes (longer-range phonological 
phenomena). However, having network parameters for all 
samples that are individually trained is likely overly com-
plex, leading to both extra cost and lower output quality.

Fig. 8  LSTM cell (from C. Olah, http://​colah.​github.​io/​posts/​2015-​08-​Under​stand​ing-​LSTMs/)
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As data in many applications have strong local corre-
lation, a common ANN variant is called convolutional 
neural networks (CNNs) [71]. A CNN processes input 
data over very small ranges (kernels), called receptive 
fields. CNNs are extremely common in ANNs and use-
ful to smooth data (and downsample, accomplishing data 
reduction) that are often sampled at high rates.

Another major ANN variant is recurrent networks 
(RNNs), which better exploit longer-range patterns in 
data [112]. Pertinent information in speech occurs very 
unevenly in both time and frequency: weak portions of 
speech are far less perceptually important than strong 
portions, and coarticulation and intonation affect speech 
over tens and hundreds of frames, respectively. RNNs can 
deal with this nonuniform distribution of information via 
use of more complex architectures, while basic MLPs do 
well with inputs from stationary random processes [77].

RNNs have network architectures with feedback, 
using distributed hidden states to store information 
from prior inputs. A common RNN is long short-term 
memory (LSTM) [38] (Fig.  8). For short-term memory 
in human perception, listeners retain some forms of 
representation for portions of speech, up to a few sec-
onds of speech, in their brain. Utilizing such a wide 
range of data in FFNNs and CNNs is very difficult. The 
range of analysis of an RNN can extend well beyond the 
very limited scope of CNN kernels. LSTMs have sig-
moid gates called input, output, and forget, to utilize 
temporal data non-uniformly. The forget gates allow 
variations in phoneme durations, as they vary greatly 
in speech. A gated recurrent unit (GRU) is a simplified 
version of LSTM that combines forget and input gates 
into a single update gate and merges cell and hidden 
states [10]; it handles long-term dependencies, has a 
simple architecture, and is easy to implement.

A recent modification to ANNs is called atten-
tion [132], in which network focus can be placed on 
related portions of data. Attention is viewed as a cor-
relation of relevant information and is calculated via 
matrix operations (e.g., dot products) that combine 
several terms: queries (inputs), keys (features), and val-
ues (desired outputs, weighted by the attention), with a 
softmax function to obtain normalized values for atten-
tion weights [48]. Softmax is a normalized exponential 
function: network values are raised to an exponential 
and then normalized by dividing by the sum of all these 
exponentials; this ensures that the sum of the compo-
nents of the output layer is 1. This allows the output to 
be viewed as a likelihood, not a class choice. To date, 
attention has been very popular in ASR (for classifi-
cation) but little used in speech coding, as the latter 
application must reconstruct all speech samples, not 
just focus on a limited set.

A temporal convolution network (TCN) [95] computes 
low-level features combining CNN (to encode spatial-
temporal information) and RNN (using low-level fea-
tures to capture high-level temporal information), 
exploiting both levels of information hierarchically. An 
interleaved structure with causal TCN and groupwise 
GRU can do temporal filtering for joint long-term and 
short-term correlation exploitation.

12.4 � Applying ANNs to speech coding
Most ANN nodes output a value between 0 and 1, but 
final output layers often employ the softmax function that 
can yield a set of probabilities or categorical softmax to 
output audio samples. In many ANN applications, input 
is high-dimensional, e.g., huge numbers of samples in 
audio or video, and both their latent representations and 
output are low-dimensional, e.g., recognition of classes of 

Fig. 9  Dilated neural network
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objects present in the input signal (e.g., ASR). Achieving 
useful data reduction in ANNs requires downsampling to 
increasingly smaller arrays in network layers. This is often 
done with dilated convolution, also called a trous, or con-
volution with holes [73], by applying convolutional filters 
over an area larger than input length by skipping input 
values regularly with a certain step (Figs. 9 and 10). Per-
tinent information in data is often spread widely among 
successive data samples, and systematic skipping is an 
efficient way to “sparsify” a network. This data reduction 
process is useful for many ANN applications.

Speech coding, however, requires a high-dimensional 
output, i.e., a reconstructed speech signal, not just a clas-
sification (as in ASR). Thus, one needs to up-sample from 
reduced, latent information in the transmitted data, back 
to the many output samples [56]. This requires expanding 
dilation in successive layers in the decoder network. The 
dilated causal convolutions allow the network’s receptive 
field to grow exponentially with depth. Neural speech 
coders use conditioning features to guide waveform 
reconstruction [57]. Examples of such features are spec-
tral envelope information, F0, and gain.

Neural speech coders use many different combinations 
of the basic units described above, i.e., CNNs, activation 
functions, dilation, pooling, and RNNs. To help focus on 
relevant spectral resonance detail, a mel spectrogram of 
the speech is often used along with the speech samples 
as input to the ANN. These generative neural networks 

model the pdf of samples observed in natural speech 
signals.

12.5 � Variational autoencoders
The most appropriate ANN for speech coding is likely 
an encoder/decoder structure, where the initial network 
layers act as an encoder to automatically learn hid-
den latent features in a compressed representation, and 
then, ensuing layers act as decoder to form the recon-
structed speech signal [17]. As in many coding schemes, 
the decoder steps often proceed in inverse fashion to the 
encoder steps. When this encoder-decoder is trained on 
unlabelled data, unlike ASR training supervised on texts, 
as in speech coding, it is an autoencoder. The encod-
ing finds “hidden” vector representations called encoder 
embeddings, mappings from high to low dimensions, in a 
latent space, while the decoding is trained to match input 
and output data; the difference, or loss, may be mean 
square, as in SNR. The encoder often consists of bi- or 
unidirectional LSTM layers and embeds the transmission 
data. Bidirectional LSTM is not real time, as it processes 
data backwards in time. The decoder step generates out-
put as close as possible to the original input.

A VAE is an autoencoder with encoding distribution 
regularized during training to ensure its latent space has 
useful properties to generate reasonable speech sam-
ples [4]. The VAE model uses a simple joint likelihood, 
P (X, Z) = P (X|Z) P (Z), where X is the input vector 

Fig. 10  Variational autoencoder (from Nishizaki [89])
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and P (Z) is the prior of Gaussian latent variable Z, with 
dimension much less than that of X. A decoder ANN 
designs P (X|Z), which is not analytically tractable and 
approximated with a parametric variational distribution 
(inference model), with parameters from another ANN 
(encoder). To minimize computation, the encoder pdf 
is usually Gaussian with a diagonal covariance matrix, 
which implies zero correlation among parameters; such 
is a very common simplifying assumption to reduce com-
putation, even if a poor model for real data.

Autoencoder-based waveform codecs may encode a 
speech waveform directly into a discrete latent space 
using a VQ-VAE [28]. They may rely on objective loss 
functions, e.g., mean-squared error, which cause per-
ceptual distortion in decoded signals, as such loss func-
tions rarely incorporate all relevant perceptual aspects. 
Perceptually, more meaningful loss functions calibrate 
the loss with psychoacoustic weighting [7, 37, 138]. This 
approach exploits the irrelevance of masked signal com-
ponents. The loss function may be augmented with the 
difference between the log mel spectra of the input and 
output samples, which then judges similarity both in time 
and frequency domains.

12.6 � Generative adversarial network (GAN) speech coding
Contrasting true and false samples of data is common in 
the development of deep generative ML models, which 
synthesize data such as images and audio, e.g., variational 
autoencoders (VAEs) and also generative adversarial net-
works (GANs). GAN architecture [32] uses two networks: 
generator and discriminator. The generator produces 
data from a low-dimensional latent space, with some 
starting from a Gaussian noise vector; the discrimina-
tor learns to distinguish between “real” training data and 
“false” generator outputs. Generators train to maximize 
the discriminator’s error rate, while discriminators mini-
mize their error rate. GANs can represent phonetically 
or phonologically meaningful information. To generate, 
if one starts from a random initialization of the model 
weights, adversarial loss often leads to severe audio arti-
facts [88]. With more realistic initial models, adversarial 
training can direct the generated signal toward more 
naturalness.

The GAN-based models tend to reconstruct speech 
conditioned on mel spectrograms and can offer fast 
generation on graphic processing units — two orders of 
magnitude faster than ordinary processors. To handle 
different ranges of correlation in speech, GAN may use 
multi-scale and multi-period discriminators, trained 
adversarially [78].

An aim of GAN is to produce a wide variety of outputs. 
If, however, a generator finds a very good output, it may 
overly focus on that output; the discriminator may then 

learn to always reject that output, thus falling into a trap 
called mode collapse [99].

12.7 � Autoregressive speech coding
Audio coders may offer several output quality options, 
depending on available bit rate and decoder power. Some 
recent high-quality coders, such as WaveNet  [90], are too 
complex for many output devices, as they use tens of mil-
lions of network parameters, models too big and slow for 
real-time processing in a resource-constrained device. Such 
powerful generative models use pdfs conditioned on many, 
or indeed all, previous input signal samples. Utilizing such 
long signal histories blocks efficient use of parallel process-
ing. WaveNet is a DNN with more than 25 layers and uses 
100+ GFLOPS with a high latency of more than 400 ms.

To reduce complexity, WaveNet may use an autoregres-
sive generative model [56] to represent complex speech 
conditional pdfs using a stack of dilated causal convolu-
tions, with very large receptive fields and no pooling lay-
ers. Training maximizes the log-likelihood of data over 
the model parameters. With no recurrent connections, 
it is faster to train than RNNs. When using 8-bit mu-law 
data, training is much more efficient than use of linear 
16-bit quantized samples. It also uses a custom activa-
tion function combining tanh and sigmoid nonlineari-
ties, which produces better audio than when using the 
ReLU function. While much more costly, WaveNet has 
outperformed more traditional vocoders in speech qual-
ity, either using an existing vocoder bit stream or with a 
quantized learned representation set [11].

Replacing dilated CNNs with RNNs improved mem-
ory efficiency in SampleRNN [82], which relies on pre-
vious samples at different scales. However, it is difficult 
for these methods to handle conditional features not 
found in prior training, e.g., generate speech with F0 
outside ranges observed in training data. One can distill 
WaveNet into a FFNN that can synthesize high-quality 
speech more efficiently, e.g., by using a WaveNet model 
as a “teacher” for a feedforward IAF model.

These waveform generation methods form an extreme 
form of autoregression, with thousands of samples pre-
dicted per second. Using such long-term conditioning 
is feasible during training, as the complete sequence of 
input samples is available and can be processed in par-
allel. At the generating stage, however, each input sam-
ple comes from the output distribution sequentially, thus 
allowing no parallel processing.

12.8 � Flow‑based speech coders
Unlike the coders in the last section, non-autoregressive 
speech decoders are either flow-based generative models, 
e.g., Parallel WaveNet and WaveGlow (90 layers) [99] or 
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GAN-based models, e.g., MelGAN [66], HiFiGAN [63], 
and StyleGAN [88]. Flow-based models can use paral-
lel processing but are costly and model the joint speech 
sequence pdf directly. They can model raw waveforms by 
transforming Gaussian noise sequences of the same size in 
parallel, upsampling from low-dimension latent features 
through transposed convolutions. A normalizing flow is a 
transformation of a simple pdf, e.g., Gaussian noise, into a 
more complex distribution by invertible and differentiable 
mappings. Resulting sample densities can be evaluated by 
transforming back to the original distribution and using 
the product of the density of both samples.

Inverse autoregressive flows (IAF) [51] are hybrid models 
where elements of a high-dimensional observable sample 
can be generated in parallel (Parallel WaveNet [90]). IAF 
has similarities to GANs, with a “student” playing the role 
of generator and a “teacher” playing the role of discrimi-
nator, to train the student network on an approximation 
to the true likelihood. Unlike in GANs, the student here 
is not attempting to fool the teacher in an adversarial 
manner; rather, it cooperates by attempting to match the 
teacher’s probabilities. While IAF networks can operate in 
parallel at the inference stage, the autoregression is costly.

12.9 � Residual network coding
Other coding architectures use quantized features from 
different layers of an autoencoder network to code 
speech at different bitrates [96]. For example, residual 
networks (ResNet) use “short-cuts” to pass information 
from one layer directly to a successor layer, as a bypass, 
while another approach [138] cascades residuals across a 
series of DNN modules. WaveRNN [47, 57] uses a feature 
ResNet that has 10 residual blocks, each of which uses two 
1 × 1 1-D convolutions, batch normalization, and ReLU 
activation functions. The feature ResNet is followed by a 
few stretch layers that upsample the features to 16-kHz 
output. By adding linear prediction to WaveRNN, LPC-
Net [130] can go as low as 1.6-kbps coding rate, based on 
a sparse GRU layer. WaveRNN also demonstrated possi-
bilities for synthesizing at lower complexities compared to 
WaveNet. Lower complexity and real-time operation are 
possible with LPCNet [130], by including LPC’s limited-
range autoregression. Thus, hybrid neural speech coders 
are approaching competitiveness with traditional voco-
ders, showing examples of higher quality at low rates. As 
research in this field is very dynamic, there are no neural 
speech coding standards yet.

13 � Discussion
The important features to replicate in speech signals 
have been known for decades: spectral envelope (espe-
cially resonances), F0 (and all its harmonics, which are 

multiples of F0), and phase. These ideas were addressed 
early in various adaptive and predictive algorithms that 
adjusted quantizer parameters and input to exploit both 
short- and long-term redundancies. The importance of 
harmonics in voiced phonemes led some coders (e.g., 
ATC, sinusoidal coders) to concentrate almost entirely 
on these spectral aspects. One major roadblock has often 
been phase, which derives in complex unintentional 
fashion by airflow in the VT. Reconstructed speech with 
minimum phase can be highly intelligible but unnatural. 
As early as 1990 saw ACELP, which was readily adopted 
by telephone networks, to maintain very good quality for 
narrowband transmission at 10 kbps. Various combina-
tions of LPC, SBC, and ATC have made up the bulk of 
speech coding applications since then, even as demand 
has increased for wider bandwidth speech than the 
standard phone network.

The advent of neural speech coders has shown a viable 
way to lower bit rates further, by mimicking phase well 
inside complex nonlinear networks, trained with suitable 
loss functions. There is no further understanding of how 
phase behaves, or which aspects need to be preserved, 
but output speech quality can be improved at lower bit 
rates. The price to pay here is use of very large opaque 
networks.

Traditional speech coders either directly modelled time 
waveforms, using simple sampling that can be adapted 
dynamically at a frame rate or using a source-filter VT 
model that allows separation of excitation and filter 
effects. These are very intuitive, allowing explicit expert 
design, based on knowledge of human speech produc-
tion and perception. Neural speech coders do not have 
any explicit speech model and replicate the waveform. 
Traditional waveform coders adapt coder aspects (e.g., 
quantizers and predictor filters) to features (e.g., ampli-
tude and spectral envelope detail) of the input speech 
that are directly estimated by speech analysis. Neural 
coders instead use standard ANN components in various 
architectures, with a range of loss functions that attempt 
to control the training in ways that retain speech quality.

Neural approaches are opaque, as the models auto-
matically train many millions of parameters, with vari-
ous combinations of architectures, activations, and loss 
functions. The components, so far, are mostly CNNs and 
RNNs, with time ranges that can vary. Neural methods 
have great capacity to find latent patterns that expert 
designers may overlook, but the complexity of speech 
may exceed that found in other neural successes, e.g., 
image recognition. Relevant details in most images lie in 
shapes, contours, colors, and shadows, which are func-
tions of physical objects and optical viewing that may be 
simpler than the indirect generation of speech. Speech 
instead derives from concepts in one’s brain, transformed 
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into muscle commands, and then VT motion, creating a 
signal that involves phonetics and intonation in complex 
fashion. Unlike images, one does not have access to the 
original ideas in the brain.

It is difficult to posit an ultimate low coding rate for 
speech coders that preserves all aspects of human speech, 
including speaker identity and naturalness. Speech con-
tains a wide variety of information, on a broad range of 
time and frequency scales and in nonuniform fashion. 
One can quantify the textual content of speech readily, in 
terms of phonemes per second. Such content is below 60 
bps, simply calculated from an average of 12 phonemes/s 
and 32 phones/language, on average. However, natural 
speech is far more than just a phoneme sequence. Into-
nation, phase effects, and speaker status (identity, health, 
emotion) are all complex factors not easily handled with 
any modern coding method.

The techniques discussed here are all attempts to 
remove redundancies in speech efficiently, which can be 
modelled either parametrically or via waveform approxi-
mation methods. Such redundancies occur often owing 
to physical constraints of the vocal tract and its control, 
as well as auditory mechanisms in the listener.

14 � Conclusion
This paper has examined the diverse ways that have 
been used to code speech for efficient digital trans-
mission. Methods have evolved greatly over the last 
few decades, exploiting advances in knowledge, data, 
and the power of computers. Historically, one must 
acknowledge the great advance of the Fourier transform 
in the development of speech coders. The foundations 
of speech analysis lie in fundamental ideas of spec-
trum, based on the Fourier transform, used in analy-
sis of many signals well beyond speech. This led to use 
of the spectrogram, which was the basis of all speech 
analysis until the late 1960s. Understanding of the spec-
tral behavior of both the vocal tract and the inner ear 
was essential to major methods of representing speech 
efficiently for transmission. One can also thank speech 
science for emphasizing the importance of spectral res-
onances and harmonics for speech reconstruction that 
is intelligible and natural.

In the late 1960s, LPC was clearly a breakthrough for 
speech coding and is still used in modern telephony. 
Other spectral methods (SBC, ATC) remain popular, 
exploiting redundancies in time-frequency representa-
tions. The use of vector quantization has also helped 
greatly in reduction of speech bit rates.

The difficulty of understanding phase in speech wave-
forms has caused bit rates to remain relatively high for 
high-quality speech coding, until recent neural network 

approaches that were able to focus accurate representa-
tions using a combination of automatic error minimiza-
tion with auditory perceptual models. Given the cost 
of current neural methods, it appears that CELP may 
remain a mainstay of speech coding for the near future, 
even as there is increasing use of wider bandwidth speech 
coders. Nonetheless, the recent rapid increase in quality 
of hybrid neural coders, combined with more compu-
tational efficiency, suggests a potential major change in 
commercial speech coders in the near future.
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