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Performance of speech recognition systems strongly degrades in the presence of background noise, like the driving noise inside
a car. In contrast to existing works, we aim to improve noise robustness focusing on all major levels of speech recognition:
feature extraction, feature enhancement, speech modelling, and training. Thereby, we give an overview of promising auditory
modelling concepts, speech enhancement techniques, training strategies, and model architecture, which are implemented in an
in-car digit and spelling recognition task considering noises produced by various car types and driving conditions. We prove that
joint speech and noise modelling with a Switching Linear Dynamic Model (SLDM) outperforms speech enhancement techniques
like Histogram Equalisation (HEQ) with a mean relative error reduction of 52.7% over various noise types and levels. Embedding
a Switching Linear Dynamical System (SLDS) into a Switching Autoregressive Hidden Markov Model (SAR-HMM) prevails for
speech disturbed by additive white Gaussian noise.
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1. Introduction

The automatic recognition of speech, enabling a natural
and easy to use method of communication between human
and machine, is an active area of research as it still suffers
from limitations such as the restricted applicability whenever
human speech is superposed with background noise [1–3].
Since the interior of a car is a popular field of application
for speech recognisers, allowing hands-free operation of the
centre console or text messaging, the car noises produced
during driving are of great interest when designing a noise
robust speech recognition system [4, 5].

To enhance recognition performance in noisy surround-
ings, different stages of the recognition process have to be
optimised. As a first step, filtering or spectral subtraction
can be applied to improve the signal before speech features
are extracted. Well-known examples for such approaches are
applied in the advanced front-end feature extraction (AFE)
or Unsupervised Spectral Subtraction (USS). Then, suitable
patterns for auditory modelling have to be extracted from
the speech signal to allow a reliable distinction between the
phonemes or word classes in the vocabulary of the recogniser.
Apart from widely used features like Mel-frequency cepstral

coefficients (MFCCs), the extraction of Perceptual Linear
Prediction (PLP) coefficients is an effective method of speech
representation [6].

The third stage is the enhancement of the obtained
features to remove the effects of noise. Normalisation
methods like Cepstral Mean Subtraction (CMS) [7], Mean
and Variance Normalisation (MVN) [8], or Histogram
Equalisation (HEQ) [9] are techniques to reduce distortions
of the frequency domain representation of speech. Alterna-
tively, model-based feature enhancement approaches can be
applied to compensate the effects of background noise. Using
a Switching Linear Dynamic Model (SLDM) to capture the
dynamic behaviour of speech and another Linear Dynamic
Model (LDM) to describe additive noise is the strategy of
the joint speech and noise modelling concept in [10] which
aims to estimate the clean speech features of the noisy
signal.

The derivation of speech models can be considered
as the next stage in the design of a speech recogniser.
Hidden Markov Models (HMMs) [11] are commonly used
for speech modelling whereas numerous alternatives, like
Hidden Conditional Random Fields (HCRFs) [12], Switch-
ing Autoregressive Hidden Markov Models (SAR-HMMs)
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[13], or other more general Dynamic Bayesian Network
structures have been developed in recent years. Extending the
SAR-HMM to an Autoregressive Switching Linear Dynamical
System (AR-SLDS), as in [14], includes an explicit noise
model and leads to an increased noise robustness compared
to the SAR-HMM.

Speech models can be adapted to noisy conditions when
the training of the recogniser is conducted using noisy
training material. Since the noise conditions during the
test phase of the recogniser are not known a priori, equal
properties of the noises for training and testing hardly occur
in reality. However, in case the recogniser is designed for a
certain field of application as an in-car speech recogniser, the
approximate noise conditions are known to a certain extent,
for example, when using information about the current
speed of the car. Therefore, the speech models can be trained
using speech sequences corrupted by noise which has similar
properties as the noise during testing.

In this article, the most promising approaches to increase
recognition performance in noisy surroundings are imple-
mented in an isolated digit and spelling recognition task.
All denoising techniques applied in the experimental section,
representing a selection of methods as simple and efficient as
CMS, MVN, and HEQ but also more complex approaches
like AFE, USS, and SLDM feature enhancement as well as
novel noise robust model architecture such as HCRF or
the AR-SLDS, are introduced in Sections 3 to 5. While
it is impossible to take into account and implement all
noise compensation techniques that were developed in recent
years, the selection of methods in this work covers many of
the different concepts that are thinkable for in-car, but also
for babble and white noise scenarios with all their specific
advantages and disadvantages. Since we aim to focus on in-
car speech recognition, noises produced by four different
cars and three different road surfaces and velocities have
been recorded and superposed with the speech sequences to
simulate the noise conditions during driving. However, the
findings may be transferred for many similar stationary noise
situations.

Section 2 briefly outlines possible approaches to enhance
the noise robustness of speech recognisers. In Section 3,
an explanation of the different speech signal preprocessing
techniques applied in this article is given, while Section 4
focuses on the feature enhancement strategies we used.
Section 5 describes the speech model architecture which are
used as alternatives to Hidden Markov Models in some of the
experiments of Section 6.

2. Concepts for Noise Robust
Speech Recognition

Aiming to counter the performance degradation of speech
recognition systems in noisy surroundings, a variety of
different concepts have been developed in recent years. The
common goal of all noise compensation strategies is to
minimise the mismatch between training and recognition
conditions, which occurs whenever the speech signal is
distorted by noise. Consequently, two main methods can be

distinguished. One is to reduce the mismatch by focusing
on adapting the acoustic models to noisy conditions in
order to enable a proper representation of speech even if the
signal is corrupted by noise. This can be achieved either by
using noisy training data [15] or by joint speech and noise
modelling [14]. The other method is trying to determine
the clean features from the noisy speech sequence while
using clean training data [9, 16, 17]. For that purpose, it
is necessary to extract noise robust features and to find
appropriate means of signal or feature preprocessing for
speech enhancement.

This section summarises selected methods for speech sig-
nal preprocessing, auditory modelling, feature enhancement,
speech modelling, and model adaptation.

2.1. Speech Signal Preprocessing. Preprocessing techniques
for speech enhancement aim to compensate the effects of
noise before the signal or rather the feature-based speech
representation is classified by the recogniser which has been
trained on clean data [18–20].

A state-of-the-art speech signal preprocessing that is
used as a baseline feature extraction algorithm for noisy
speech recognition problems like the Aurora2 task [21] is the
advanced front-end feature extraction introduced in [22]. It
uses a two-step Wiener filtering technique before the features
are extracted, whereas filtering is done in the time domain.

As shown in [23, 24], methods based on spectral sub-
traction like Unsupervised Spectral Subtraction [17] reach
similar performance while requiring less computational cost
than Wiener filtering. Like the two-step Wiener filtering
method included in the AFE, Unsupervised Spectral Subtrac-
tion can be considered as speech signal preprocessing step;
however, USS is carried out in the magnitude spectogram
domain.

2.2. Auditory Modelling and Feature Extraction. The two
major effects that noise has on speech representation are
a distortion in the feature space and a loss of information
caused by its random behaviour. This loss has to be
considered as irreversible, whereas the distortion of the
features can be compensated depending on the suitability of
the speech representation in noisy environments [1, 4].

Widely used speech features for auditory modelling
are cepstral coefficients obtained through Linear Predictive
Coding (LPC). The principle is based on the assumption
that the speech signal can be regarded as the output of
an all-pole linear filter that simulates the human vocal
tract. However, speech recognition systems which process the
cepstrum calculated via LPC tend to have low performance
in the presence of noise [2]. For enhanced noise robustness,
the use of the Perceptual Linear Prediction analysis method
is a popular approach to extract spectral patterns [6,
25]. The technique is based on a transformation of the
speech spectrum to the auditory spectrum that considers
multiple perceptual relationships prior to performing linear
prediction analysis. Another well-known speech representa-
tion is the extraction of Mel-frequency cepstral coefficients
which provide a basis for several speech signal analysis
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applications [17, 26–28]. They are calculated from the
logarithm of filterbank amplitudes using the Discrete Cosine
Transform.

In [29], the TRAP-TANDEM features were introduced.
They describe the likelihood of subword classes at a time
instant by evaluating temporal trajectories of band-limited
spectral densities in the vicinity of the regarded time
instant. Thereby the TRAP refers to the way the linguistic
information is obtained from speech, while TANDEM refers
to the technique that converts the evidence of subword
classes into features for HMM-based speech recognition
systems. Unlike conventional feature extraction techniques,
which consider time windows of about 25 milliseconds to
derive spectral features, TRAP also includes relatively long
time spans up to one second to extract information for
the recogniser. The strategy is motivated by the finding
that information about a phoneme spreads over about 300
milliseconds [30, 31]. Furthermore, this method is able to
remove slow varying noise [32].

Another approach to suppress slow variations in the
short-term spectrum is the RASTA-PLP concept [33, 34]
that makes PLP features more robust to linear spectral
distortions. The filtering of time trajectories of critical-
band filter outputs enables the removal of constant spectral
components caused by convolutive factors in the speech
signal.

2.3. Feature Enhancement. Further attempts to reduce the
mismatch between test and training conditions are Cepstral
Mean Subtraction [7], Mean and Variance Normalisation
[8], or the Vector Taylor Series approach [35] which is able to
deal with the nonlinear effects of noise. Nonlinear distortions
can also be compensated by Histogram Equalisation [9], a
technique which is often used in digital image processing
[36] to improve the contrast of pictures. In speech process-
ing, HEQ is a powerful means of improving the temporal
dynamics of feature vector components distorted by noise.
A cepstrum-domain feature compensation algorithm aiming
to decompose speech and noise had also been presented in
[37].

Another preprocessing approach to enhance noisy MFCC
features is proposed in [10]: here a Switching Linear
Dynamic Model is used to describe the dynamics of speech
while another Linear Dynamic Model captures the dynamics
of additive noise. Both models serve to derive an observation
model describing how speech and noise produce the noisy
observations and to reconstruct the features of clean speech.
This concept has been extended in [38] where time-
dependencies among the discrete state variables of the SLDM
are included. To improve the accuracy of the noise model for
nonstationary noise sources, [39] employs a state model for
the dynamics of noise.

An enhancement of speech features can also be attained
by incremental online adaptation of the feature space as
in the feature space maximum likelihood linear regression
(FMLLR) approach outlined in [40]. There, an FMLLR
transform is integrated into a stack decoder by collecting
adaptation data during recognition in real time.

2.4. Architecture for Speech Modelling. The most popular
model architecture to represent speech characteristics in
automatic speech recognition is Hidden Markov Models
[11]. Apart from optimising the principle of auditory
modelling and the methods for speech enhancement, finding
alternative model architecture that applies Dynamic Bayesian
Network structures which differ from the statistic assump-
tions of HMM modelling is an active area of research and a
promising approach to improve noise robustness [12, 14, 41].

Generative models like the Hidden Markov Model are
restricted in a way that they assume that the speech feature
observations are conditionally independent. This can be
considered as drawback as the restriction ignores long-range
dependencies between observations. On the contrary, the
Conditional Random Fields (CRFs) introduced in [42] use
an exponential distribution to model a sequence, given the
observation sequence. In order to estimate the conditional
probability of a class for an entire sequence, the Hidden
Conditional Random Field [12] incorporates hidden state
sequences.

Other model architecture like Long Short-Term Memory
Recurrent Neural Networks [43] which, in contrast to
conventional Recurrent Neural Networks, consider long-
range dependencies between the observations was recently
proven to be well suited for speech recognition [44]. Even
static classifiers like Support Vector Machines have been
successfully applied in isolated word recognition tasks [45],
where a warping of the observation sequence is less essential
than in continuous speech recognition.

An alternative to the feature-based HMM has been
proposed in [13] where the raw speech signal is modelled
in the time domain. In clean conditions, methods based on
raw signal modelling like the Switching Autoregressive HMM
[13] work well; however, the performance quickly degrades
whenever the technique is used in noisy surroundings. To
improve noise robustness, [14] extended the SAR-HMM to a
Switching Linear Dynamical System (SLDS) which includes
an explicit noise model by modelling the dynamics of both
the raw speech signal and the noise.

2.5. Model Adaptation. Not only joint speech and noise
modelling but also training with noisy data can incorpo-
rate information about potential signal distortion in the
recognition process. Experiments as done in [46] prove that
recognition results are highly dependent on how much the
used training material reveals about the characteristics of
possible background noise during a test phase. Depending
on how similar the noise conditions for training and testing
are, we can distinguish between low, medium, and highly
matched conditions training. Multiconditions training refers
to using training material with different noise types. In real
world, applications matching the conditions of training and
testing phase are only possible if information about the noise
conditions in which the recogniser will be used is available,
for example, during the design of an in-car speech recogniser
as shown herein.

Apart from adapting models by using noisy training
material, the research area of model adaptation also covers
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widely used techniques such as maximum a posteriori
(MAP) estimation [47], maximum likelihood linear regres-
sion (MLLR) [48], and minimum classification error linear
regression (MCELR) [49].

3. Speech Signal Preprocessing

3.1. Advanced Front-End Feature Extraction. In the advanced
front-end feature extraction (AFE) algorithm outlined in
[22], noise reduction is performed before the cepstral
features are calculated. The main steps of the algorithm can
be seen in Figure 1. After noise reduction, the denoised wave-
forms are processed, and the cepstral features are calculated.
Finally blind equalisation is applied to the features.

The preprocessing algorithm for noise reduction is based
on a two-stage Wiener filtering concept. The denoised
output signal of the first stage enters a second stage where
an additional dynamic noise reduction is performed. In
contrast to the first filtering stage, a gain factorisation unit
is incorporated in the second stage to control the intensity
of filtering dependent on the signal-to-noise ratio (SNR) of
the signal. The components of the two noise reduction cycles
are illustrated in Figure 2. First, the input signal is divided
into frames. After estimating the linear spectrum of each
frame, the power spectral density (PSD) is smoothed along
the time axis in the PSD Mean block. A voice activity detector
(VAD) determines whether a frame contains speech or
background noise, and so both the estimated spectrum of the
speech frames and the estimated noise spectrum are used to
calculate the frequency domain Wiener filter coefficients. To
get a Mel-warped frequency domain Wiener filter, the linear
Wiener filter coefficients are smoothed along the frequency
axis using a Mel-filterbank. The Mel-warped Inverse Discrete
Cosine Transform (Mel IDCT) unit calculates the impulse
response of the Wiener filter before the input signal is filtered
and passes through a second noise reduction cycle. Finally,
the constant component of the filtered signal is removed in
the “OFF” block.

Focusing on the Wiener filter approach as part of the
advanced front-end feature extraction algorithm, a great
advantage with respect to other preprocessing techniques
for enhanced noise robustness is that noise reduction is
performed on a frame-by-frame basis. The Wiener filter
parameters can be adapted to the current SNR which makes
the approach applicable to nonstationary noise. However,
a critical issue of the AFE technique is that it relies on
exact voice activity detection—a precondition that can be
difficult to fulfil, especially if the SNR level is negative like
in our in-car speech recognition problem (cf. Section 6.).
Further, compared with other noise compensation strategies,
the AFE is a rather complex mechanism and sensible to
errors and inaccuracies within the individual estimation and
transformation steps.

3.2. Unsupervised Spectral Subtraction. Another technique
of speech enhancement known as Unsupervised Spectral
Subtraction had been developed in [17]. This Spectral Sub-
traction scheme relies on a two-mixture model approach of

noisy speech and aims to distinguish speech and background
noise at the magnitude spectogram level.

3.2.1. Mixture Model. To derive a probabilistic model for
speech distorted by noise, a probability distribution for both
speech and noise is needed. When modelling background
noise on silent parts of the time-frequency plane, it is
common to assume white Gaussian behaviour for real and
imaginary parts [50, 51]. In the magnitude domain, this
corresponds to a Rayleigh probability density function fN (m)
for noise:

fN (m) = m

σ2
N

e−m
2/2σ2

N (1)

Apart from the Rayleigh silence model, a speech model
for “activity” that models large magnitudes only has to be
derived to obtain the two-mixture model. For the speech
probability density function fS(m), a threshold δS is defined
with respect to the noise distribution fN (m), so that only
magnitudes m > δS are modelled. In [17], a threshold
δS = σN is used, whereas σN is the mode of the Rayleigh
PDF. Consequently, we assume that magnitudes below σN are
background noise. Two further constraints are necessary for
fS(m).

(i) The derivative f ′S (m) of the “activity” PDF may not
be zero when m is just above δS; otherwise, the
threshold δS has no meaning since it can be set to an
arbitrarily low value.

(ii) As m goes towards infinity, the decay of fS(m) should
be lower than the decay of the Rayleigh PDF to ensure
that fS(m) models large amplitudes.

The “shifted Erlang” PDF with h = 2 [52] fulfils these two
criteria and, therefore, can be used to model large amplitudes
which are assumed to be speech:

fS(m) = 1m>σN · λ2
S ·
(
m− σN

) · e−λS(m−σN ) (2)

with 1m>σN = 1 if m > σN and 1m>σN = 0, otherwise.
The overall probability density function for the spectral

magnitudes of the noisy speech signal is given as follows:

f (m) = PN · fN (m) + PS · fS(m). (3)

PN is the prior for “silence” and background noise,
respectively, whereas PS is the prior for “activity” and speech,
respectively. All the parameters of the derived PDF f (m)
summarised in the parameter set

Λ = {PN , σN ,PS, λS
}

(4)

are independent of time and frequency.

3.2.2. EM Training of Mixture Parameters. The parameters
Λ of the two-mixture model can be trained using an
Expectation Maximisation (EM) training algorithm [53].
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Figure 2: Two-stage Wiener filtering for noise reduction according to ETSI ES 202 050 V1.1.5.

In the “Expectation” step, the posteriors are estimated as
follows:

p
(
sil | mf ,t ,Λ

) = PN · fN
(
mf ,t

)

PN · fN
(
mf ,t

)
+ PS · fS

(
mf ,t

) ,

p
(
act | mf ,t ,Λ

) = 1− p
(
sil | mf ,t,Λ

)
.

(5)

For the “Maximisation” step, the moment method is
applied: all data is used to update σN before all data with
values above the new σN is used to update λS. The method
can be described by the following two update equations:

σ̂N =
[∑

f ,tm
2
f ,t · p

(
sil | mf ,t,Λ

)]1/2

[
2
∑

f ,t p
(
sil | mf ,t,Λ

)]1/2 ,

λ̂S =
∑

mf ,t>σ̂N

(
mf ,t − σ̂N

)−1 · p(act | mf ,t ,Λ
)

∑
mf ,t>σ̂N p

(
act | mf ,t,Λ

) .

(6)

3.2.3. Spectral Subtraction. After the training of all mixture
parameters Λ = {PN , σN ,PS, λS}, Unsupervised Spectral
Subtraction is applied using the parameter σN as floor value:

mUSS
f ,t = max

(
1,
mf ,t

σN

)
. (7)

Flooring to a nonzero value is necessary whenever MFCC
features are used, since zero magnitude values after spectral
subtraction would lead to unfavourable dynamics in the
cepstral coefficients.

Overall, USS is a simple and computationally efficient
preprocessing strategy, allowing unsupervised EM fitting on
observed data. A weakness of the approach is that it relies on

appropriately estimating a speech magnitude PDF which is
a difficult task. Since the PDFs do not depend on frequency
and time, the applicability of USS is restricted to stationary
noises. USS only models large magnitudes of speech so
that low speech magnitudes cannot be distinguished from
background noise.

4. Feature Enhancement

4.1. Feature Normalisation

4.1.1. Cepstral Mean Subtraction. A simple approach to
remove the effects of noise and transmission channel transfer
functions on the cepstral representation of speech is Cepstral
Mean Subtraction [7, 54]. In many surroundings, for exam-
ple, in a car where the speech signal is superposed by engine
noise, the noise source can be considered as stationary,
whereas the characteristics of the speech signal change
relatively fast. Thus, a goal of preprocessing techniques for
speech enhancement is to remove the stationary part of the
input signal. As this quasi-non-varying part of the signal
corresponds to a constant global shift in the cepstrum,
speech can usually be enhanced by subtracting the long-term
average cepstral vector

μ = 1
T

T∑

t=1

xt (8)

from the received distorted cepstrum vector sequence of
length T :

X = {x1, x2, . . . , xt, . . . , xT
}
. (9)
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Consequently, we get a new estimate x̃t of the signal in
the cepstral domain:

x̃t = xt − μ,

1 ≤ t ≤ T.
(10)

This method also exploits the advantage of MFCC speech
representation: if a transmission channel is inserted on
the input speech, the speech spectrum is multiplied by
the channel transfer function. In the logarithmic cepstral
domain, this multiplication becomes an addition which can
easily be removed by subtracting the cepstral mean from all
input vectors. However, unlike techniques like Histogram
Equalisation, CMS is not able to treat nonlinear effects of
noise.

4.1.2. Mean and Variance Normalisation. Subtracting the
mean of each feature vector component from the cepstral
vectors (as done in CMS) corresponds to an equalisation of
the first moment of the vector sequence probability distri-
bution. In case noise also affects the variance of the speech
features, a preprocessing stage for speech enhancement can
profit also from normalising the variance of the vector
sequence which corresponds to an equalisation of the first
two moments of its probability distribution. This technique
is known as Mean and Variance Normalisation and results in
an estimated feature vector

x̃t =
xt − μ

σ
, (11)

where the division by the vector σ , which contains the
standard deviations of the feature vector components, is
carried out elementwise. After MVN, all features have zero
mean and unity variance.

4.1.3. Histogram Equalisation. Histogram Equalisation is a
popular technique for digital image processing where it aims
to increase the contrast of pictures. In speech processing,
HEQ can be used to extend the principle of CMS and MVN
to all moments of the probability distribution of the feature
vector components [9, 55]. It enhances noise robustness by
compensating nonlinear distortions in speech representation
caused by noise and therefore reduces the mismatch between
test and training data.

The main idea is to map the histogram of each com-
ponent of the feature vector onto a reference histogram.
The method is based on the assumption that the effect
of noise can be described as a monotonic transformation
of the features which can be reversed to a certain degree.
As the effectiveness of HEQ is strongly dependent on the
accuracy of the speech feature histograms, a sufficiently large
number of speech frames have to be involved to estimate
the histograms. An important difference between HEQ and
other noise reduction techniques like Unsupervised Spectral
Subtraction is that no analytic assumptions have to be made
about the noise process. This makes HEQ effective for a wide
range of different noise processes independent of how the
speech signal is parameterised.

When applying HEQ, a transformation

x̃ = F(x) (12)

has to be found in order to convert the probability density
function p(x) of a certain speech feature into a reference
probability density function p̃(x̃) = pref(x̃). If x is a
unidimensional variable with probability density function
p(x), a transformation x̃ = F(x) leads to a modification of
the probability distribution, so that the new distribution of
the obtained variable x̃ can be expressed as

p̃
(
x̃
) = p

(
G
(
x̃
))∂G(x̃)

∂x̃
, (13)

with G(x̃) being the inverse transformation of F(x). To
obtain the cumulative probabilities out of the probability
density functions, we have to consider the following relation-
ship:

C(x) =
∫ x

−∞
p
(
x′
)
dx′

=
∫ F(x)

−∞
p
(
G
(
x̃′
))∂G(x̃)

∂x̃′
dx̃′

=
∫ F(x)

−∞
p̃
(
x̃′
)
dx̃′

= C̃
(
F(x)

)
.

(14)

Consequently, the transformation converting the distri-
bution p(x) into the desired distribution p̃(x̃) = pref(x̃) can
be expressed as

x̃ = F(x) = C̃−1[C(x)
] = C−1

ref

[
C(x)

]
, (15)

where C−1
ref (· · · ) is the inverse cumulative probability

function of the reference distribution, and C(· · · ) is the
cumulative probability function of the feature. To obtain the
transformation for each feature vector component in our
experiments, 500 uniform intervals between μi − 4σi and
μi + 4σi were considered to derive the histograms, with μi
and σi representing the mean and the standard deviation of
the ith feature vector component. For each component, a
Gaussian probability distribution with zero mean and unity
variance was used as reference probability distribution.

Summing up the three feature normalisation strategies,
CMS is the most simple and common technique which,
however, cannot treat nonlinear effects of noise. MVN
constitutes an improvement but still it only provides a linear
transformation of the original variable. By contrast, HEQ
compensates also nonlinear distortions. However, its effec-
tiveness and accuracy heavily depend on the quality of the
estimated feature histograms in a way that numerous speech
frames are needed before HEQ can be expected to work well.
Furthermore, Histogram Equalisation is intended to correct
only monotonic transformations but the random behaviour
of noise makes the actual transformation nonmonotonic
which causes a loss of information.
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xt−3 xt−2 xt−1 xt

Figure 3: Linear dynamic model for noise.

4.2. Model-Based Feature Enhancement. Model-based speech
enhancement techniques are based on modelling speech and
noise. Together with a model of how speech and noise
produce the noisy observations, these models are used to
enhance the noisy speech features. In [10], a Switching Linear
Dynamic Model is used to capture the dynamics of clean
speech. Similar to Hidden Markov Model-based approaches
to model clean speech, the SLDM assumes that the signal
passes through various states. Conditioned on the state
sequence, the SLDM furthermore enforces a continuous state
transition in the feature space.

4.2.1. Modelling of Noise. Unlike speech, which is modelled
applying an SLDM, the modelling of noise is done by using a
simple Linear Dynamic Model obeying the following system
equation:

xt = Axt−1 + b + gt. (16)

Thereby the matrix A and the vector b simulate how the
noise process evolves over time, and gt represents a Gaussian
noise source driving the system. A graphical representation
of this LDM can be seen in Figure 3. As LDMs are time-
invariant, they are suited to model signals like coloured
stationary Gaussian noises as they occur in the interior of
a car. Alternatively to the graphical model in Figure 3, the
equations

p
(
xt | xt−1

) = N
(
xt;Axt−1 + b,C

)
,

p
(
x1:T

) = p
(
x1
) T∏

t=2

p
(
xt | xt−1

) (17)

can be used to express the LDM.
Here, N (xt;Axt−1 + b,C) is a multivariate Gaussian with

mean vector Axt−1 + b and covariance matrix C, whereas T
denotes the length of the input sequence.

4.2.2. Modelling of Speech. The modelling of speech is
realised by a more complex dynamic model which also
includes a hidden state variable st at each time t. Now A and
b depend on the state variable st:

xt = A
(
st
)
xt−1 + b

(
st
)

+ gt. (18)

Consequently, every possible state sequence s1:T describes
an LDM which is nonstationary due to A and b changing
over time. Time-varying systems like the evolution of speech
features over time can be described adequately by such
models. As can be seen in Figure 4, it is assumed that there
are time dependencies among the continuous variables xt
but not among the discrete state variables st. This is the
major difference between the SLDM used in [10] and the

xt−3 xt−2 xt−1 xt

st−3 st−2 st−1 st

Figure 4: Switching linear dynamic model for speech.

xt yt nt

Figure 5: Observation model for noisy speech yt .

models used in [38] where time dependencies among the
hidden state variables are included. A modification like this
can be seen as analogous to extend a Gaussian Mixture Model
(GMM) to an HMM. The SLDM corresponding to Figure 4
can be described as follows:

p
(
xt, st | xt−1

) = N
(
xt;A

(
st
)
xt−1 + b

(
st
)
,C
(
st
)) · p(st

)
,

p
(
x1:T , s1:T

) = p
(
x1, s1

) T∏

t=2

p
(
xt, st | xt−1

)
.

(19)

To train the parameters A(s), b(s), and C(s) of the SLDM,
conventional EM techniques are used. Setting the number
of states to one corresponds to training a Linear Dynamic
Model instead of an SLDM to obtain the parameters A, b,
and C needed for the LDM which is used to model noise.

4.2.3. Observation Model. In order to obtain a relationship
between the noisy observation and the hidden speech and
noise features, an observation model has to be defined.
Figure 5 illustrates the graphical representation of the zero
variance observation model with SNR inference introduced
in [56]. Thereby it is assumed that speech xt and noise nt
mix linearly in the time domain corresponding to a nonlinear
mixing in the cepstral domain.

4.2.4. Posterior Estimation and Enhancement. A possible
approximation to reduce the computational complexity of
posterior estimation is to restrict the size of the search space
applying the generalised pseudo-Bayesian (GPB) algorithm
[57]. The GPB algorithm is based on the assumption that
the distinct state histories whose differences occur more than
r frames in the past can be neglected. Consequently, if T
denotes the length of the sequence, the inference complexity
is reduced from ST to Sr whereas r � T . Using the GPB
algorithm, the three steps “collapse,” “predict,” and “observe”
are conducted for each speech frame.

The Gaussian posterior obtained in the observation step
of the GPB algorithm is used to obtain estimates of the
moments of xt. Those estimates represent the denoised
speech features and can be used for speech recognition in
noisy environments. Thereby the clean features are assumed
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to be the Minimum Mean Square Error (MMSE) estimate
E[xt | y1:t].

Due to the noise modelling assumptions, SLDM feature
enhancement has shown excellent performance also for
coloured Gaussian noise even if the SNR level is negative.
The linear dynamics of the speech model capture the smooth
time evolution of human speech, while the switching states
express the piecewise stationarity. The major limitation with
respect to the noise type is that the model assumes the noise
frames to be independent over time, so that only stationary
noises are modelled accurately. Despite the GPB algorithm,
SLDM feature enhancement is relatively time-consuming
compared to simpler feature processing algorithms such as
Histogram Equalisation. Another drawback is that the whole
concept relies on precise voice activity detection in order to
detect feature frames for the estimation of the noise LDM.

5. Model Architecture

5.1. Speech Modelling in the Feature Domain. To allow
efficient speech modelling, it is common to model features
extracted from the speech signal every 10 milliseconds
instead of using the signal in the time domain as described
in Section 5.2. As an alternative to conventional HMM
modelling, the Hidden Conditional Random Field [58] will
be introduced in the following and examined with respect to
its noise robustness in Section 6.3.

5.1.1. Hidden Markov Models and Conditional Random
Fields. Generative models like the Hidden Markov Model
assume that the observations are conditionally independent,
meaning that an observation is statistically independent of
past observations provided that the values of the latent
variables are known. Whenever there are long-range depen-
dencies between the observations, like in human speech
[30], this restriction can be too strict. Therefore, model
architecture like the Conditional Random Field [42, 59, 60]
makes use of an exponential distribution in order to model
a sequence, given the observation sequence, and thereby
drop the independence assumption between observations.
Nonlocal dependencies between state and observation as
well as unnormalised transition probabilities are allowed.
As a Markov assumption can still be enforced, efficient
inference techniques like dynamic programming can also be
applied when using Conditional Random Fields. CRFs have
been successfully applied in various tasks like information
extraction [42] or language modelling [61].

5.1.2. Hidden Conditional Random Fields. As CRFs assign a
label for each observation and each frame of a time-sequence,
respectively, and, therefore, cannot directly estimate the
probability of a class for an entire sequence, they need to
be modified in order to be applicable for speech recognition
tasks. Hence, the CRF has been extended to a Hidden
Conditional Random Field which incorporates hidden state
sequences [58]. The HCRF was successfully applied in var-
ious pattern recognition problems like Phone Classification
[12], Gesture Recognition [62], Meeting Segmentation [63],

or recognition of nonverbal vocalisations [64] where it partly
outperformed HMM approaches. An advantage of HCRF is
the ability to handle features that are allowed to be arbitrary
functions of the observations while not requiring a more
complicated training.

Similar to an HMM, the HCRF is used to model the
conditional probability of a class label w representing a word,
given the sequence of observations X = x1, x2, . . . , xT . With
λ denoting the parameter vector and f being the so-called
vector of sufficient statistics, the conditional probability is

p(w | X , λ) = 1
z(X , λ)

∑

Seq∈w
eλ· f (w,Seq,X). (20)

Seq = s1, s2, . . . , sT represents the hidden state sequence
that is run through while the conditional probability is
calculated. The normalisation of the probability is realised
by the function z(X , λ) which is

z(X , λ) =
∑

w

∑

Seq∈w
eλ· f (w,Seq,X). (21)

The vector f determines which probability to model,
whereas f can be chosen in a way that the HCRF imitates
a left-right HMM as shown in [12]. We restrict the HCRF to
be a Markov chain; however the transition probabilities do
not have to sum to one and the observations do not need to
be real probability densities.

Like an HMM, an HCRF can be parameterised by
transition scores ais and observation scores bs(xt):

ais =̂ eλ
(Tr)
is ,

bs(xt) =̂ eλ
(Occ)
s +λ(M1)

s xt+λ
(M2)
s x2

t .
(22)

The conditional probability can efficiently be computed
when using forward and backward recursions as derived for
the HMM. The forward probability is given as

αs,t =
[ S∑

i=1

αi,t−1ais

]

bs
(
xt
)

=
[ S∑

i=1

αi,t−1e
λ(Tr)
is

]

eλ
(Occ)
i +λ(M1)

i xt+λ
(M2)
i x2

t ,

(23)

where S is the number of hidden states. The backward
probabilities βi(t) can be obtained by using the recursion

βi,t =
S∑

s=1

aisbs
(
xt+1

)
βs,t+1

=
S∑

s=1

eλ
(Tr)
is eλ

(Occ)
i +λ(M1)

i xt+1+λ(M2)
i x2

t+1βs,t+1.

(24)

Given the forward probabilities αs(t), the probability
p(X | w, λ) that the model with parameters λ representing
the word w produces observation X can be written as

p(X | w, λ) =
S∑

s=1

αs,T . (25)
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The conditional probability of a class label w given the
observation X is

p(w | X , λ) =
∑S

s=1αs,T∑
w

∑S
s=1αs,T

. (26)

This HCRF definition makes it possible to use dynamic
programming methods for decoding as with HMM. As
shown in [12], a conditional probability density as for an
HMM with transition probabilities ais, emission means, and
covariances μs and σs, respectively, can be obtained by setting
the parameters λ as follows:

λ(Tr)
is = log ais, (27)

λ(Occ)
s = −1

2

{

log

[

(2π)D
D∏

d=1

σ2
s,d

]

+
D∑

d=1

μ2
s,d

σ2
s,d

}

, (28)

λ(M1)
s,d = μs,d

σ2
s,d

, (29)

λ(M2)
s,d = −1

2
1
σ2
s,d

. (30)

Thereby d denotes the dimension of the D-dimensional
observation, whereas i and s are states of the model. For
the sake of simplicity, (27) to (30) consider only one
mixture component. The extension to additional mixtures is
straightforward.

5.2. Speech Modelling in the Time Domain. An alternative to
conventional HMM modelling of speech is the modelling
of the raw signal directly in the time domain. As proven
in [13], modelling the raw signal can be a reasonable
alternative to feature-based approaches. Such architecture
offers the advantage that including an explicit noise model
is straightforward, as can be seen in Section 5.2.2.

5.2.1. Switching Autoregressive Hidden Markov Models. In
[14], a Switching Autoregressive HMM is applied for isolated
digit recognition. The SAR-HMM is based on modelling
the speech signal as an autoregressive (AR) process, whereas
the nonstationarity of human speech is captured by the
switching between a number of different AR parameter sets.
This is done by a discrete switch variable st that can be seen
as analogon to the HMM states. One of S different states can
be occupied at each time step t. Thereby, the state variable
indicates which AR parameter set to use at the given time
instant t. Here, the time index t denotes the samples in the
time domain and not the feature vectors as in Section 4.2.
The current state only depends on the preceding state with
transition probability p(st | st−1). Furthermore, it is assumed
that the current sample vt is a linear combination of the
R preceding samples superposed by a Gaussian distributed
innovation η(st). Both η(st) and the AR weights cr(st) depend
on the current state st:

vt = −
R∑

r=1

cr
(
st
)
vt−r + η

(
st
)

(31)

vt−3 vt−2 vt−1 vt

st−3 st−2 st−1 st

Figure 6: Dynamic bayesian network structure of the SAR-HMM.

with

η ∼ N
(
η; 0, σ2(st

))
. (32)

The purpose of η(st) is not to model an independent
additive noise process but to model variations from pure
autoregression. For the SAR-HMM, the joint probability of
a sequence of length T is

p
(
s1:T , v1:T

)= p
(
v1 | s1

)
p
(
s1
) T∏

t=2

p
(
vt | vt−R:t−1, st

)
p
(
st | st−1

)
,

(33)

corresponding to the Dynamic Bayesian Network (DBN)
structure illustrated in Figure 6.

As the number of samples in the time domain which are
used as input for the SAR-HMM is usually a lot higher than
the number of feature vectors observed by an HMM, it is
necessary to ensure that the switching between the different
AR models is not too fast. This is granted by forcing the
model to stay in the same state for an integer multiple of K
time steps.

The training of the AR parameters is realised by applying
the EM algorithm. To infer the distributions p(st | v1:T),
a technique based on the forward-backward algorithm is
used. Due to the fact that an observation vt depends on R
preceding observations (see Figure 6), the backward pass is
more complicated for the SAR-HMM than for a conventional
HMM. To overcome this problem, a “correction smoother”
as derived in [65] is applied which means that the backward
pass computes the posterior p(st | v1:T) by “correcting” the
output of the forward pass.

5.2.2. Autoregressive Switching Linear Dynamical Systems. To
improve noise robustness, the SAR-HMM can be embedded
into an AR-SLDS to include an explicit noise process as
shown in [14]. The AR-SLDS interprets the observed speech
sample vt as a noisy version of a hidden clean sample.
Thereby, the clean signal can be obtained from the projection
of a hidden vector ht which has the dynamic properties of a
Linear Dynamical System as follows:

ht = A
(
st
)
ht−1 + ηHt (34)

with

ηHt ∼ N
(
ηHt ; 0,ΣH

(
st
))
. (35)

The dynamics of the hidden variable are defined by the
transition matrix A(st) which depends on the current state st.
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ht−3 ht−2 ht−1 ht

st−3 st−2 st−1 st

vt−3 vt−2 vt−1 vt

Figure 7: Dynamic bayesian network structure of the AR-SLDS.

Variations from pure linear state dynamics are modelled by
the Gaussian distributed hidden “innovation” variable ηHt .
Similar to the variable ηt used in (31) for the SAR-HMM,
ηHt does not model an independent additive noise source. To
obtain the current observed sample, the vector ht is projected
onto a scalar vt as follows:

vt = Bht + ηVt (36)

with

ηVt ∼ N
(
ηVt ; 0, σ2

V

)
. (37)

The variable ηVt thereby models independent additive white
Gaussian noise which is supposed to corrupt the hidden
clean sample Bht. Figure 7 visualises the structure of the
SLDS modelling the dynamics of the hidden clean signal as
well as independent additive noise.

The SLDS parameters A(st), B, and ΣH (st) can be defined
in a way that the obtained SLDS mimics the SAR-HMM
derived in Section 5.2.1 for the case σV = 0 (see [14]).
This has the advantage that in case σV /= 0 a noise model is
included without having to train new models. Since inference
calculation for the AR-SLDS is computationally intractable,
the “Expectation Correction” algorithm developed in [66]
is applied to reduce the complexity. In contrast to the exact
inference which requires O(ST), the passes performed by the
Expectation Correction algorithm are linear in T .

While the SAR-HMM has shown rather poor perfor-
mance in noisy conditions, the AR-SLDS achieves excellent
recognition rates for speech disturbed by white noise, as
the variable ηVt incorporates an additive white Gaussian
noise (AWGN) model. In clean conditions, however, the
performance of HMM speech modelling in the feature
domain cannot be reached by the AR-SLDS, since time
domain modelling is not as close to the principle of human
perception as the well-established MFCC features. Also
for coloured noise, the AR-SLDS cannot compete with
feature domain approaches such as the SLDM. Further,
computational complexity is still very high for the AR-
SLDS. The Expectation Correction algorithm can reduce
complexity from O(ST) to O(T); however, for a speech
utterance sampled at 16 kHz, T is 160 times higher than for
a feature vector sequence extracted every 10 milliseconds.

6. Experiments

In order to compare the different speech signal preprocess-
ing, feature enhancement, and speech modelling techniques
introduced in Sections 3 to 5 with respect to their recognition
performance in various noise scenarios, we implemented all
of the techniques in a noisy speech recognition experiment
which will be outlined in the following.

6.1. Speech Database. The digits “zero” to “nine” as well as
the letters “A” to “Z” from the TI 46 Speaker Dependent
Isolated Word Corpus [67] are used as speech database for
the noisy digit and spelling recognition task. The database
contains utterances from 16 different speakers—8 female and
8 male speakers. For the sake of better comparability with the
results presented in [14], only the words which are spoken
by male speakers are used. For every speaker, 26 utterances
were recorded per word class, whereas 10 samples are used
for training and 16 for testing. Consequently, the overall digit
training corpus consists of 800 utterances, while the digit test
set contains 1280 samples. The same holds for the spelling
database, consisting of 2080 utterances for training and 3328
for testing.

6.2. Noise Database. Even though we also considered babble
and white noise scenarios, the main focus of this work
lies on designing a robust speech recogniser for an in-
car environment. Thus, great emphasis has been laid on
simulating a wide spectrum of different noise conditions that
can occur in the interior of a car. In general, interior noise can
be split up into four rough groups. The first one is wind noise
which is generated by air turbulence at the corners and edges
of the vehicle and arises equivalently to the velocity. Another
noise type is engine noise depending on load and number
of revolutions. The third noise group is caused by wheels,
driving, and suspension and is influenced by road surface
and wheel type. Thus a rough surface causes more wheel and
suspension noise than a smooth one. Finally, buzz, squeak,
and rattles generated by pounding or relative movement of
interior components of a vehicle have to be considered [68].

According to existing in-car speech recognition systems,
the microphone would be mounted in the middle of the
instrument panel. Consequently, all masking noises occur-
ring in the interior of a car have been recorded exactly at the
same point. Figure 8 illustrates the different noise sources.
Note that the mouth-to-microphone transfer function had
been neglected during the experiments in Section 6.3, since
the masking effect of background noise was proven to be
much higher than the effect of convolutional noise. In an
additional experiment, the slight degradation of recognition
performance in case of a convolution of the speech signal
with a recorded in-car impulse response could be perfectly
compensated by simple Cepstral Mean Subtraction.

As interior noise masking varies depending on vehicle
class and derivates [68], speech is superposed by noise of four
different vehicles as they are listed in Table 1.

Thus, a wide spectrum of car variations can be covered.
Not only the vehicle type but also the road surface influences
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Masking noise

Speech H + Mic

+

Wheel/suspension Interior squeak & rattle

Figure 8: In-car speech and masking sound (top) and information
flow (bottom).

Table 1: Considered vehicles.

Vehicle Derivative Class

BMW 5 series Touring Executive car

BMW 6 series Convertible Executive car

BMW M5 Sedan Exec. sports car

MINI Cooper Convertible Super-mini

Table 2: Considered road surfaces and velocities.

Surface Velocity Abbreviation

Big cobbles 30 km/h COB

Smooth city road 50 km/h CTY

Highway 120 km/h HWY

the characteristics of interior noise. Hence, three different
surfaces in combination with typical velocities have been
considered as shown in Table 2. The lowest excitation
provides a driving over a smooth city road at 50 km/h and
medium revolution (CTY). Thus, at this profile noise caused
by wind, engine, wheels, and so forth has its minimum. The
subsequent higher excitation is measured for a highway drive
at 120 km/h (HWY). In that case, wind noise is a multiple
higher than for a drive at 50 km/h. The worst and loudest
sound in the interior of a car provokes a road with big
cobbles (COB). At 30 km/h, wind noise can be neglected
but the rough cobble surface involves dominant wheel and
suspension noise. Figure 9 shows the SNR histograms of the
noisy speech utterances for all four car types at each driving
condition.

In spite of SNR levels below 0 dB, speech in the noisy
test sequences is still well audible since the recorded noise
samples are lowpass signals with most of their energy
in the frequency band from 0 to 500 Hz (see Figure 10).

Consequently, there is no full overlap of the spectrum of
speech and noise. The extremely low SNR levels for the car
noises (see Figure 9) are mainly caused by intense spectral
components below the spectrum of human speech (motor
drone). Filtering out those spectral components did not
significantly affect recognition performance. Note that no A-
weighting had been applied to estimate the SNR levels.

Apart from car noises (CAR), two further noise types are
used in our experiments: first, a mixture of babble and street
noise (BAB) at SNR levels 12 dB, 6 dB, and 0 dB, recorded
in downtown Munich. This noise type is relevant for in-
car speech recognition performance when driving with in an
urban area with open windows. Furthermore, additive white
Gaussian noise (WGN) has been used (SNR levels 20 dB,
10 dB, and 0 dB).

Note that heating, ventilating, and air conditioning
(HVAC) noise was not examined as further potential noise
source that can occur inside a car, since fan and defrost
facilities were turned off during noise recording. Although it
is quite evident that such additional in-car noises can further
degrade speech recognition performance, we abstained from
varying fan and defrost settings as those noise types can be
characterised as stationary and are likely to not change the
ranking of the individual noise compensation strategies but
rather result in a negative “performance offset.”

Contrariwise, the Lombard effect, which causes humans
to speak louder when background noise is present, was also
not considered since this would mostly result in a constant
shift of the SNR histogram (Figure 9) towards higher SNR
levels, without affecting conclusions about the effectiveness
of the different denoising strategies.

6.3. Results. For every digit, a model was trained to build an
isolated word recogniser. In the case of HMM and HCRF,
each model consists of eight states with a mixture of three
Gaussians per state. Thereby, clean utterances were used for
training. 13 Mel-frequency cepstral coefficients as well as
their first- and second-order derivatives were extracted. In
addition, the usage of PLP features instead of MFCC was
evaluated. Attempting to remove the effects of noise, various
speech enhancement strategies as outlined in Section 4. were
applied: Cepstral Mean Subtraction, Mean and Variance
Normalisation, Histogram Equalisation, Unsupervised Spec-
tral Subtraction, and Advanced Front-End feature extrac-
tion. In most of the experiments, the recognition rate for
clean speech was around 99.9%. All parameters were tuned
to achieve the best possible recognition performance.

As can be seen in Table 3, for stationary lowpass noise
like the “CAR” and “BAB” noise types, the best average
recognition rate can be achieved when enhancing the speech
features using a global Switching Linear Dynamic Model
for speech and a Linear Dynamic Model for noise (see
Section 4.2). Thereby, all available clean training sequences
were used to train the global SLDM which captures the
dynamics of clean speech. The speech model consisted
of 32 hidden states. The utterance-specific noise model
consisted of a single Gaussian mixture component and was
trained on the first and last 10 frames of the noisy test
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Figure 9: SNR level histograms for noisy speech utterances.

utterance. To speed up the calculation, the algorithm for
speech enhancement was run with history parameter r = 1
(see Section 4.2.4). Also for more demanding recognition
tasks like the Interspeech Consonant Challenge [69], SLDM
feature enhancement was proven to increase recognition
rates for noisy speech. The technique cannot compete with
strategies using perfect knowledge of the local SNR of time-
frequency components in the spectrogram like oracle masks
[70–72]; however, compared to the Consonant Challenge
HMM baseline recogniser [69], the SLDM approach can
improve noisy speech recognition rates by up to 174% [73].

Applying Hidden Conditional Random Fields instead of
HMM for the classification of features enhanced by CMS did
not result in a better recognition rate.

For speech disturbed by white noise, the best recognition
rate (93.3%, averaged over the different SNR conditions) is
reached by the autoregressive Switching Linear Dynamical
System explained in Section 5.2.2, where the noisy speech
signal is modelled in the time domain as an autoregres-
sive process. As explained in Section 5.2.2, the AR-SLDS
constitutes the fusion of the SAR-HMM with the SLDS.
The AR-SLDS used in the experiment is based on a 10th
order SAR-HMM with ten states. This concept is however
not suited for lowpass noise at negative SNR levels: for
the “CAR” noise type a poor recognition rate of 47.2%,

Table 3: Mean-isolated digit recognition rates in (%) for different
noise types, noise compensation strategies, and features (training
on clean data), sorted by mean recognition rate.

Strategyfeat. clean CAR BAB WGN

SLDMMFCC 99.92 99.52 99.29 87.79

HEQMFCC 99.92 98.21 96.53 77.50

CMSPLP 99.84 97.70 97.92 72.67

MVNMFCC 99.84 94.86 93.32 79.06

CMSMFCC 99.84 96.96 97.18 72.22

HEQPLP 99.92 97.20 95.27 66.51

HCRF/CMSMFCC 99.76 95.67 94.97 70.06

USSMFCC 99.05 93.52 92.27 53.19

AFEMFCC 100.0 87.85 92.84 64.14

nonePLP 99.92 81.06 90.58 67.72

noneMFCC 99.92 75.09 88.37 63.67

AR− SLDSnone 97.37 47.24 78.51 93.32

SAR−HMMnone 98.10 54.26 83.16 41.91

averaged over all car types and driving conditions, was
obtained for AR-SLDS modelling. A reason for this is the
assumption in (36) which expects additive noise to have a
flat spectrum.
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Figure 10: Long-term spectrum of the car noises COB, HWY, CTY (Mini Cooper S) and the spectral characteristics of the vowel [i:] spoken
by a male speaker.

In case an HMM recogniser without feature enhance-
ment is applied, PLP features perform slightly better than
MFCC.

For white Gaussian noise, Table 4 compares the recog-
nition rates obtained in this work with the performance
reported in [14], using Unsupervised Spectral Subtraction,
SAR-HMM and AR-SLDS modelling. Note that we used
only 10 digits in our experiment (“zero” to “nine”), while
[14] used 11 digits (including “oh”), which, together with
extensive parameter tuning, should be the major reason why
our SAR-HMM and AR-SLDS performance is better.

Table 5 summaries the mean recognition rates of an
HMM recogniser without feature enhancement for three dif-
ferent training strategies: training on clean data, mismatched
conditions training, and matched conditions training. Here,
mismatched conditions training denotes the case when
training and testing is done using speech sequences disturbed
by the same noise type but at unequal noise conditions
(SNR levels and driving conditions, resp.). Matched con-
ditions training means training and testing with exactly
identical noise types and noise conditions. Whenever the
test sequence is disturbed by noise, mismatched conditions
training outperforms a recogniser that had been trained on

Table 4: Isolated digit recognition rates in (%) for different SNR
levels (white Gaussian noise) and noise compensation strategies
(training on clean data); comparison between the results obtained
in this work and the results reported in [14].

Strategyfeat. clean 20 dB 10 dB 0 dB

USSMFCC 99.1 96.1 53.5 9.9

USSMFCC [14] 100.0 86.4 59.1 9.1

AR− SLDSnone 97.4 97.4 94.1 88.5

AR− SLDSnone [14] 96.8 94.8 84.0 61.2

SAR−HMMnone 98.1 66.2 35.4 24.2

SAR−HMMnone [14] 97.0 22.2 9.7 9.1

clean data. However, the main drawback of this approach
is that for clean test sequences the mismatched conditions
training strategy significantly downgrades recognition rates
since in this case the noise pattern that had been learned
during the training is missing when testing the recogniser.
The results for matched conditions training serve as an upper
benchmark for noisy speech recognition performance, as this
strategy assumes perfect knowledge of the noise properties.
Note that since in the matched conditions experiment one
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Table 5: Mean isolated digit recognition rates in (%) of an
HMM recogniser without feature enhancement for different noise
types and training strategies: matched conditions (MC) training,
mismatched conditions (MMC) training, and training with clean
data.

Training clean CAR BAB WGN

Clean data 99.92 75.09 88.37 63.67

MMC 79.42 96.86 98.74 68.51

MC 99.92 99.69 99.73 99.22

Table 6: Mean spelling recognition rates in (%) for different noise
types and noise compensation strategies (training on clean data).

Strategyfeat. clean CAR BAB WGN

SLDMMFCC 92.73 82.98 81.59 64.23

HEQMFCC 91.85 70.19 69.40 48.20

CMSMFCC 93.09 73.79 69.78 47.06

noneMFCC 91.04 58.82 66.92 44.30

model was trained for every noise condition, this not only
implies knowledge of the noise characteristics (e.g., by
considering GPS or velocity information) but also higher
memory requirements, as more than one model has to be
stored. In the in-car scenario, this would entail one model
for every driving condition, resulting in an increase of model
size by factor four.

The best MFCC feature enhancement methods were also
applied in the spelling recognition task (see Table 6). Again,
for noisy test data, SLDM performs better than conventional
techniques like HEQ.

7. Conclusion

In this article, a wide range of different techniques to improve
the performance of automatic speech recognition in noisy
surroundings has been implemented and evaluated in a noisy
in-car isolated digit and spelling recognition task. In contrast
to previous researches, diverse cars and driving conditions
resulting in different spectral noise characteristics have been
taken into account in order to obtain reliable conclusions
about the universality of recognition performance. Thereby,
four major approaches, affecting feature extraction, feature
enhancement, speech decoding, and speech modelling, have
been considered.

Aiming to approximate the speech recognition perfor-
mance of human perception in noisy conditions, the use of
PLP features as speech representation leads to a relative error
reduction of 18.6% (averaged over all evaluated noise con-
ditions) with respect to conventional MFCC. Furthermore,
we proved that feature enhancement methods based on
spectral subtraction and normalisation like Cepstral Mean
Subtraction, Mean and Variance Normalisation, Unsuper-
vised Spectral Subtraction, or Histogram Equalisation are
able to partly remove the effects of stationary coloured noises
as they occur in the interior of a car.

As a further approach to enhance speech features, a
global Switching Linear Dynamic Model was used to capture

the dynamics of speech enabling a model-based speech
enhancement through joint speech and noise modelling.
This technique prevailed for all car noise types and reached
the best mean recognition rate of 96.9% for the noisy isolated
digit recognition task.

The usage of Hidden Conditional Random Fields as
an alternative model architecture could not outperform
the conventional HMM. However, embedding a Switching
Linear Dynamical System into a Switching Autoregressive
HMM, and thereby modelling the raw signal in the time
domain, leads to the best recognition performance for speech
corrupted with additive white Gaussian noise.

Adapting the speech models by using noisy training data
to build the models could also improve noise robustness.
While matched conditions training is hardly possible in
real life applications since the exact noise condition is not
known a priori, mismatched conditions training, which uses
training sequences disturbed by a noise type different from
that in the test phase, outperformed training on clean data
with a relative error reduction of 54.5%.

Apart from recognition performance, also computational
complexity and possible fields of application have to be
considered when designing a robust speech recogniser. While
AFE and USS are more complex than feature normalisation
techniques such as CMS or MVN, they are still suited for
real-time applications. HEQ and SLDM feature enhance-
ments achieve better recognition rates but require more
computational resources. Modelling the speech signal in the
time domain as done in the AR-SLDS experiment requires
the most computational power and is therefore not suited
for most real-life applications. For stationary noises, the
SLDM is the most promising technique; however, it relies on
accurate voice activity detection.

To optimise existing denoising strategies, future research
effort could be spent on increasing the suitability of promis-
ing concepts like SLDM feature enhancement for the in-car
speech recognition task by including discrete state transition
probabilities or finding the optimum compromise between
an increment of the history parameter and computational
complexity. Furthermore, the AR-SLDS concept could be
optimised for coloured noise to improve recognition per-
formance when applying autoregressive speech modelling
for in-car speech recognition. It might be also interesting
how the implemented denoising methods perform in a
continuous speech recognition task where, due to longer
observation sequences, the parameters of a global SLDM
as well as the cumulative histogram for the HEQ method
could be estimated more precisely than in an isolated digit
or spelling recognition experiment. Further improvements
in noise robustness could also be achieved by combining
different denoising concepts or by the application of other
promising modelling concepts like Long Short-Term Mem-
ory Recurrent Neural Networks.

Speech recognition in noisy environments remains chal-
lenging; however, as shown in this article, spending effort on
finding accurate techniques for auditory modelling, feature
enhancement, speech modelling, and model adaption can
remarkably reduce the performance gap between automatic
speech recognition and human perception.
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