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Organizing a database of user-contributed environmental sound recordings allows sound files to be linked not only by the semantic
tags and labels applied to them, but also to other sounds with similar acoustic characteristics. Of paramount importance in
navigating these databases are the problems of retrieving similar sounds using text- or sound-based queries, and automatically
annotating unlabeled sounds. We propose an integrated system, which can be used for text-based retrieval of unlabeled audio,
content-based query-by-example, and automatic annotation of unlabeled sound files. To this end, we introduce an ontological
framework where sounds are connected to each other based on the similarity between acoustic features specifically adapted to
environmental sounds, while semantic tags and sounds are connected through link weights that are optimized based on user-
provided tags. Furthermore, tags are linked to each other through a measure of semantic similarity, which allows for efficient
incorporation of out-of-vocabulary tags, that is, tags that do not yet exist in the database. Results on two freely available databases
of environmental sounds contributed and labeled by nonexpert users demonstrate effective recall, precision, and average precision
scores for both the text-based retrieval and annotation tasks.

1. Introduction

With the advent of mobile computing, it is currently possible
to record any sound event of interest using the microphone
onboard a smartphone, and immediately upload the audio
clip to a central server. Once uploaded, an online community
can rate, describe, and reuse the recording appending
social information to the acoustic content. This kind of
user-contributed audio archive presents many advantages
including open access, low cost entry points for aspiring con-
tributors, and community filtering to remove inappropriate
content. The challenge in using these archives is overcoming
the “data deluge” that makes retrieving specific recordings
from a large database difficult.

The content-based query-by-example (QBE) technique
where users query with sound recordings they consider
acoustically similar to those they hope to retrieve has
achievedmuch success for bothmusic [1] and environmental
sounds [2]. Additionally, content-based QBE is inherently
unsupervised as no labels are required to rank sounds in
terms of their similarity to the query (although relevancy

labels are required for formal evaluation). Unfortunately,
even if suitable recordings are available they might still be
insufficient to retrieve certain environmental sounds. For
example, suppose a user wants to retrieve all of the “water”
sounds from a given database. As sounds related to water
are extremely diverse in terms of acoustic content (e.g., rain
drops, a flushing toilet, the call of a waterfowl, etc.), QBE
is inefficient when compared to the simple text-based query
“water.” Moreover, it is often the case that users do not have
example recordings on hand, and in these cases text-based
semantic queries are often more appropriate.

Assuming the sound files in the archive do not have
textual metadata, a text-based retrieval system must relate
sound files to text descriptions. Techniques that connect
acoustic content to semantic concepts present an additional
challenge, in that learning the parameters of the retrieval
system becomes a supervised learning problem as each train-
ing set sound file must have semantic labels for parameter
learning. Collecting these labels has become its own research
problem leading to the development of social games for
collecting the metadata that describes music [3, 4].
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Most previous systems for retrieving sound files using
text queries, use a supervised multicategory learning
approach where a classifier is trained for each semantic
concept in the vocabulary. For example, in [5] semantic
words are connected to audio features through hierarchical
clusters. Automatic record reviews of music are obtained
in [6] by using acoustic content to train a one versus all
discriminative classifier for each semantic concept in the
vocabulary. An alternative generative approach that was
successfully applied to the annotation and retrieval of music
and sound effects [7] consists of learning a Gaussian mixture
model (GMM) for each concept. In [8] support vector
machine (SVM) classifiers are trained for semantic and
onomatopoeia labels when each sound file is represented as a
mixture of hidden acoustic topics. A large-scale comparison
of discriminative and generative classification approaches for
text-based retrieval of general audio on the Internet was
presented in [9].

One drawback of the multiclass learning approach is its
inability to handle semantic concepts that are not included
in the training set without an additional training phase.
By not explicitly leveraging the semantic similarity between
concepts, the classifiers might miss important connections.
For example, if the words “purr” and “meow” are never used
as labels for the same sound, the retrieval system cannot
model the information that these sounds may have been
emitted from the same physical source (a cat), even though
they are widely separated in the acoustic feature space.
Furthermore, if none of these sounds contain the tag “kitty”
a user who queries with this out of vocabulary tag might not
receive any results, even though several cat/kitty sounds exist
in the database.

In an attempt to overcome these drawbacks we use a tax-
onomic approach similar to that of [10, 11] where unlabeled
sounds are annotated with the semantic concepts belonging
to their nearest neighbor in an acoustic feature space, and
WordNet [12, 13] is used to extend the semantics. We aim
to enhance this approach by introducing an ontological
framework where sounds are linked to each other through
a measure of acoustic content similarity, semantic concepts
(tags) are linked to each other through a similarity metric
based on the WordNet ontology, and sounds are linked to
tags based on descriptions from a user community.

We refer to this collection of linked concepts and sounds
as a hybrid (content/semantic) network [14, 15] that possesses
the ability to handle two query modalities. When queries are
sound files the system can be used for automatic annotation
or “autotagging”, which describes a sound file based on
its audio content and provides suggested tags for use as
traditional metadata. When queries are concepts they can be
used for text-based retrieval where a ranked list of unlabeled
sounds that are most relevant to the query concept is
returned. Moreover, queries or new sounds/concepts can be
efficiently connected to the network, as long as they can be
linked either perceptually if sound based, or lexically if word
based.

In describing our approach, we begin with a formal
definition of the related problems of automatic annotation
and text-based retrieval of unlabeled audio, followed by

the introduction of our ontological framework solution in
Section 2. The proposed hybrid network architecture outputs
a distribution over sounds given a concept query (text-based
retrieval) or a distribution over concepts given a sound
query (annotation). The output distribution is determined
from the shortest path distance between the query and
all output nodes (either sounds or concepts) of interest.
The main challenge of the hybrid network architecture is
computing the link weights. Section 3 describes an approach
to determine the link weights connecting sounds to other
sounds based on a measure of acoustic content similarity,
while Section 4 details how link weights between semantic
concepts are calculated using a WordNet similarity metric.
It is these link weights and similarity metrics that allow
queries or new sounds/concepts to be efficiently connected
to the network. The third type of link weight in our network
are those connecting sounds to concepts. These weights
are learned by attempting to match the output of the
hybrid network to semantic descriptions provided by a user
community as outlined in Section 5.

We evaluate the performance of the hybrid network on a
variety of information retrieval tasks for two environmental
sound databases. The first database contains environmental
sounds without postprocessing, where all sounds were
independently described multiple times by a nonexpert user
community. This allows for greater resolution in associating
concepts to sounds as opposed to binary (yes/no) associ-
ations. This type of community information is what we
hope to represent in the hybrid network, but collecting this
data remains an arduous process and limits the size of the
database.

In order to test our approach on a larger dataset, the
second database consists of several thousand sound files
from the Freesound project [16]. While this dataset is larger
in terms of the numbers of sound files and semantic tags
it is not as rich in terms of semantic information as tags
are applied to sounds in a binary fashion by the user
community. Given the noisy nature (recording/encoding
quality, various levels of post production, inconsistent text
labeling) of user-contributed environmental sounds, the
results presented in Section 6 demonstrate that the hybrid
network approach provides accurate retrieval performance.
We also test performance using semantic tags that are not
previously included in the network, that is, out-of-vocabulary
tags are used as queries in text-based retrieval and as the
automatic descriptions provided during annotation. Finally,
conclusions and discussions of possible topics of future work
are provided in Section 7.

2. An Ontological Framework Connecting
Semantics and Sound

In content-based QBE, a sound query qs is used to search a
database of N sounds S = {s1, . . . , sN} using a score function
F(qs, si) ∈ R. The score function must be designed in such a
way that two sound files can be compared in terms of their
acoustic content. Furthermore, let A(qs) ⊂ S denote the
subset of database sounds that are relevant to the query, while
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the remaining soundsA(qs) ⊂ S are irrelevant. In an optimal
retrieval system, the score function will be such that

F
(
qs, si

)
> F

(
qs, s j

)
si ∈A

(
qs
)
, s j ∈A

(
qs
)
. (1)

That is, the score function should be highest for sounds
relevant to the query.

In text-based retrieval, the user inputs a semantic concept
(descriptive tag) query qc and the database sound set S is
ranked in terms of relevance to the query concept. In this
case, the score function G(qc, si) ∈ Rmust relate concepts to
sounds and should be designed such that

G
(
qc, si

)
> G

(
qc, s j

)
si ∈A

(
qc
)
, s j ∈A

(
qc
)
. (2)

Once a function G(qc, si) is known, it can be used for
the related problem of annotating unlabeled sound files.
Formally, a sound query qs is annotated using tags from a
vocabulary of semantic concepts C = {c1, . . . , cM}. Letting
B(qs) ⊂ C be the subset of concepts relevant to the
query, and B(qs) ⊂ C the irrelevant concepts, the optimal
annotation system is

G
(
ci, qs

)
> G

(
cj , qs

)
ci ∈ B

(
qs
)
, cj ∈ B

(
qs
)
. (3)

To determine effective score functions we must define the
precision and recall criteria [17]. Precision is the number of
desired sounds retrieved divided by the number of retrieved
sounds and recall is the number of desired sounds retrieved
divided by the total number of desired sounds. If we assume
only one relevant object (either sound or tag) exists in the
database (denoted by oi∗) and the retrieval system returns
only the top result for a given query, it should be clear that
the probability of simultaneously maximizing precision and
recall reduces to the probability of retrieving the relevant
document. An optimal retrieval system should maximize this
probability, which is equivalent to maximizing the posterior
P(oi | q), that is, the relevant object is retrieved from the
maximum a posteriori criterion, that is,

i∗ = argmax
i∈1:M

P
(
oi | q

)
. (4)

If there are multiple relevant objects in the database, and the
retrieval system returns the top R objects, we can return the
objects with the R greatest posterior probabilities given the
query. Thus, each of the score functions in (1)–(3) for QBE,
text-based retrieval, and annotation, respectively, reduces to
the appropriate posterior:

F
(
qs, si

) = P
(
si | qs

)
,

G
(
qc, si

) = P
(
si | qc

)
,

G
(
ci, qs

) = P
(
ci | qs

)
.

(5)

Our goal with the ontological framework proposed in
this paper is to estimate all posterior probabilities of (5) in
a unified fashion. This is achieved by constructing a hybrid
(content/semantic) network from all elements in the sound
database, the associated semantic tags, and the query (either
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Figure 1: Operating modes of hybrid network for audio retrieval
and annotation. Dashed lines indicate links added at query time,
and arrows point to probabilities output by the hybrid network.

concept or sound file) as shown in Figures 1(a)–1(c). In
Figure 1(a) an audio sample is used to query the system and
the output is a probability distribution over all sounds in
the database. In Figure 1(b) a word is the query with the
system output again a probability distribution over sounds.
In Figure 1(c) a sound query is used to output a distribution
over words.

Formally, we define the hybrid network as a graph
consisting of a set of nodes or vertices (ovals and rectangles
in Figure 1) denoted by N = S ∪ C. Two nodes i, j ∈ N
can be connected by an undirected link with an associated
nonnegative weight (also known as length or cost), which we
denote by W(i, j) = W( j, i) ∈ R+. The smaller the value
of W(i, j) the stronger the connection between nodes i and
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j. In Figures 1(a)–1(c) the presence of an edge connecting
node i to node j indicates a value of 0 ≤ W(i, j) < ∞,
although the exact values forW(i, j) are not indicated, while
the dashed edges connecting the query node to the rest of
the network are added at query time. If the text or sound file
query is already in the database, then the query node will be
connected through the node representing it in the network
by a single link of weight zero (meaning equivalence).

The posterior distributions (score functions) from (5) are
obtained from the hybrid network as

P
(
si | qs

) = e−d(qs,si)
∑

s j∈S e
−d(qs,s j ) , (6)

P
(
si | qc

) = e−d(qc ,si)
∑

s j∈S e
−d(qc ,s j ) , (7)

P
(
ci | qs

) = e−d(qs,ci)
∑

cj∈C e
−d(qs,cj ) , (8)

where (6) is the distribution over sounds illustrated in
Figure 1(a), (7) is the distribution over sounds illustrated
in Figure 1(b), and (8) is the distribution over concepts
illustrated in Figure 1(c). In (6)–(8), d(q,n) is the path
distance between nodes q and n. (Here a path is a connected
sequence of nodes in which no node is visited more than
once.) Currently, we represent d(q,n) by the shortest path
distance

d
(
q,n
) = min

k
dk
(
q,n
)
, (9)

where k is the index among possible paths between nodes
q and n. Given starting node q, we can efficiently compute
(9) for all n ∈ N using Dijkstra’s algorithm [18], although
for QBE (Figure 1(a)) the shortest path distance is simply
the acoustic content similarity between the sound query and
the template used to represent each database sound. We now
describe how the link weights connecting sounds and words
are determined.

3. Acoustic Information: Sound-Sound Links

As shown in Figures 1(a)–1(c), each sound file in the
database is represented as a template, and the construction
of these templates will be detailed in this section. Methods
for ranking sound files based on the similarity of their
acoustic content typically begin with the problem of acoustic
feature extraction. We use the six-dimensional feature set
described in [2], where features are computed from either
the windowed time series data, or the short-time Fourier
Transform (STFT) magnitude spectrum of 40ms Hamming
windowed frames hopped every 20ms (i.e., 50% overlapping
frames). This feature set consists of RMS level, Bark-weighted
spectral centroid, spectral sparsity (the ratio of �∞ and �1

norms calculated over the short-time Fourier Transform
(STFT) magnitude spectrum), transient index (the �2 norm
of the difference of Mel frequency cepstral coefficients
(MFCC’s) between consecutive frames), harmonicity (a
probabilistic measure of whether or not the STFT spectrum

for a given frame exhibits a harmonic frequency structure),
and temporal sparsity (the ratio of �∞ and �1 norms calculated
over all short-term RMS levels computed in a one second
interval).

In addition to its relatively low dimensionality, this
feature set is tailored to environmental sounds while not
being specifically adapted to a particular class of sounds (e.g.,
speech). Furthermore, we have found that these features
possess intuitive meaning when searching for environmental
sounds, for example, crumbling newspaper should have a
high transient index and birdcalls should have high har-
monicity. This intuition is not present with other feature sets,
for example, it is not intuitively clear how the fourth MFCC
coefficient can be used to index and retrieve environmental
sounds.

Let t ∈ 1 : Tj be the frame index for a sound file
of length Tj , and � ∈ 1 : P be the feature index, we

define Y
( j,�)
t as the �th observed feature for sound s j at

time t. Thus, each sound file s j can be represented as a

time series of feature vectors denoted by Y
( j,1:P)
1:Tj

. If all sound

files in the database are equally likely, the maximum-a-
posteriori retrieval criterion discussed in Section 2 reduces
to maximum likelihood. Thus, sound-sound link weights
should be determined using a likelihood-based technique. To
compare environmental sounds in a likelihood-based man-
ner, a hidden Markov model (HMM) λ( j,�) is estimated from
the �th feature trajectory of sound s j . These HMM templates
encode whether the feature trajectory varies in a constant
(high or low), increasing/decreasing, or more complex (up
→ down; down → up) fashion. All features are modeled as
conditionally independent given the corresponding HMM,
that is, the likelihood that the feature trajectory of sound s j
was generated by the HMM built to approximate the simple
feature trends of sound si is

L
(
s j , si

)
= log P

(
Y

( j,1:P)
1:Tj

| λ(i,1:P)
)

=
P∑

�=1
log P

(
Y

( j,�)
1:Tj

| λ(i,�)
)
.

(10)

Details on the estimation of λ(i,�) and computation of (10)
are described in [2]. To make fast comparisons in the present
work we allow only constant HMM templates, so λ(i,�) =
{μ(i,�), σ (i,�)}, where μ(i,�) and σ (i,�) are the sample mean and
standard deviation of the �th feature trajectory for sound si.
Thus,

P
(
Y

( j,�)
1:Tj

| λ(i,�)
)
=

Tj∏

t=1
γ
(
Y

( j,�)
t ;μ(i,�), σ (i,�)

)
, (11)

where γ(y;μ, σ) is the univariate Gaussian pdf with mean μ
and standard deviation σ evaluated at y.

The ontological framework we have defined is an
undirected graph, which requires weights be symmetric
(W(si, s j) = W(s j , si)) and nonnegative (W(si, s j) ≥ 0).
Therefore, we cannot use the log-likelihood L(si, s j) as the
link weight between nodes si and s j because it is not
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Figure 2: An example hybrid network illustrating the difference between in- and out-of-vocabulary tags.

guaranteed to be symmetric and nonnegative. Fortunately,
a well-known semimetric that satisfies these properties and
approximates the distance between HMM templates exists
[14, 19]. Using this semimetric we define the link weight
between nodes si and s j as

W
(
si, s j

)
= 1

Ti

[
L(si, si)− L

(
si, s j

)]

+
1
Tj

[
L
(
s j , s j

)
− L

(
s j , si

)]
,

(12)

where Ti and Tj represent the length of the feature tra-
jectories for sounds si and s j , respectively. Although the
semimetric in (12) does not satisfy the triangle inequality,
its properties are (a) symmetry W(si, s j) = W(s j , si), (b)
nonnegativity W(si, s j) ≥ 0, and (c) distinguishability
W(si, s j) = 0 if and only if si = s j .

4. Semantic Information:
Concept-Concept Links

One technique, for determining concept-concept link
weights is to a assign a link of weight zero (meaning
equivalence) to concepts with common stems, for example,
run/running and laugh/laughter, while other concepts are
not linked. To calculate a wider variety of concept-to-
concept link weights, we use a similarity metric from
the WordNet::Similarity library [20]. A comparison of five
similarity metrics from the WordNet::Similarity library in
terms of audio information retrieval was studied in [15]. In
that work the Jiang and Conrath ( jcn)metric [21] performed
best in terms of average precision, but had part of speech
incompatibility problems that did not allow concept-to-
concept comparisons for adverbs and adjectives. Therefore,
in this work we use the vector metric because it supports the
comparison of adjectives and adverbs, which are commonly
used to describe sounds. The vector metric computes the
cooccurrence of two concepts within the collections of words
used to describe other concepts (their glosses) [20]. For a full
review of WordNet similarity, see [20, 22].

By defining Sim(ci, cj) as theWordNet similarity between
the concepts represented by nodes ci and cj , an appropriately
scaled link weight between these nodes is

W
(
ci, cj

)
= − log

⎡

⎣
Sim

(
ci, cj

)

maxk,lSim(ck, cl)

⎤

⎦. (13)

The link weights between semantic concepts W(ci, cj)
allow the hybrid network to handle out-of-vocabulary tags,
that is, semantic tags that were not applied to the training
sound files used to construct the retrieval system can still
be used either as queries in text-based retrieval or as tags
applied during the annotation process. This flexibility is an
important advantage of the hybrid network approach as
compared to the multiclass supervised leaning approaches to
audio information retrieval, for example, [7, 9]. Figure 2 dis-
plays an example hybrid network illustrating the difference
between in- and out-of-vocabulary semantic tags. While out-
of-vocabulary tags are connected only to in-vocabulary tags
through links with weights of the form of (13), in-vocabulary
tags are connected to sound files based on information from
the user community via the procedure described in the
following section.

5. Social Information: Sound-Concept Links

We quantify the social information connecting sounds and
concepts using a M × N dimensional votes matrix V , with
elements Vji equal to the number of users who have tagged
sound si with concept cj divided by the total number of users
who have tagged sound si. By appropriately normalizing the
votes matrix, it can be interpreted probabilistically as

P
(
si, cj

)
= Vji
∑

k

∑
l Vkl

, (14)

Qji = P
(
si | cj

)
= Vji
∑

k Vjk
, (15)

Pji = P
(
cj | si

)
= Vji
∑

k Vki
, (16)
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where P(si, cj) is the joint probability between si and cj ,
Qji = P(si | cj) is the conditional probability of sound si
given concept cj , and Pji = P(cj | si) is defined similarly.
Our goal in determining the social link weights connecting
sounds and concepts W(si, cj) is that the hybrid network
should perform both the annotation and text-based retrieval
tasks in a manner consistent with the social information
provided from the votes matrix. That is, the probability
distribution output by the ontological framework using (7)
with qc = cj should be as close as possible to Qji from (15)
and the probability distribution output using (8) with qs = si
should be as close as possible to Pji from (16). The difference
between probability distributions can be computed using the
Kullback-Leibler (KL) divergence.

We define w = {W(si, cj) | Vji /= 0} to be the vector

of all sound-word link weights, Q̂ ji(w) as the probability
distribution output by the ontological framework using (7)
with qc = cj , and P̂ ji(w) as the probability distribution
output by the ontological framework using (8) with qs = si.
Treating concept si as the query, the KL divergence between
the distribution over database sounds obtained from the
network and the distribution obtained from the user votes
matrix is

KL(si,w) =
∑

cj∈C
Pji log

⎡

⎣ Pji

P̂ ji(w)

⎤

⎦. (17)

Similarly, given concept cj as the query, the KL divergence
between the distribution of concepts obtained from the
network and the distribution obtained from the user votes
matrix is

KL
(
cj ,w

)
=
∑

si∈S
Qji log

⎡

⎣ Qji

Q̂ ji(w)

⎤

⎦. (18)

The network weights are then determined by solving the
optimization problem

min
w

∑

si∈S

∑

cj∈C
KL(si,w) + KL

(
cj ,w

)
. (19)

Empirically, we have found that setting the initial weight
values to W(si, cj) = − logP(si, cj), leads to quick conver-
gence. Furthermore, if resources are not available to use the
KL weight learning technique, setting the sound-concept link
weights to W(si, cj) = − logP(si, cj) provides a simple and
effective approximation of the optimized weight.

Presently, the votes matrix is obtained using only a simple
tagging process. In the future we hope to augment the votes
matrix with other types of community activity, such as
discussions, rankings, or page navigation paths on a website.
Furthermore, sound-to-concept link weights can be set as
design parameters rather than learned from a “training set”
of tags provided by users. For example, expert users canmake
sounds equivalent to certain concepts through the addition
of zero-weight connections between specified sounds and
concepts, thus, improving query results for nonexpert users.

6. Results and Discussion

In this section, the performance of the hybrid network on the
annotation and text-based retrieval tasks will be evaluated.
(QBE results were considered in our previous work [2] and
are not presented here).

6.1. Experimental Setup. Two datasets are used in the
evaluation process. The first dataset, which we will refer
to as the Soundwalks data set contains 178 sound files
uploaded by the authors to the Soundwalks.org website. The
178 sound files were recorded during seven separate field
recording sessions, lasting anywhere from 10 to 30 minutes
each and sampled at 44.1 KHz. Each session was recorded
continuously and then hand-segmented by the authors into
segments lasting between 2–60 s. The recordings took place
at three light rail stops (75 segments), outside a stadium
during a football game (60 segments), at a skatepark (16
segments), and at a college campus (27 segments). To obtain
tags, study participants were directed to a website containing
ten random sounds from the set and were asked to provide
one or more single-word descriptive tags for each sound.
With 90 responses, each sound was tagged an average of
4.62 times. We have used 88 of the most popular tags as our
vocabulary.

Because the Soundwalks dataset contains 90 subject
responses, a nonbinary votes matrix can be used to deter-
mine the sound-concept link weights described in Section 5.
Obtaining this votes matrix requires large amounts of subject
time, thus, limiting its size. To test the hybrid network
performance on a larger dataset, we use 2064 sound files and
a 377 tag vocabulary from Freesound.org. In the Freesound
dataset tags are applied in a binary (yes/no) manner to each
sound file by users of the website. The sound files were
randomly selected from among all files (whether encoded
in a lossless or lossy format) on the site containing any of
the 50 most used tags and between 3–60 seconds in length.
Additionally, each sound file contained between three and
eight tags, and each of the 377 tags in the vocabulary were
applied to at least five sound files.

To evaluate the performance of the hybrid network
we adopt a two-fold cross validation approach where all
of the sound files in our dataset are partitioned into
two nonoverlapping subsets. One of these subsets and its
associated tags is then used to build the hybrid network
via the procedure described in Sections 2–5. The remaining
subset is then used to test both the annotation and text-based
retrieval performance for unlabeled environmental sounds.
Furthermore, an important novelty in this work is the ability
of the hybrid network to handle out-of-vocabulary tags. To
test performance for out-of-vocabulary tags, a second tier of
cross validation is employed where all tags in the vocabulary
are partitioned into five random, nonoverlapping subsets.
One of these subsets is then used along with the subset of
sound files to build the hybrid network, while the remaining
tags are held out of vocabulary. This partitioning procedure
is summarized in Table 1 for both the Soundwalks and
Freesound datasets. Reported results are the average over
these 10 (five tag, two sound splits) cross-validation runs.
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Figure 3: Precision and recall curves for annotation of unlabeled sound files in the Soundwalks dataset averaged over 10 cross-validation
splits.

Table 1: Database partitioning procedure for each cross validation
run.

Soundwalks Freesound

Number of sound files 178 2064

In network (training) 89 1032

Out of network (testing) 89 1032

Number of tags 88 377

In vocabulary 18 75

Out of vocabulary 70 302

Relevance is determined to be positive if a held out sound file
was actually labeled with a tag. It is also important to note
that the tags for both datasets are not necessarily provided
by expert users, thus, our relevance data can be considered
“noisy.”

6.2. Annotation. In annotation each sound in the testing set
is used as a query to provide an output distribution over
semantic concepts. For a given sound query qs we denote
by B(qs) the set of tags, and |B| the number of relevant
tags for that query. Assuming M tags in a database are
ranked in order of decreasing probability for a given query, by
truncating the list to the top n tags, and counting the number
of relevant tags, denoted by |B(n)|, we define precision =
|B(n)|/n and recall = |B(n)|/|B|. Average precision is
found by incrementing n and averaging the precision at
all points in the ranked list where a relevant sound is
located. Additionally, the area under the receiver operating
characteristics curve (AROC) is found by integrating the

ROC curve, which plots the true positive versus false positive
rate for the ranked list of output tags.

Figures 3(a) and 3(b) display the precision and recall
curves, respectively, averaged over all sound queries and
cross-validation runs for the soundwalks dataset. The three
curves in Figure 3 represent three different ways of building
the hybrid network. The in-vocabulary curve can be consid-
ered as an upper bound of annotation performance as all
tags are used in building the network. The out-of-vocabulary
(WordNet) curve uses only a subset of tags to build the hybrid
network, and remaining tags are connected only through
concept-concept links as described in Section 4. The out-
of-vocabulary (Baseline) curve uses only a subset of tags to
build the hybrid network, and remaining tags are returned
in random order. This is how the approach of training a
classifier for each tag, for example, [7–9] would behave for
out of vocabulary tags. From Figures 3(a) and 3(b) we see
that out-of-vocabulary performance is improved both in
terms of precision and recall when WordNet link weights
are included. Additionally, from the precision curve of
Figure 3(a) we see that approximately 15% of the top 20 out
of vocabulary tags are relevant, while for in vocabulary tags
this number is 25%. Considering the difficulty of the out of
vocabulary problem, and that each sound file is labeled with
much less than 20 tags this performance is quite promising.
From the recall curve of Figure 3(b) approximately 30% of
relevant out-of-vocabulary tags are returned in the top 20,
compared to approximately 60% of in-vocabulary tags.

Table 2 contains the mean average precision (MAP) and
mean area under the receiver operating characteristics curve
(MAROC) values for both the Soundwalks and Freesound
databases. We see that performance is comparable between
the two datasets, despite the Freesound set being an order
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Table 2: Annotation performance using out-of-vocabulary semantic concepts.

Soundwalks Freesound

MAP MAROC MAP MAROC

In vocabulary (upper bound) 0.4333 0.7523 0.4113 0.8422

Out of vocabulary (WordNet) 0.2131 0.6322 0.1123 0.6279

Out of vocabulary (Baseline) 0.1789 0.5353 0.1092 0.5387
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Figure 4: Recall and precision curves for text-based retrieval of unlabeled sound files in the Soundwalks dataset averaged over 10 cross-
validation splits.

of magnitude larger. The slightly better performance on
the Soundwalks dataset is most likely due to the large
amount of social information contained in the votes matrix,
which is used to set sound-concept link weight values. The
in-vocabulary MAP values of 0.4333 and 0.4113 compare
favorably to the per-word MAP value of 0.179 reported in
[7] for annotating BBC sound effects. Benchmarking the
performance for out-of-vocabulary tags is more difficult
since this task is often not considered in the literature.

6.3. Text-Based Retrieval. In text-based retrieval each seman-
tic tag is used as a query to provide an output distribution
over the test sounds. For a given query we denote by A(qc)
the set of relevant test sounds that are labeled with the query
word, and |A| as the number of relevant test sounds for that
query. Precision, recall, MAP, and MAROC values are then
computed as described above. Figures 4(a) and 4(b) display
the precision and recall curves, respectively, averaged over all
sound queries and cross-validation runs for the Soundwalks
dataset, while Table 3 displays the MAP and MAROC
values. As with annotation, text-based retrieval with out-of-
vocabulary concepts is significantly more difficult than with
in vocabulary concepts, but including the concept-concept

links based on the measure of WordNet similarity helps to
ameliorate retrieval performance.

To demonstrate that retrieval performance is most likely
considerably better than the reported precision, recall,
MAP, and MAROC performance averaged over noisy tags
contributed by nonexpert users, we provide the example of
Table 4. Here, the word “rail” is used as an out-of-vocabulary
query to retrieve unlabeled sounds, and the top four results
are displayed. Additionally, Table 4 displays the posterior
probability of each of the top four results, the shortest
path of nodes from the query to the output sounds, and
whether or not the output sound is relevant. The top result
is the sound mixture of automobile traffic and a train horn,
but is not tagged by any users with the word “rail,” even
though like the sounds actually tagged with “rail” it is a
recording of a train station. Although filtering these types
of results would improve quantitative performance it would
require listening to thousands of sound files and overruling
subjective decisions made by the users who listened to and
labeled to the sounds.

6.4. In-Vocabulary Semantic Information. Effective annota-
tion and retrieval for out-of-vocabulary tags requires some
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Table 3: Text-based retrieval performance using out-of-vocabulary semantic concepts.

Soundwalks Freesound

MAP MAROC MAP MAROC

In vocabulary (upper bound) 0.2725 0.6846 0.2198 0.7100

Out of vocabulary (WordNet) 0.1707 0.6291 0.0681 0.5788

Out of vocabulary (Baseline) 0.1283 0.5355 0.0547 0.5414

Table 4: Top four results from Soundwalks data set for text-based retrieval with out of vocabulary query “rail”. Parenthetical descriptions are
not actual tags, but provided to give an idea of the acoustic content of the sound files.

Posterior probability Node path Relevant

0.19 rail⇒train⇒segment94.wav (train bell)⇒segment165.wav (traffic/train horn) No

0.17 rail⇒voice⇒segment136.wav (pa announcement)⇒segment133.wav (pa announcement) Yes

0.15 rail⇒train⇒segment40.wav (train brakes)⇒segment30.wav (train bell/brakes) Yes

0.09 rail⇒train⇒segmen40.wav (train brakes)⇒segment147.wav (train horn) Yes

Table 5: Performance of retrieval tasks with the Soundwalks dataset using WordNet connections between in-vocabulary semantic concepts.

Text-based retrieval Annotation

MAP MAROC MAP MAROC

With WordNet 0.2166 0.6133 0.2983 0.6670

Without WordNet 0.3744 0.6656 0.4633 0.7978

method of relating the semantic similarity of tags, for
example, the WordNet similarity metric used in this work.
In this section we examine how the inclusion of semantic
connections between in-vocabulary tags affects annotation
and text-based retrieval performance. Table 5 compares the
MAP and MAROC values for the Soundwalks dataset where
all tags are used in building the network both with and
without semantic links connecting tags. The results of Table 5
suggest that when the information connecting sounds and
tags is available (i.e., tags are in the vocabulary) the semantic
links provided by WordNet confound the system by allowing
for possibly irrelevant relationships between tags. This is not
unlike the observations of [23] where using WordNet did
not significantly improve information retrieval performance.
Comparing the environmental sound retrieval performance
of WordNet similarity with other techniques for computing
prior semantic similarity (e.g., Google distance [24]) remains
a topic of future work, since some measure of semantic
similarity is necessary to handle out-of-vocabulary tags.

7. Conclusions and FutureWork

Currently, a significant portion of freely available environ-
mental sound recordings are user contributed and inherently
noisy in terms of audio content and semantic descriptions.
To aid in the navigation of these audio databases we
show the utility of a system that can be used for text-
based retrieval of unlabeled audio, content-based query-
by-example, and automatic audio annotation. Specifically,
an ontological framework connects sounds to each other

based on a measure of perceptual similarity, tags are linked
based on a measure of semantic similarity, while tags and
sounds are connected by optimizing link weights given user
preference data. An advantage of this approach is the ability
of the system to flexibly extend when new sounds and/or
tags are added to the database. Specifically, unlabeled sound
files can be queried or annotated with out-of-vocabulary
concepts, that is, tags that do not currently exist in the
database.

One possible improvement to the hybrid network struc-
ture connecting semantics and sound might be achieved
by exploring different link weight learning techniques.
Currently, we use a “divide and conquer” approach where
the three types of weights (sound-sound, concept-concept,
sound-concept) are learned independently. This could lead
to scaling issues, especially if the network is expanded to
contain different node types. One possible approach to
overcome these scaling issues could be to learn a dissimilarity
function from ranking data [25]. For example, using the
sound similarity, user preference, and WordNet similarity
data to find only rankings between words and sounds of the
form “A is more like B than C is D”, we can learn a single
dissimilarity function for the entire network that preserves
this rank information.

Another enhancement would be to augment the hybrid
network with a recursive clustering scheme such as those
described in [26]. We have successfully tested this approach
in [14], where each cluster becomes a node in the hybrid
network, and all sounds assigned to each cluster are con-
nected to the appropriate cluster node by a link of weight
zero. These cluster nodes are then linked to the nodes
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representing semantic tags. While this approach limits the
number of sound-tag weights that need to be learned, the
additional cluster nodes and links tend to cancel out this
savings. Furthermore, when a new sound is added to the
network we still must compute its similarity to all sounds
previously in the network (this is also true for new tags).
For sounds, it might be possible to represent each sound
file and sound cluster as a Gaussian distribution, and then
use symmetric Kullback-Leibler divergence to calculate the
link weights connecting new sounds added to the network
to preexisting clusters. Unfortunately, this approach would
not extend to the concept nodes in the hybrid network as we
currently know of no technique for representing a semantic
tag as a Gaussian, even though theWordNet similarity metric
could be used to cluster the tags. Perhaps a technique where
a fixed number of sound/tag nodes are sampled to have link
weights computed each time a new sound/tag is added to the
network could help make the ontological framework more
computationally efficient. A link weight pruning approach
might also help improve computational complexity.

Finally, using a domain-specific ontology such as the
MX music ontology [27] might be better suited to audio
information retrieval than a purely lexical database such
as WordNet. For environmental sounds, the theory of
soundscapes [28, 29] might be a convenient first step, as the
retrieval system could be specially adapted to the different
elements of a soundscape. For example, sounds such as traffic
and rain could be connected to a keynote sublayer in the
hybrid network, while sounds such as alarms and bells could
be connected to the sound signal sublayer. Once the subjective
classification of sound files into the different soundscape
elements are obtained adding this sublayer into the present
ontological framework could be an important enhancement
to the current system.
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