
Bellur et al. 
EURASIP Journal on Audio, Speech, and Music Processing         (2023) 2023:20  
https://doi.org/10.1186/s13636-023-00286-7

EMPIRICAL RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

EURASIP Journal on Audio,
Speech, and Music Processing

Explicit-memory multiresolution adaptive 
framework for speech and music separation
Ashwin Bellur1, Karan Thakkar1 and Mounya Elhilali1*   

Abstract 

The human auditory system employs a number of principles to facilitate the selection of perceptually separated 
streams from a complex sound mixture. The brain leverages multi-scale redundant representations of the input and 
uses memory (or priors) to guide the selection of a target sound from the input mixture. Moreover, feedback mecha-
nisms refine the memory constructs resulting in further improvement of selectivity of a particular sound object 
amidst dynamic backgrounds. The present study proposes a unified end-to-end computational framework that 
mimics these principles for sound source separation applied to both speech and music mixtures. While the problems 
of speech enhancement and music separation have often been tackled separately due to constraints and specifici-
ties of each signal domain, the current work posits that common principles for sound source separation are domain-
agnostic. In the proposed scheme, parallel and hierarchical convolutional paths map input mixtures onto redundant 
but distributed higher-dimensional subspaces and utilize the concept of temporal coherence to gate the selection of 
embeddings belonging to a target stream abstracted in memory. These explicit memories are further refined through 
self-feedback from incoming observations in order to improve the system’s selectivity when faced with unknown 
backgrounds. The model yields stable outcomes of source separation for both speech and music mixtures and dem-
onstrates benefits of explicit memory as a powerful representation of priors that guide information selection from 
complex inputs.

Keywords Auditory system, Speech enhancement, Music separation, Multi-scale redundant representations, 
Temporal coherence, Explicit memory

1 Introduction
The human brain solves complex auditory tasks such 
as having a conversation in a busy cafe or picking the 
melodic lines of a particular instrument in an ensemble 
orchestra. While seemingly effortless, these tasks are 
a real feat given that the brain only has access to a low 
dimensional pressure waveform of the mixture as the 
primary signal and uses a common front-end pipeline to 
process incoming signals, regardless of their complexity 
[1]. This sound mixture composed of different sources is 

analyzed through common processing stages in the audi-
tory system to separate it into perceptual auditory objects 
of unequal cognitive value. Some streams of interest are 
promoted to the foreground, while others are relegated 
to the background, e.g., attending to the voice of a friend 
and ignoring the background chatter in a cafeteria or 
jamming to beats of the drum and ignoring the melody of 
the accompaniments. Critical to this separation process 
is the mechanism of attention which gates the selection 
of foreground objects [2, 3], hence allowing the system 
to focus its computational resources on signals of inter-
est. Priors stored in memory are deployed as needed and 
used to narrow down the representational space of tar-
gets of interest to the system [4].

Neuroscience research has shed light on some of the 
mechanisms and neuronal architectures that facilitate 
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adaptive listening [5–9]. A series of transformations along 
the auditory pathway map the low dimensional pressure 
waveform to a higher dimensional space [10–12]. Stud-
ies have shown that naturally occurring sound objects 
have distinguishable characteristics and occupy non-over-
lapping regions in this high dimensional space, enabling 
the grouping of these features into perceptual auditory 
objects [13, 14]. In addition, functional magnetic reso-
nance imaging (fMRI) findings have indicated the presence 
of a spatially distributed network architecture in cortical 
regions with localized areas capturing different parts of 
the high dimensional spectrotemporal modulation space 
[15, 16]. Further, selective attention gates the representa-
tion of incoming signals that are temporally coherent with 
attended priors [17]. In addition, there is evidence that 
memory priors guiding selection of attended inputs func-
tion in a distributed setup rather than a unitary system, 
complementing the distributed feature encoding process 
[18–21]. These priors themselves undergo continuous 
adaptation and sharpening as a result of selective attention 
[22, 23], likely allowing the system to adapt to novel con-
texts and changing interfering backgrounds.

Inspired by these principles, numerous efforts in 
machine hearing have leveraged these principles to pro-
cess audio signals. Hierarchical and multi-resolution 
schemes have been widely effective in providing rich and 
redundant mappings of sound inputs, particularly for the 
task of source separation. Grais and colleagues proposed a 
multi-resolution architecture using convolutional filters of 
varying sizes to capture different parts of the spectrotem-
poral modulation space for source separation [24, 25]. 
Hierarchical U-networks and residual networks based on 
skip connections have also resulted in compelling perfor-
mance leaps for tasks such as singing voice separation [26] 
and music source separation [27, 28] by exploring features 
at various levels of abstraction. Most systems adopting 
a multi-resolution framework generally operate within 
a single end-to-end network, hence resulting in highly 
effective, yet very specialized systems, optimized for 
either speech inputs, music signals, or other sound events. 
These approaches raise the question regarding the effec-
tiveness and commonality of principles that facilitate seg-
regation of sounds regardless of sound class, be it speech, 
music, or other audio signals. After all, human brains are 
generalist systems able to process various sound inputs 
and attend to different objects of interest.

Beyond multi-resolution architectures, attention has 
been widely used as a mechanism that further guides 
processing in deep networks by incorporating weighting 
of local and global contexts, as shown by recent perfor-
mance leaps of models such as transformers and con-
formers [29]. Throughout the use of attentional processes 
in deep learning, the term attention takes on a meaning 

of a soft search across the feature space whether it is in 
the form of self-attention or weighting of contexts. In 
the present work, attention refers to a more biological 
construct, namely as a gating operation that is guided 
by explicit memory or priors to change the output of the 
system to the same input to attend to sound A or sound 
B in the mixture. These explicit memories act as informa-
tion bottlenecks that refine the network during inference 
and operate as discrete and compact units that guide the 
processing of the entire system.

In the present study, we propose a framework that 
achieves a dual objective in the context of audio source 
separation: (i) a universal, modular framework that 
operates on both speech and music signals by form-
ing explicit object memories and (ii) an adaptive system 
that selectively re-tunes memory to adapt to changes in 
the soundscape. The proposed system represented in 
Fig. 1 incorporates four key bio-mimetic principles: 

1 Multi-view feature extraction: Multiple parameterized 
independent streams trained in parallel to capture 
information from different vantage points [15, 16]. 
In addition, a stream integrator is trained to combine 
views across parallel streams.

2 Object memory formation: An explicit memory of 
different auditory objects is learned to represent pat-
terns of a particular object captured across multiple 
views [30, 31]. These memories are used to gate fea-
tures for target auditory objects.

3 Self-attentional feedback: During inference, self-
attentional feedback allows memory representations 
in each stream to refine themselves by using informa-
tion from a different vantage point in the network, in 
order to enhance perceptual fidelity when faced with 
changing backgrounds [22].

4 Hierarchy: The basic architecture can be repeated 
across different hierarchical levels. Self-feedback not 
only modulates parallel streams within a layer but 
trickles down to earlier levels in the hierarchy.

We evaluate this model for two different tasks, with-
out any adjustment to design elements or system archi-
tecture. In other words, the same model architecture is 
trained to attend to target speech in presence of various 
noise distortions (speech enhancement) and trained to 
attend to a particular instrument in presence of different 
instrumentals or vocals (music source separation). Both 
models differ in the number of possible targets, i.e., 2 for 
speech enhancement (speech and noise) and 4 for music 
separation (bass, drums, vocals, and other). It is impor-
tant to note that the proposed scheme frames the source 
separation problem as one where the system is attending 
to one auditory target (based on priors in the memory 
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network) and ignores all others. As such, the network 
only outputs the foreground signal desired to be listened 
to (as indicated by the user), rather than multiple signals 
in an input mixture.

The analysis to follow evaluates the effectiveness of 
the above mentioned mechanisms in an agnostic source 
separation task without exclusively targeting computa-
tional cost or high-performance computing to outper-
form state-of-the-art systems. In Section  2, we describe 
the proposed framework in detail; followed by the train-
ing process, datasets employed and baseline systems in 
Section  3. The results are presented in Section  4, while 
Section  5 discusses the capacity and constraints of the 
proposed system in mimicking the biological system.

2  Explicit‑memory multiresolution adaptive 
(EMMA) framework

Expanding upon the goals described in Fig. 1, we propose 
the explicit memory multi-resolution adaptive (EMMA) 
framework as represented in Fig.  2. The model takes as 
input two quantities, the magnitude short-time Fou-
rier transform (STFT) of the mixture signal denoted by 
SM  and an indicator variable IM ∈ N

O representing the 
target object. O denotes the maximum number of objects 
that can be present in the system and is pre-defined for 
the task. O = 4 for music source separation and repre-
sents memories of vocals, bass, drums, and others, while 
O = 2 for speech enhancement and represents memo-
ries of speech and background distractors. The desired 

output from each of the parallel streams as well as stream 
integrator is the magnitude STFT of the attended audi-
tory object only i.e., o ∈ {1, 2, ...O}.

The proposed model has four key components: (1) 
different levels of the hierarchy, each composed of par-
allel processing streams; (2) a stream integrator at each 
level of the hierarchy that renders a unified view across 
streams; (3) memory informed attentional gating G 
operating at end of each stream, and (4) self-attentional 
feedback to re-tune memories during inference. The fol-
lowing subsections describe each component in detail.

2.1  Parallel multi‑resolution feature analysis
As described previously, the network consists of par-
allel streams, each trained independently. Let the jth 
stream output of the ith layer be represented by Ŝi,j , where 
i ∈ {1, 2, ...imax} and j ∈ {0, 1, 2, ..., jmax−1} . We formulate 
the prediction of a stream fθi,j parameterized by θi,j as 
follows:-

where [Ŝi−1,1|Ŝi−1,2| . . . |Ŝi−1,jmax−1] represents the con-
catenated outputs of the previous layer’s streams except 
the stream integrator. Here, imax and jmax denote the total 
number of layers and count of streams per layer respec-
tively; j = 0 represents the stream integrator. In our 
experiments, we fix imax = 2 and jmax = 4 . The input of 

(1)

Ŝij =
fθi,j (Sm, Im) if i = 1

fθi,j ([Ŝi−1,1|Ŝi−1,2| . . . |Ŝi−1,jmax−1
], Im) else

Fig. 1 A brief view of the proposed framework incorporating the following bio-inspired design elements: (1) multi-view feature extraction with 
parallel streams trained independently to yield multiple read-outs, (2) a distributed network of memories for targets of interest used at each 
local stream to gate embeddings of interest, (3) feedback from the integrated output is propagated to re-tune local memories during inference 
(specialist system), (4) the architecture can be extended across multiple levels of a hierarchy
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each of the streams in level 1 is the magnitude STFT of 
the mixture SM ; while the input of each of the streams in 
level 2 is the concatenated output embeddings from the 
independent streams of level 1. All streams also take as 
input an indicator variable IM ∈ N

O , which signifies the 
target object in the scene.

Each stream consists of a two-dimensional convolu-
tion node as the basic computational unit, followed by 
a max pooling operation for some paths. As illustrated 
in Fig.2, the streams differ in the number of pooling 
operations and upsampling blocks attributing to S11 
and S21 being the fastest, S12 and S22 as the medium 
level and S13 and S23 capturing the slowest modulation 

features. All streams use a dilated-convolution stack 
(DCS) (Fig. 2) which is used to enable estimating filters 
of varying resolutions, with the most dilated filters cap-
turing the slower scale features [32]. The final stage in 
a stream is the gating operator G that is used to attend 
to the object of interest and is described later in this 
section.

2.2  Stream integration
Individual streams capture the acoustic scene and its 
constituent objects at differing levels of resolution and 
abstraction depending on the parameters of the stream 
and its position in the hierarchy. We hypothesize that 

Fig. 2 Detailed architecture of the proposed explicit memory multiresolution adaptive (EMMA) framework
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these streams capture the acoustic scene from differ-
ent vantage points, and integrating information across 
streams in different hierarchical levels should lead to bet-
ter target separation. Effectively, stream integrators at 
each level act as read-outs of the auditory objects from a 
particular level and have similar architectures as each of 
the parallel streams. They consist of convolutional nodes 
and DCS, albeit deeper in terms of network complex-
ity. The input to stream integrators is the concatenated 
embeddings of streams from the corresponding level of 
hierarchy along with indicator variables IM . The output of 
a stream integerator is formulated as follows

2.3  Memory informed attentional gating
The attentional gating G is inspired by the principle of 
temporal coherence which states that when attention 
is directed towards a characteristic feature of the target 
object, this characteristic feature acts as an anchor, and 
all the features that are coherent with temporal activa-
tions of this anchor become bound together to form a 
common auditory object [17, 33]. In other words, the 
attentional mechanism leverages patterns in the memory 
to weight embeddings that are in sync with the memory 
of interest for further processing [34].

Let H signify the embeddings of the mixture in a 3-D 
space with dimensions p× q × r . The dimensions p, 

(2)Ŝi,0 = fθi,0([Ŝi,1|Ŝi,2| . . . |Ŝi,jmax−1], Im)

q, and r represent frequency channels, number of time 
frames, and number of hidden units respectively. For 
simplicity, assume we want to segregate the audio into 
2 sound objects, object A and object B. Let OM denote 
the object memories of dimensions p× r × 2 and IM 
of dimensions 2× 1 be the indicator variable indicat-
ing the object we are interested in extracting from the 
audio. The gated attentional block performs the follow-
ing operations (Fig. 3): 

1. First, the memory vector Ox is selected from the vec-
tor OM as guided by the indicator IM.

2. Next, the weighted activation pattern Rx (also 
referred to as anchor memory) is estimated from 
the memory Ox and reshaped mixture embedding H̃ 
using the following equation. 

3. The anchored memory is then matrix multiplied with 
the memory vector to mimic the object memory’s 
pattern along the time dimension. 

4. Resultant matrix R̂x is of the same size as H̃ which 
undergoes a sigmoid non-linearity. Following the 
non-linearity, this matrix is then used as a gating 

(3)Rx[1, t] =

p
∑

i=1

r
∑

j=1

H [i, t, j] ∗ Ox[i, j, 1] ∀t ∈ {1, ..., q}

(4)R̂x = Ox ∗ Rx

Fig. 3 Visual of the proposed memory informed attentional gating for a single sample. The attention module takes a single batch of 
representations (H) as the input and reshapes it to (q, (p.r)). Utilizing reshaped H̃ and the selected object memory vector Ox , we estimate the anchor 
memory Rx . In the next step, we gate the embeddings that do not fire coherently with the Anchor Memory and produce the gated representation 
Ĥ
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operator (via element-wise multiplication) with the 
H̃ . This step is represented mathematically in Eq. 5. 

This process is similar to the use of a dictionary basis to 
segregate sources within the non-negative matrix factori-
zation paradigm [35]. The object memories are analogous 
to dictionary bases in this scenario and the gating opera-
tion is performed by reshaping the embeddings over time 
without non-negative constraints.

In each of the independent streams and stream inte-
grators, source separation or enhancement is performed 
through the penultimate block in the stream, indicated 
as G. The gating block takes the output of the previous 
block and indicator as the input and returns the embed-
dings activated in coherence to the pattern learned in the 
memory. The local attention gating block in each of the 
parallel streams and stream integrators is followed by the 
read-out layer, a 1× 1 convolution to generate the output 
spectrogram from each of the streams.

2.4  Self‑attentional feedback
The network proposed thus far consists of multiple 
streams across different levels of hierarchy with stream 
integrator at each level integrating information across 
the streams. By design, the network strives to represent 
distinct views of information across its different paths as 
information flows to integrator streams and higher levels. 
Each stream contains its own memory of objects used to 
separate sources. Deployment of top-down feedback is 
used to refine the memories of lower layers based on out-
put from upper layers. This top-down process focuses on 
only re-tuning the streams’ object memories in the atten-
tional gating blocks of individual streams by minimizing 
the objective L defined as,

where, ŜC =
∑imax

k=1
Sk ,0 and D is the distance metric used 

to quantify the distance between ŜC and Ŝi,j . This is illus-
trated in Fig. 2, where only the object memories denoted 
by “G” in the red dotted boxes are updated while the rest 
of the distributed network is kept fixed.

3  Experiments
In this section, we describe the datasets, network config-
uration, training, and re-tuning strategy in detail for both 
speech and music separation. The network configuration, 
training, and fine-tuning strategies are similar for both 
tasks, hence it is described together for both tasks in the 
subsection below.

(5)Ĥ = H ⊙ sigmoid(R̂x)

(6)L =

imax
∑

i=1

jmax
∑

j=1

D (ŜC , Ŝi,j)

3.1  Network configuration
In our experiments, we fix the number of layers as 2 and 
the number of streams per level as 3, with one stream 
integrator for each level, but the basic concept can be 
extended to more streams and levels. The network takes 
as input the magnitude spectrogram of the sound mix-
ture and indicator with dimensions B× 2048× 64 and 
B× O respectively, where B denotes batch size and O 
represents the number of objects. STFT is calculated 
using a window size of 2048 and a hop size of 512 with 
a hamming window. The number of time frames in the 
input is fixed to 64 and with zero padding where neces-
sary. The indicator is one hot encoded vector represent-
ing which memory to select for further processing ( O = 2 
for speech and O = 4 for music). All max-pooling oper-
ations are performed using a kernel size 2 and stride 2. 
Each convolution node consists of 128 hidden units, 
3× 3 kernel, and “same” padding with leaky ReLU (rec-
tified linear unit) activation [36]. Dilations are used in 
the DCS block (Fig. 2). Finally, the segregated waveform 
is obtained by taking the inverse STFT using the output 
magnitude spectrogram and the original mixture phase.

3.2  Training the network
Each stream including the stream integrator is trained 
independently while keeping the rest of the network 
fixed. Firstly, the three parallel streams in level 1 are 
trained with the magnitude spectrogram of the music or 
speech mixture as input along with information of the 
desired target object indicated by IM . Next, the stream 
integrator in level 1 and parallel streams in level 2 are 
trained with the concatenated embeddings from level 1 
and indicator variable IM as input. The parameters of the 
parallel streams in level 1 are kept fixed when training 
higher levels. Finally, the stream integrator in level 2 is 
trained using the concatenated gated embeddings of level 
2 and indicator variable IM as input, keeping the rest of 
the already trained networks fixed. Each stream is trained 
using the Adam optimizer for 35,000 iterations with a 
learning rate of 10−4.

To train the parallel streams, let Ŝi,j denote the output 
of the stream j in level i and Y be the ground truth (clean 
magnitude spectrogram) of the desired (attended) object; 
we employ the L1 norm as the loss function to train each 
of the streams, following Eq.  7. The stream integrator 
network in level 1 is also trained using the L1 norm 
(Eq. 8), while the stream integrator network in level 2 fol-
lows a modified loss equation (Eq. 9). This modified loss 
function balances a reconstruction of the clean spectro-
gram of the desired auditory object while enhancing con-
trastive information captured by the stream integrator in 
level 1. The parameter 

α ∈ [0, 1]
 is used to balance the 
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priorities between reconstruction and extracting comple-
mentary information. In this study, α is set to 0.2 follow-
ing empirical investigations. The training procedure 
follows a sequential order in which the sample order is 
presented in an orderly fashion for each memory, hence 
maintaining a similar context. This structure yields better 
performance relative to random sampling, likely because 
the gradients calculated in the sequential strategy guar-
antee an equal number of updates for all object 
memories.

3.3  Re‑tuning the network
The re-tuning procedure uses the loss function pre-
sented in Eq.6, where ŜC represents the sum of stream 
integrator outputs at all levels and D is the L1 distance 
between ŜC and Ŝi,j , imax = 2 and jmax = 3 . This stage 
is a true feedback operation that uses no ground truth 
data. Instead, it allows the model to leverage informa-
tion from a better viewpoint to improve itself. This 
mechanism can also be attributed loosely to a self-
correcting mechanism of the proposed EMMA frame-
work. For the network re-tuning, the learning rate is 
set to 10e−5, and the gradients of the memory matrix 
are updated for 10 epochs at max with early stopping 
applied to avoid overfitting.

3.4  Experimental tasks and baseline systems
3.4.1  Music source separation (MSS)
For this task, the MUSDB18 dataset [37] is utilized. The 
dataset consists of 150 songs (10 h of audio) divided into 
100 train and 50 test full-track songs. The audio is pro-
vided in a multitrack 22 kHz format composed of 5 stereo 
streams, with the 5 streams corresponding to the mix-
ture, drums, bass, vocals, and other instruments. For each 
file, the mixture corresponds to the sum of all the signals. 
All tracks are downsampled to 16 kHz before calculating 
the STFT. MSS focuses on separating the mixture into 4 
auditory objects: bass, drums, vocals, and other instru-
ments. The input to the network is the magnitude spec-
trogram extracted from a music mixture, along with an 
indicator suggesting which of these 4 objects/sources 
is of interest. The model predicts the magnitude spec-
trogram of the object for which the indicator variables 
is equal to one. The output of the network is compared 

(7)L|| = ||Y − Ŝi,j||1,1

(8)Lint1 = ||Y − Ŝ1,0||1,1

(9)Lint2 = |Y − Ŝ2,0||1,1 − α||Ŝ1,0 − Ŝ2,0||1,1

to the ground truth track and a measure of signal-to-
distortion ratio (SDR) is used to evaluate the separation 
performance.

Baseline systems: The performance of the proposed 
system is compared to a diverse number of other mod-
els with comparable setup. Many state of the art systems 
incorporate specifics about music profiles and extensively 
optimize to the particular domain. For example, [38, 39] 
proposes a hybrid model that selects time and/or spec-
trogram information as suited for the stream. Further-
more, the systems effectively train different networks for 
each sound class and optimize parameters to consider 
unique aspects of these classes. For instance, [39] cus-
tomizes processing based on target sources expected fre-
quency ranges, hence employing a much wider profile for 
bass sounds relative to vocals. The baseline models used 
in this study include a single network CNN-based setup 
[40], a data-augmented deep neural network [41], and a 
residual network based on de-noising auto-encoder [27] 
trained on the same data for comparison. All baseline sys-
tems have reported competitive performances on music 
source separation though are slightly below current state-
of-the-art systems which rely heavily on a expert knowl-
edge of the characteristics target sources [42].

3.4.2  Speech enhancement
To train the speech enhancement model, we use train-
ing data from a noisy speech dataset consisting of clean 
speech data from the Voicebank corpus [43]. These sam-
ples are distorted using environmental sounds from the 
Urban sounds database [44] and the QUT noise set [45] 
to create a dataset of approximately 30 h of audio at a 16 
kHz sampling rate. The noisy speech dataset is created 
at signal-to-noise ratios (SNR) ranging from − 10 dB to 
10 dB to cover a diverse range of low and high SNRs. For 
testing the model, we use two out-of-training distribu-
tion noisy speech datasets: (i) the noisy speech synthetic 
utterances from the DCASE 2020 challenge [46] consist-
ing of 1500 test examples each of 10-s duration and (ii) 
a noisy speech database created using the TIMIT speech 
data [47] corrupted using the BBC sound effects data-
base [48]. A test set of 1000 examples was created using 
additive noise backgrounds from the Ambience, Animal, 
Emergency, Office, Technology, Vehicles, and Weather 
classes in the BBC sound effects database at SNRs rang-
ing from − 10 to 3 dB. Each example contains a single 
TIMIT speaker, with the examples averaging  27 seconds. 
In order to extend the evaluation of the system, we train 
a different instance of the model using the DEMAND 
dataset [49] consisting of the Voice Banking Corpus with 
noise recordings from the DEMAND data. This dataset 
is structured with separate training and testing subsets 
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which affords evaluation of the model using diverse mul-
tichannel environmental noises.

In order to address different limitations often associ-
ated with performance measure, we employ 3 different 
metrics in order to evaluate model outcomes from differ-
ent angles.

Baseline systems: The performance of the system for 
speech enhancement was compared to 3 other baseline 
neural network architectures evaluated using the same 
train/test data: (i) a baseline CNN network with the same 
configuration as that of the proposed system with 5 lay-
ers, each consisting 1024 hidden units of size 3× 3 and 
ReLU activations; (ii) a conventional 5 layer BLSTM (bi-
directional long short-term memory), with 1024 hidden 
units per layer; a feature window of 11 frames of spec-
tral vectors (5 to each side) is used to estimate one out-
put frame; (iii) a baseline generative adversarial network 
as proposed in [50], with the modified training data used 
in this work. The baseline models were trained using the 
Adam optimizer with L1 norm with the clean speech 
spectrogram as the objective function. These baseline 
systems are chosen as competitive systems in speech 
enhancement though precluding others that employ 

additional factors such as phase information to boost 
performance [51].

Ablation evaluations: By design, the model provides 
multiple outputs at different points in the network. This 
structure allows us to evaluate the contribution of dif-
ferent components of the model. In addition, we also 
perform an ablation study where the contribution of 
different streams is nullified by setting the embeddings 
for that stream across all layers to zero. The rest of the 
model remains unchanged hence allowing us to assess 
the degree of damage such zeroing has on the final out-
come of the model at the output of the stream integrator 
in layer 2. This analysis is performed on the speech task 
as example of expected effects of model ablation on over-
all performance.

4  Results
4.1  Music source separation (MSS)
The evaluation of the proposed system is presented in 
Table 1. The final system performance lists both the com-
bined system L1+2−SI without any feedback as well as the 
adaptive re-tuning system TD1+2−SI for comparison. The 
proposed system outperforms the baseline systems for 
the drums and vocals tracks, while not under-performing 
on the bass and other categories. The best-performing 
system with both bass and others track is [41] which uses 
extensive data augmentation, a very powerful technique 
to improve generalizability and performance, particularly 
for recurrent systems.

To further understand the role of presented self-feed-
back mechanisms in refining the selection process, we 
investigate two spectrogram snippets for the drums and 
vocals (Fig.  4). Rows 1 and 2 show the desired target 

Table 1 Median SDR values for music source separation

Best performance is marked bold

Method Bass Drums Others Vocals

RGT1 [40] 2.70 3.44 2.63 3.84

JY3 [27] 3.67 4.66 3.40 5.74

UHL2 [41] 5.03 5.92 4.19 5.93

L1+2−SI 4.35 5.55 3.69 6.42

TD1+2−SI 4.71 5.95 3.91 6.74

Fig. 4 Auditory spectrograms illustrating the workings of the self-feedback mechanism. Row 1:clean spectrogram, row 2:mixture spectrogram, row 
3:output of L1+2−SI , row 4:output of TD1+2−SI , row 5:difference of TD1+2−SI and L1+2−SI
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spectrograms and the input mixture SM for this spe-
cific snippet. Rows 3 and 4 represent the output mag-
nitude spectrograms of systems L1+2−SI and TD1+2−SI 
respectively, while the spectrogram in row 5 shows the 
difference of two representations in row 4 and row 3 to 
highlight the main differences. In both examples, we 
note that re-tuning plays two important roles: removal of 
competing tracks that remain in the output and further 
enhancement of the desired target. In the left column, 
self-feedback results in the suppression of sustained 
energy near 0–2 kHz which is prominent in the compet-
ing tracks in row 3 (Black circle). Although self-feedback 
does not completely remove such energy, it strongly sup-
presses it in row 4, hence improving the representation 
of the drums by the model. However, this example also 
highlights that the role of adaptive re-tuning does not 
bring sufficient temporal precision to better align with 
the fast dynamics of the specific drum track. In the right 
column, we observe the absence of strong and sustained 
energy near 2 kHz in row 4 which is present in the com-
bined system’s output (larges white circle). Hence, self-
feedback results in improved matching as compared 
to the target spectrogram. By the same token, we also 
observe that self-attention for the same vocals example 
results in improved representation near the same spec-
tral channels at later time windows (second white circle) 
further enhancing the vocal activity that needs to be seg-
regated at that moment.

Network analysis: Given the modular nature of the 
network, it affords a refined analysis akin to an ablation 
study which allows us to explore the contributions and 
complementary roles of different components. Median 
SDR [52] scores of individual streams and stream integra-
tors across levels is presented in Fig. 5 for the music sepa-
ration task for each of the 4 tracks. The labels L11, L12, L13 
and L21, L22, L23 represent the streams in level 1 and level 
2, respectively. And label L1−SI and L2−SI represent the 

performance of the stream integrator in level 1 and level 
2, respectively. L1+2−SI represents a combined system, 
where the output of the stream integrator in each level 
is added to obtain the signal. The results strongly sug-
gest that individual levels learn complementary informa-
tion about the attended auditory objects as we ascend the 
hierarchy, hence supporting our motivation behind com-
bining outputs. A number of observations stand out from 
these results:

• Among independent streams, faster streams ( L11 
and L21 ) perform best across all tracks, and relatively 
closely to each other. Comparatively, bass is the only 
track where the output from the slower stream is sig-
nificantly weaker than the others. Nevertheless, the 
stream integrators for all objects (drums, bass, oth-
ers, vocals) do systematically show an improvement 
suggesting complementary information gleaned from 
the 3 streams at each layer of the network.

• The combined system approach L1+2−SI performs 
better than L1−SI and L2−SI individually, across all 
4 soundtracks. Hence, empirically suggesting the 
presence of complementary information across each 
level.

• Ultimately, Fig.  5 shows that re-tuning memories 
during testing results in systematic improvements 
across all four classes as noted in the results in 
TD1+2−SI.

4.2  Speech enhancement
The same framework is evaluated for speech enhance-
ment but trained on speech data. The first evalua-
tion of the model focuses on the mismatched train/test 
case, using noisy VoiceCorpus speech training data and 
DCASE/TIMIT corrupted data (see Methods in Sec-
tion 3.4.2 for details). Table 2 shows the performance of 

Fig. 5 Median signal-to-distortion ratio (SDR) for the MUSDB18 database using the proposed audio separation system. a, b, c, and d show the 
median SDR (in dB) for drums, bass, others, and vocals, respectively. L1 streams consist of the parallel paths L11 , L12 , L13 , and stream integrator 
L1−SI . L2 streams consist of the parallel paths L21 , L22 , L23 , and stream integrator L2−SI . The integrated system L1+2−SI combines the complementary 
information in both levels 1 and 2 after stream integration and systematically performs better than L1−SI or L2−SI . Top-down feedback or 
self-feedback during inference is shown in TD1+2−SI and shows improvement on all tracks
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the speech and noise separation systems in terms of the 
average PESQ [53], ESTOI [54], and SDR. Both systems 
L1+2−SI and TD1+2−SI , perform better than baseline sys-
tems across all metrics. It is also interesting to note that 
the use of re-tuning leads to a more significant improve-
ment in the SDR measures when compared to intelligibil-
ity measures like PESQ.

Because of the distributed nature of the processing 
paths in the system, we can look closely into the map-
ping profiles that underlie the separability of speech data. 
We derive the modulation power spectrum (MPS) of an 
ensemble of 100 randomly sampled speech utterances 
(from the TIMIT database) processed through the differ-
ent streams in the model [55–57]. The MPS is an estimate 
of temporal fluctuations in the signal and reflects how fast 
sound intensity varies over time. This analysis maps the 
spectrographic representation of each utterance as viewed 
by each of the layers in the model into its modulation 
profile averaged across temporal information to obtain a 
power density function [58]. Speech utterances with addi-
tive white noise at 0 dB are used to examine the changes 

in spectral profiles between clean and noisy speech. Fig. 6 
reveals a comparison of the different modulation power 
spectra for all streams. The proposed architecture poses 
the ability to capture different profiles in the modula-
tion spectrum, varying from a high-pass ( Li1 ), mid-range 
( Li2 ), and almost low-pass ( Li3 ). The stream integrator 
Li−SI(rightmost column) shows a more typical profile of 
speech with a peak near 8Hz reflecting the concentration 
of energy near an average syllabic rate [59].

Ablation analysis: To better assess the complemen-
tary role of different processing streams, we perform an 
explicit ablation analysis by nullifying specific streams 
in the network and evaluating the impact on the final 
level 2 integrator output. In this evaluation, specific 
streams (1, 2, or 3) in both layers are set to zero while 
the rest of the model is evaluated. The effect of leaving 
one stream out on the system performance as measured 
by the output of layer 2 is displayed in Table 3 evaluated 
on the DEMAND train/test dataset (see Methods in Sec-
tion 3.4.2 for details). The results show a consistent out-
come as those noted in the music separation analysis, 

Table 2 Performance in speech denoising

Best performance is marked bold

BBC DCASE

Method PESQ eSTOI SDR PESQ eSTOI SDR

BLSTM 1.96 79.77 7.28 1.72 77.92 5.74

CNN 2.08 81.85 7.78 2.15 81.75 6.96

SEGAN 2.02 80.65 6.68 1.99 79.95 6.10

L1+2−SI 2.34 84.05 9.20 2.51 83.50 7.92

TD1+2−SI 2.39 84.15 9.68 2.53 83.54 8.52

Fig. 6 Normalized modulation power spectrum (MPS) averaged across 100 TIMIT utterances, clean (solid line), or with 0 dB white noise (dashed 
line). The MPS estimate is shown for spectrogram outputs of L1 streams (lower row) and L2 streams (upper row)
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with complimentary information across the different 
streams. Specifically, we note that the role of stream 1 
and stream 2 may be viewed as somewhat redundant 
since their ablation results in comparatively similar 
drops in system performance. The MPS speech profiles 
in Fig. 6 are consistent with such overlap, while nullify-
ing the third stream does seem to have dramatically affect 
the performance of the system, in line with the expecta-
tion that slower modulation profiles are more critical for 
fidelity of speech signal [56]. Finally, we also note that 
the model trained/tested on this new DEMAND dataset 
-without any ablation- yields speech enhancement results 
on par with the PESQ values obtained using the evalu-
ation with the TIMIT/DCASE dataset when comparing 
the last line of Table 3 with values reported in Table 2.

5  Discussion
This study is inspired by the brain’s ability to pick out a 
target sound amidst other sources that may mask, inter-
fere, or distort the sound of interest. Proposed frame-
work attempts to mimic the following characteristics: (i) 
distributed processing to facilitate sound segregation, (ii) 
object memory representing characteristics of sounds 
across the distributed system, and (iii) selective re-tuning 
of the target memories to adapt to a particular melody or 
speaker. Moreover, the proposed system does not incor-
porate any specific higher-level knowledge or constraints 
based on the structure of the signal of interest (i.e., seman-
tic or symbolic context). Instead, it is primarily a signal-
driven analysis that explores the discriminability of target 
signals from background distractors based on the distinc-
tion between the signal characteristics of classes. Music 
separation has often benefited from the inclusion of musi-
cal syntax and semantic models that incorporate semantic 
and contextual information [60, 61]. Speech enhancement 
research has also exploited the highly constrained 
structure of speech sounds, specifically phonemes [38, 
62] which incorporate conditional constraints on the 
enhancement mappings based on phonemic structure, 
or even by employing broader contexts imposed by lan-
guage models [63]. Nevertheless, this machinery of highly 
specialized processing builds on a common infrastructure 

that is dealing with the inputs themselves and leveraging 
constraints in the signal space that can be advantageous 
for downstream processing. The present study shows that 
these common, domain-agnostic, principles are a power-
ful foundation that can set the stage for further improve-
ment in expert systems focusing on speech or music only.

Distributed multi-scale processing: The auditory system 
is viewed as a multi-scale transformation, wherein the 
spectral and temporal dynamics of an input waveform are 
extracted across a network of cortical units. Neurons in 
the auditory cortex are sensitive to spectral energy, spec-
tral modulations, and temporal modulations which cap-
ture the rate of change of energy along the temporal axis 
(rates) in addition to the joint changes in dynamics along 
time and frequency [12]. Studies have shown that this 
multi-scale high-dimensional space can separate sound 
objects from the background, allowing for better target 
sound recognition [13, 64, 65]. Biology appears to have 
constrained or optimized this mapping to best represent 
natural sounds (e.g., speech, nature, animal vocalizations) 
and acoustic profiles that are constrained by realistic 
physical attributes (e.g., sounds of musical instruments) 
[14, 66–68]. Furthermore, recent studies indicate the 
presence of spatially distributed parallel mappings with 
rich spectrotemporal space enabling mappings that span 
different views of the input in addition to a degree of 
redundancy in the representations [15, 16].

To achieve this rich and multiplexed representation, 
the proposed system utilizes parallel pathways that are 
trained independently. Each path is configured to best 
represent a certain region of the modulation space. As 
noted in a recent review [69], while the representation is 
learned in a data-driven way, the chosen configuration of 
each path is a critical design element of the system and 
reflects the intended mapping space that we aimed to 
delineate in each path (Fig.  6). Naturally, an important 
point to raise here is that the proposed architecture is 
primarily feedforward with no feedback on the features 
(except for adaptive retuning). This clearly falls short of 
the complex interactions and recurrent projections that 
are present in the auditory cortex and precortical layers 
[70, 71]. A similar argument is supported by the suc-
cess of a number of recurrent architectures in source 
separation tasks [27, 72]. The role of such recurrence is 
undoubtedly important and has been demonstrated use-
ful in a number of tasks allowing it to capture complex 
dynamical behaviors and compounded nonlinear func-
tions. Nevertheless, the contribution of such complexity 
to a system remains ill-understood and does not always 
guarantee improved behavior and performance without a 
clear understanding of the role, constraints, and dynam-
ics of the recurrent feedback [73].

Table 3 Speech denoising - ablation studies on DEMAND test 
set

Best performance is marked bold

Stream1 Stream2 Stream3 PESQ

× � � 2.08

� × � 1.94

� � × 1.31

� � � 2.42
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Object memory and temporal coherence: The role of 
the network of memories [74, 75] is to act as attentional 
gates to selectively filter out sounds that are of no inter-
est. This configuration parallels the organic experience of 
human listeners, where we consciously and deliberately 
chose to listen to a friend’s voice in a noisy cafeteria, a 
process referred to as endogenous or top-down selec-
tive attention [2, 76, 77]. Unlike uses of the term atten-
tion in the context of artificial neural networks and deep 
learning, the use of attentional gating here is adapted to 
align with its perceptual meaning, in terms of its role as 
an information bottleneck that refines inference to align 
with specific goals [3]. In EMMA framework these object 
memories are distributed across the parallel paths to lev-
erage the redundant representations in the multi-scale 
mapping; in line with the distributed nature of memory 
in the brain which offers a multiplexed view of sensory 
representations at different levels of granularity and 
abstractions [18, 19].

Naturally, the current model does not go beyond two 
layers of the hierarchy and falls far short of the special-
ized transformations of memory in the brain that span 
far more than the sensory space and encompass more 
cognitive regions of the brain [20]. One of the critical 
processes that these memories leverage in the current 
system is the principle of temporal coherence. Temporal 
coherence states that channels that co-vary together tend 
to be grouped together [17]. This principle is leveraged 
by the attention mechanism in the brain to bind together 
channels that are temporally coherent with a target fea-
ture [78]. The current work implements this idea using a 
gating mechanism (Fig. 3) that operates differently from 
how attention has been used in deep learning applica-
tions, effectively as soft search mechanisms using impor-
tance weights. This gating uses the memory as an anchor 
against which temporal coherence is evaluated.

Selective retuning: One of the remarkable capacities of 
the human brain is its ability to adapt to unknown con-
ditions [8, 79]. It is evident from present research in the 
neuroscience community that there exists a feedback 
mechanism in the brain that plays a crucial role in how 
humans navigate unknown environments [80–82]. While 
the current system is primarily a feed-forward configu-
ration, it relies on a set of priors (object memories) to 
guide the selection of targets and effectively operate as 
a self-feedback loop to modulate how incoming signals 
are processed. In contrast, these priors themselves need 
not be rigid and should be flexible to reflect specific lis-
tening conditions, statistics of the actual target being 
tracked as well as constraints of the noise conditions at 
that moment in time.

The adjustments of the priors cannot happen in the 
design phase of the system, as they have to reflect a spe-
cific unknown utterance, melody, or even noise condi-
tion. Hence, it is important to develop models that learn 
continuously. In the current study, we use feedback from 
stream integrator as guides for this adjustment process; 
effectively using the model’s output and its posteriors to 
re-tune its priors. This mechanism can be thought of as 
a self-correction mechanism that ultimately aims to rein-
force the representation of memory with the peculiarities 
of a specific observation. This approach is also substan-
tiated by a number of findings in the auditory system 
whereby selective attention is shown to improve the pre-
cision of a stimulus already represented in memory [22]. 
Imposing retuning during inference is limited in the cur-
rent formulation to adjusting only a few parameters in 
the model, specifically the object memories.

Overall, this work explores the interaction between 
feedforward mapping principles and selective modula-
tions (via memories and feedback) to facilitate the seg-
regation of sounds of interest in a complex mixture. 
Attention in its perceptual interpretation is at the center 
of this selective adaptation by engaging memories of 
known objects and adjusting prior knowledge to modu-
late how incoming sounds are processed. The proposed 
model is our first attempt at mimicking the auditory sys-
tem in an end-to-end fashion in a very simple and intui-
tive setting based on neuroscience studies related to the 
brain and hearing.
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