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The μ-law proportionate normalized least mean square (MPNLMS) algorithm has been proposed recently to solve the slow con-
vergence problem of the proportionate normalized least mean square (PNLMS) algorithm after its initial fast converging period.
But for the color input, it may become slow in the case of the big eigenvalue spread of the input signal’s autocorrelation matrix. In
this paper, we use the wavelet transform to whiten the input signal. Due to the good time-frequency localization property of the
wavelet transform, a sparse impulse response in the time domain is also sparse in the wavelet domain. By applying the MPNLMS
technique in the wavelet domain, fast convergence for the color input is observed. Furthermore, we show that some nonsparse
impulse responses may become sparse in the wavelet domain. This motivates the usage of the wavelet-based MPNLMS algorithm.
Advantages of this approach are documented.
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1. INTRODUCTION

With the development of packet-switching networks and
wireless networks, the introduced delay of the echo path in-
creases dramatically, thus entailing a longer adaptive filter. It
is well known that long adaptive filter will cause two prob-
lems: slow convergence and high computational complexity.
Therefore, we need to design new algorithms to speed up the
convergence with reasonable computational burden.

Network echo path is sparse in nature. Although the
number of coefficients of its impulse response is big, only a
small portion has significant values (active coefficients). Oth-
ers are just zero or unnoticeably small (inactive coefficients).
Several algorithms have been proposed to take advantage
of the sparseness of the impulse response to achieve faster
convergence, lower computational complexity, or both. One
of the most popular algorithms is the proportionate nor-
malized least mean square (PNLMS) algorithm [1, 2]. The
main idea is assigning different step-size parameters to dif-
ferent coefficients based on their previously estimated mag-
nitudes. The bigger the magnitude, the bigger step-size pa-
rameter will be assigned. For a sparse impulse response, most
of the coefficients are zero, so most of the update emphasis

concentrates on the big coefficients, thus increasing the con-
vergence speed.

The PNLMS algorithm, as demonstrated by several sim-
ulations, has very fast initial convergence for sparse impulse
response. But after the initial period, it begins to slow down
dramatically, even becoming slower than normalized least
mean square (NLMS) algorithm. The PNLMS++ [2] algo-
rithm cannot solve this problem although it improves the
performance of the PNLMS algorithm.

The μ-law PNLMS (MPNLMS) algorithm proposed in
[3–5] uses specially chosen step-size control factors to
achieve faster overall convergence. The specially chosen step-
size control factors are really an online and causal approxi-
mation of the optimal step-size control factors that provide
the fastest overall convergence of a proportionate-type steep-
est descent algorithm. The relationship between this deter-
ministic proportionate-type steepest descent algorithm and
proportionate-type NLMS stochastic algorithms is discussed
in [6].

In general, the advantage of using the proportionate-type
algorithms (PNLMS, MPLMS) is limited to the cases when
the input signal is white and the impulse response to be iden-
tified is sparse. Now, we will show that we can extend the
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advantageous usage of the MPLMS algorithm by using the
wavelet transform to cases when the input signal is colored
or when the impulse response to be identified is nonsparse.

2. WAVELET DOMAINMPNLMS

2.1. Color input case

The optimal step-size control factors are derived under the
assumption that the input is white. If the input is a color
signal, which is often the case for network echo cancella-
tion, the convergence time of each coefficient also depends
on the eigenvalues of the input signal’s autocorrelation ma-
trix. Since, in general, we do not know the statistical charac-
teristics of the input signal, it is impossible to derive the opti-
mal step-size control factors without introducing more com-
putational complexity in adaptive algorithm. Furthermore,
the big eigenvalue spread of the input signal’s autocorrela-
tion matrix slows down the overall convergence based on the
standard LMS performance analysis [7].

One solution of the slow convergence problem of LMS
for the color input is the so-called transform domain LMS
[7]. By using a unitary transform such as discrete Fourier
transform (DFT) and discrete cosine transform (DCT), we
can make the input signal’s autocorrelation matrix nearly
diagonal. We can further normalize the transformed input
vector by the estimated power of each input tap to make
the autocorrelation matrix close to the identity matrix, thus
decreasing the eigenvalue spread and improving the overall
convergence.

But, there is another effect of working in the transform
domain: the adaptive filter is now estimating the transform
coefficients of the original impulse response [8]. The number
of active coefficients to be identified can differ from the num-
ber of active coefficients in the original impulse response. In
some cases, it can be much smaller and in some cases, it can
be much larger.

The MPNLMS algorithm works well only for sparse im-
pulse response. If the impulse response is not sparse, that is,
most coefficients are active, theMPNLMS algorithm’s perfor-
mance degrades greatly. It is well known that if the system is
sparse in time domain, it is nonsparse in frequency domain.
For example, if a system has only one active coefficient in the
time domain (very sparse), all of its coefficients are active in
the frequency domain. Therefore, DFT and DCT will trans-
form a sparse impulse response into nonsparse, so we cannot
apply the MPNLMS algorithm.

Discrete wavelet transform (DWT) has gained a lot of
attention for signal processing in recent years. Due to its
good time-frequency localization property, it can transform
a time domain sparse system into a sparse wavelet domain
system [8]. Let us consider the network echo path illustrated
in Figure 1. This is a sparse impulse response. From Figure 2,
we see that it is sparse in the wavelet domain, as well. Here,
we have used the 9-level Haar wavelet transform on 512
data points. Also, the DWT has the similar band-partitioning
property as DFT or DCT to whiten the input signal. There-
fore, we can apply the MPNLMS algorithm directly on the
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Figure 1: Network echo path impulse response.
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Figure 2: DWT of the impulse response in Figure 1.

transformed input to achieve fast convergence for color in-
put.

The proposed wavelet MPNLMS (WMPNLMS) algo-
rithm is listed in Algorithm 1, where x(k) is the input signal
vector in the time domain, L is the number of adaptive fil-
ter coefficients, T represents DWT, xT(k) is the input signal
vector in the wavelet domain, xT ,i(k) is the ith component
of xT(k), ŵT(k) is the adaptive filter coefficient vector in the
wavelet domain, ŵT ,l(k) is the lth component of ŵT(k), ŷ(k)
is the output of the adaptive filter, d(k) is the reference signal,
e(k) is the error signal driving the adaptation, σ̂2xT ,i(k) is the
estimated average power of the ith input tap in the wavelet
domain, α is the forgetting factor with typical value 0.95, β
is the step-size parameter, and δp and ρ are small positive
numbers used to prevent the zero or extremely small adaptive
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x(k) = [x(k)x(k − 1) · · · x(k − L + 1)
]T

xT(k) = Tx(k)

ŷ(k) = xTT (k)ŵT(k)

e(k) = d(k)− ŷ(k)

For i = 1 to L

σ̂2
xT ,i (k) = ασ̂2

xT ,i (k − 1) + (1− α)x2
T ,i
(k)

End

D(k + 1) = diag
{

σ̂2
xT ,1 (k), . . . , σ̂

2
xT ,L(k)

}

ŵT(k + 1) = ŵT(k) + βD−1(k + 1)G(k + 1)xT(k)e(k)

G(k + 1) = diag
{

g1(k + 1), . . . , gL(k + 1)
}
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, 1 ≤ l ≤ L, μ = 1/ε

γmin(k + 1) = ρmax
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∣

)}

γl(k + 1) = max
{

γmin(k + 1),F
(∣

∣ŵl(k)
∣
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)}

g1(k + 1) = γl(k + 1)

(1/L)
∑L

i=1 γi(k + 1)
, 1 ≤ l ≤ L.

Algorithm 1: WMPNLMS algorithm.

filter coefficients from stalling. The parameter ε defines the
neighborhood boundary of the optimal adaptive filter coeffi-
cients. The instant when all adaptive filter coefficients have
crossed the boundary defines the convergence time of the
adaptive filter. Definition of the matrix T can be found in
[9, 10]. Computationally efficient algorithms exist for calcu-
lation of xT(k) due to the convolution-downsampling struc-
ture of DWT. The extreme case of computational simplicity
corresponds to the usage of the Haar wavelets [11]. The aver-
age power of the ith input tap in the wavelet domain is esti-
mated recursively by using the exponentially decaying time-
window of unit area. There are alternative ways to do the esti-
mation. A common theme in all of them is to find the proper
balance between the influence of the old input values and the
current input values. The balance depends on whether the
input is nonstationary or stationary. Note that the multipli-
cation with D−1(k + 1) assigns a different normalization fac-
tor to every adaptive coefficient. This is not the case in the
ordinary NLMS algorithm where the normalization factor is
common for all coefficients. In the WMPNLMS algorithm,
the normalization is trying to decrease the eigenvalue spread
of the autocorrelation matrix of transformed input vector.

Now, we are going to use a 512-tap wavelet-based adap-
tive filter (covering 64ms for sampling frequency of 8 KHz)
to identify the network echo path illustrated in Figure 1. The
input signal is generated by passing the white Gaussian noise
with zero-mean and unit-variance through a lowpass filter
with one pole at 0.9. We also add white Gaussian noise to
the output of the echo path to control the steady-state out-
put error of the adaptive filter. The WMPNLMS algorithm
use δp = 0.01 and ρ = 0.01. β is chosen to provide the same
steady-state error as the MPNLMS and SPNLMS algorithms.
From Figure 3, we can see that the proposed WMPNLMS
algorithm has noticeable improvement over the time do-
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Figure 3: Learning curves for wavelet- and nonwavelet-based pro-
portionate algorithms.

mainMPNLMS algorithm. Note that SPNLMS stands for the
segmented PNLMS [5]. This is the MPNLMS algorithm in
which the logarithm function is approximated by linear seg-
ments.

2.2. Nonsparse impulse response case

In some networks, nonsparse impulse responses can appear.
Figure 4 shows an echo path impulse response of a digital
subscriber line (DSL) system. We can see that it is not sparse
in the time domain. It has a very short fast changing seg-
ment and a very long slow decreasing tail [11]. If we apply
theMPNLMS algorithm on this type of impulse response, we
cannot expect that we will improve the convergence speed.
But if we transform the impulse response into wavelet do-
main by using the 9-level Haar wavelet transform, it turns
into a sparse impulse response as shown in Figure 5. Now,
the WMPNLMS can speed up the convergence.

To evaluate the performance of the WMPNLMS algo-
rithm identifying the DSL echo path shown in Figure 4, we
use an adaptive filter with 512 taps. The input signal is white.
As previously, we use δp = 0.01, ρ = 0.01, and β that pro-
vides the same steady-state error as the NLMS, MPNLMS,
and SPNLMS algorithms. Figure 6 shows learning curves for
identifying the DSL echo path. We can see that the NLMS al-
gorithm and the wavelet-based NLMS algorithm have nearly
the same performance, because the input signal is white. The
MPNLMS algorithm has marginal improvement in this case
because the impulse response of the DSL echo path is not
very sparse. But the WMPNLMS algorithm has much faster
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Figure 4: DSL echo path impulse response.
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Figure 5: Wavelet domain coefficients for DSL echo path impulse
response in Figure 4.

convergence due to the sparseness of the impulse response
in the wavelet domain and the algorithm’s proportionate
adaptation mechanism. The wavelet-based NLMS algorithm
also identifies a sparse impulse response, but does not speed
up the convergence by using the proportionate adaptation
mechanism. Compared to the computational and memory
requirements listed in [5, Table IV] for the MPNLMS al-
gorithm, the WMPNLMS algorithm, in the case of Haar
wavelets with M levels of decomposition, requires M + 2L
more multiplications, L− 1 more divisions, 2M +L− 1 more
additions/subtractions, and 2L− 1 more memory elements.
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Figure 6: Learning curves for identifying DSL network echo path.

3. CONCLUSION

We have shown that by applying the MPNLMS algorithm
in the wavelet domain, we can improve the convergence of
the adaptive filter identifying an echo path for the color in-
put. Essential for the good performance of the WMPNLMS
is that the wavelet transform preserve the sparseness of the
echo path impulse response after the transformation. Fur-
thermore, we have shown that by using the WMPNLMS, we
can improve convergence for certain nonsparse impulse re-
sponses, as well. This happens since the wavelet transform
converts them into sparse ones.
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