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Frequency-domain blind source separation (BSS) performs poorly in high reverberation because the independence assumption
collapses at each frequency bins when the number of bins increases. To improve the separation result, this paper proposes a
method which combines two techniques by using beamforming as a preprocessor of blind source separation. With the sound
source locations supposed to be known, the mixed signals are dereverberated and enhanced by beamforming; then the beamformed
signals are further separated by blind source separation. To implement the proposed method, a superdirective fixed beamformer is
designed for beamforming, and an interfrequency dependence-based permutation alignment scheme is presented for frequency-
domain blind source separation. With beamforming shortening mixing filters and reducing noise before blind source separation,
the combined method works better in reverberation. The performance of the proposed method is investigated by separating up to 4
sources in different environments with reverberation time from 100 ms to 700 ms. Simulation results verify the outperformance of
the proposed method over using beamforming or blind source separation alone. Analysis demonstrates that the proposed method
is computationally efficient and appropriate for real-time processing.

1. Introduction

The objective of acoustic source separation is to estimate
original sound sources from the mixed signals. This tech-
nique has found a lot of applications in noise-robust speech
recognition and high-quality hands-free telecommunication
systems. A classical example is to separate audio sources
observed in a real room, known as a cocktail party environ-
ment, where a number of people are talking concurrently. A
lot of research has focused on the problem but development
is currently still in progress. Two kinds of techniques are
promising in achieving source separation with multiple
microphones: beamforming and blind source separation.
Beamforming is a technique used in sensor array for
directional signal reception [1, 2]. Based on a model of the
wavefront from acoustic sources, it can enhance target direc-
tion and suppress unwanted ones by coherently summing
signals from the sensors. Beamforming can be classified as
either fixed beamforming or adaptive one, depending on
how the beamformer weights are chosen. The weights of

a fixed beamformer do not depend on array data and are
chosen to present a specified response for all scenarios. The
most conventional fixed beamformer is a delay-and-sum
one, which however requires a large number of microphones
to achieve high performance. Another filter-and-sum beam-
former has superdirectivity response with optimized weights.
The weights of an adaptive beamformer are chosen based
on the statistics of array data to optimize array response.
In source separation system, each source signals may be
separately obtained using the directivity of the array if the
directions of sources are known. However, beamforming
has limited performance in highly reverberant conditions
because it can not suppress the interfering reverberation
coming from the desired direction.

Blind source separation (BSS) is a technique for recover-
ing the source signals from observed signals with the mixing
process unknown [3]. It just relies on the independence
assumption of source signals to estimate them from the
mixtures. The cocktail party problem is a challenge because
the mixing process is convolutive, where the observations



are combinations of filtered versions of sources. A large
number of unmixing filter coefficients should be calculated
simultaneously to recover the original signals. The con-
volutive BSS problem can be solved in the time domain
or the frequency domain [4]. In time domain BSS, the
separation network is derived by optimizing a time-domain
cost function [5-7]. However, these approaches may not be
effective due to slow convergence and large computational
load. In frequency-domain BSS, the observed time-domain
signals are converted into the time-frequency domain by
short-time Fourier transform (STFT); then instantaneous
BSS is applied to each frequency bin, after which the
separated signals of all frequency bins are combined and
inverse-transformed to the time domain [8, 9]. Although
satisfactory instantaneous separation may be achieved within
all frequency bins, combining them to recover the original
sources is a challenge because of the unknown permuta-
tions associated with individual frequency bins. This is the
permutation ambiguity problem. There are two common
strategies to solve this problem. The first strategy is to
exploit the interfrequency dependence of separated signals
[10, 11]. The second strategy is to exploit the position
information of sources such as direction of arrival [12, 13].
By analyzing the directivity pattern formed by a separation
matrix, source direction can be estimated and permutations
aligned. Generally these two strategies can be combined to
get a better permutation alignment [14].

Besides the permutation problem, another fundamental
problem also limits the performance of frequency-domain
BSS: the dilemma in determining the STFT analysis frame
length [15-17]. Frames shorter than mixing filters gener-
ate incomplete instantaneous mixtures, while long frames
collapse the independence measure at each frequency bin
and disturb separation. The conflict is even severer in
high reverberation with long mixing filters. Generally, a
frequency-domain BSS which works well in low (100-
200 ms) reverberation has degraded performance in medium
(200-500 ms) and high (>500 ms) reverberation. Since the
problem originates from a processing step, which approx-
imates linear convolutions with circular convolutions, in
frequency-domain BSS, we call it “circular convolution
approximation problem” This problem will be further
elaborated in Section 2.2. Although great progress has been
made for the permutation problem in recent years, few
methods have been proposed with good separation results in
a highly reverberant environment.

To improve the separation performance in high rever-
beration, this paper proposes a method which combines
beamforming and blind source separation. Assuming the
sound source locations are known, the proposed method
employs beamforming as a preprocessor for blind source
separation. With beamforming reducing reverberation and
enhancing signal-to-noise ratio, blind source separation
works well in reverberant environments, and thus the
combined method performs better than using either of the
two methods alone. Since the proposed method requires
the knowledge of source locations for beamforming, it is a
semiblind method. However, the source locations may be
estimated with an array sound source localization algorithm
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or using other approaches, which is beyond the scope of this
paper [18, 19].

In fact, the relationship between blind source separation
and beamforming has been intensively investigated in recent
years, and adaptive beamforming is commonly used to
explain the physical principle of convolutive BSS [15, 20]. In
addition, many approaches have been presented that com-
bine both techniques. Some of these combined approaches
are aimed at resolving the permutation ambiguity inherent
in frequency-domain BSS [12, 21], whereas other approaches
utilize beamforming to provide a good initialization for BSS
or to accelerate its convergence [22-24]. So far as we know,
there were no systematically studies on a direct application
of the BSS-beamforming combination to high reverberant
environments.

The rest of paper is organized as follows. Frequency-
domain BSS and its circular convolution approximation
problem are introduced in Section 2. The proposed method
combining BSS and beamforming is presented in Section 3.
Section 4 gives experimental results in various reverberant
environments. Finally conclusions are drawn in Section 5.

2. Frequency-Domain BSS and
Its Fundamental Problem

2.1. Frequency-Domain BSS. Supposing N sources and M
sensors in a real-world acoustic scenario, the source vector
s(n) = [sl(n),...,sN(n)]T, and the observed vector x(n) =
[x1(n),...,xm(n)]T, the mixing channels can be modeled
by FIR filters of length P, the convolutive mixing process is
formulated as

P-1
x(n) = H(n) % s(n) = > H(p)s(n— p), (1)
p=0

where H(n) is a sequence of M X N matrices containing the
impulse responses of the mixing channels, and the operator
“x” denotes matrix convolution. For separation, we use FIR
filters of length L and obtain estimated source signal vector

y(n) = [y(n),..., yn(m)]" by
L-1
y(n) = W(n) * x(n) = > W(hx(n - 1), 2)
1=0

where W(n) is a sequence of N X M matrices containing
the unmixing filters, and the operator “*” denotes matrix
convolution.

The unmixing network W(n) can be obtained by a
frequency-domain BSS approach. After transforming the
signals to the time-frequency domain using blockwise L-
point short-time Fourier transform (STFT), the convolution
becomes a multiplication

X(m, f) = H(f)S(m, f), (3)

where m is a decimated version of the time index n, X(m, f)
is the STFT of x(n), H(f) is the Fourier transforms of H(n),
and f € [fo,..., fi2] is the frequency.
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The frequency-domain BSS makes an assumption that
the time series at each bin are mutual independent. It is pos-
sible to separate them using complex-valued instantaneous
BSS algorithms such as FastICA [25] and Infomax [26, 27],
which are considered to be quite mature. However, there
are scaling and permutation ambiguities at each bin. This is
expressed as

Y(m, f) = W(f)X(m, f) = D()IL(f)S(m, ),  (4)

where Y(m, f) is the STFT of y(n), W(f) is the Fourier
transform of W(n); II(f) is a permutation matrix and
D(f) a scaling matrix, all at frequency f. The source
permutation and gain indeterminacy are problems inherent
in frequency-domain BSS. It is necessary to correct them
before transforming the signals back to the time domain.
Finally the unmixing network W(n) is obtained by
inverse Fourier transforming W(f), and the estimated
source y(n) is obtained by filtering x(n) through W (n). The
workflow of the frequency-domain BSS is shown in Figure 1.

2.2. Circular Convolution Approximation Problem. Besides
permutation and scaling ambiguities, another problem also
affects the performance of frequency-domain BSS: the
STFT circular convolution approximation. In the frequency
domain, the convolutive mixture is reduced to an instan-
taneous mixture for each frequency bin. The model (3) is
simple but generates two errors for short STFT analysis frame
length L [16].

(1) The STFT covers only L samples of the impulse
response H(n), not its entirety.

(2) Equation (3) is only an approximation since it implies
a circular convolution but not a linear convolution in
the time domain; it is correct only when the mixing
filter length P is short compared to L.

As a result, it is necessary to work with L > P to ensure
the accuracy of (3). However in that case, the instantaneous
separation performance is saturated before reaching a suffi-
cient separation, because decreased time resolution for STFT
and fewer data available in each frequency bin will collapse
the independence assumption and deteriorate instantaneous
separation [15, 17].

In a nutshell, short frames make the conversion to
instantaneous mixture incomplete, while long ones disturb
the separation. This contradiction is even severer in highly
reverberant environments, where the mixing filters are much
longer than STFT analysis frame. This is the reason for
the poor performance of frequency-domain BSS in high
reverberation.

It is necessary to work with L > P to ensure the
accuracy of (3). In this case, however, long frames worsen
time resolution in the time-frequency domain and decrease
the number of samples in each bin. As the result, the
independence of source signals decreases greatly at some
bins, leading to deteriorated instantaneous BSS and hence
significantly reducing convolutive BSS performance in high
reverberation [15, 17]. In other words, short frames make the

conversion to instantaneous mixture incomplete, while long
ones disturb the separation. The conflict becomes severer in
highly reverberant environments and lead to the degraded
performance.

3. Combined Separation Method

Based on the analysis above, the circular convolution
approximation problem seriously degrades the separation
performance in high reverberation. However, the problem
may be mitigated if the mixing filters become shorter. With
directive response enhancing desired direction and suppress
unwanted ones, beamforming can deflates the reflected
paths and hence shorten the mixing filter indirectly. It thus
may help compensate for the deficiency of blind source
separation. From another point of view, beamforming makes
primary use of spatial information while blind source sep-
aration utilizes statistical information contained in signals.
Integrating both pieces of information should help get
better separation results, just like the way our ears separate
audio signal [28]. In summary, if we use beamforming as
a preprocessor for blind source separation, at least three
advantages can be achieved.

(1) The interfering residuals due to reverberation after
beamforming are further reduced by blind source
separation.

(2) The poor separation performance of blind source
separation in reverberant environments is compen-
sated for by beamforming, which suppresses the
reflected paths and shortens the mixing filters;

(3) Beamformer enhances the source in its path and
suppresses the ones outside. It thus enhances signal-
to-noise ratio and provides a cleaner output for blind
source separation to process.

Assuming source directions are known, we propose a
combined method as illustrated in Figure 2. For N sources
received by an array of M microphones, N beams are formed
towards them, respectively. Then the N beamformed outputs
are fed to blind separation to recover the N sources. The
workflow of the proposed method is shown in Figure 3.

The mixing stage is expressed as

u(n) = H(n) * s(n), (5)
where s(n) = [s1(n),...,sn(n)]" is the source vector, u(n) =
[ui(n),...,up(n)]" is the observed vector, H(n) is a
sequence of M X N matrices containing the impulse
responses of the mixing channels, and the operator “x”
denotes matrix convolution.

The beamforming stage is expressed as

x(n) = B(n) % u(n) = B(n) * H(n) * s(n) = F(n) * s(n),

(6)
where x(n) = [x1(n),...,xx(n)]" is the beamforming output
vector, u(n) = [uy(n),...,up(n)]T is the observed vector,

B(n) is a sequence of N X M matrices containing the impulse
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FiGure 2: Illustration of the proposed method.

responses of beamformer, F(n) is the global impulse response
by combining H(n) and B(n), and the operator “*” denotes
matrix convolution.

The blind source separation stage is expressed as

y(n) = W(n) * x(n) = W(n) * F(n) * s(n), (7)
where y(n) = [yl(n),...,yN(n)]T is the estimated source
signal vector, W(n) is a sequence of N X N matrices
containing the unmixing filters, and the operator “x”
denotes matrix convolution.

It can be seen from (5)—(7) that, with beamforming
reducing reverberation and enhancing signal-to-noise ratio,
the combined method is able to replace the original mix-
ing network H(n), which results from the room impulse
response, with a new mixing network F(n), which is easier
to separate.

Regarding the implementation detail, two techniques
are employed: superdirective beamformer, which can fully
exert the dereverberation and noise reduction ability of
a microphone array, and frequency-domain blind source
separation, which is well known for its fast convergence and
small computation. These two issues will be addressed as
below.

3.1. Beamforming. Beamformer can be implemented as a
fixed one or an adaptive one. Compared to fixed beamform-
ing, an adaptive method is not appropriate for the combined
method. The reasons are as follows.

(1) An adaptive beamformer obtains directive response
mainly by analyzing the statistical information con-
tained in the array data, not by utilizing the spatial
information directly. Its essence is similar to that

of convolutive blind source separation [15]. Cascad-
ing them together is equivalent to using the same
techniques repeatedly, hence contributing little to
performance improvement.

(2) An adaptive beamformer generally adapts its weights
during breaks in the target signal [1]. However, it
is a challenge to predict signal breaks when several
people are talking concurrently. This significantly
limits the applicability of adaptive beamforming to
source separation.

In contrast, a fixed beamformer, which relies mainly on
spatial information, does not have such disadvantages. It is
data-independent and more stable. Given a look direction,
the directive response is obtained for all scenarios. Thus a
fixed beamformer is preferred in the proposed method.

Fixed beamforming achieves a directional response by
coherently summing signals from multiple sensors based on
a model of the wavefront from acoustic sources. The most
common beamformer is the delay-and-sum one, however,
a filter-and-sum beamformer has superdirectivity response
with optimized weights. Its principle is given in Figure 4.
The beamformer produces a weighted sum of signals from
M sensors to enhance the target direction [29]. A frequency-
domain method is employed to design the superdirective
beamformer.

Suppose a beamformer model with a target source r(t)
and background noise n(t), the components received by the
Ith sensor is u;(t) = ri(t)+mn(t) in the time domain. Similarly,
in the frequency domain, the /th sensor output is u(f) =
r1(f) + m(f). The array output in the frequency domain is

x(f) = Db (Hu(f) = b (fu(f), (8)
I=1

where b(f) = [bl(f),...,bM(f)]T is the beamforming
weight vector composed of beamforming weights from each
sensor, and u(f) = [ul(f),...,uM(f)]T is the output
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F1GURE 4: Principle of a filter-and-sum beamformer.

vector composed of outputs from each sensor, and (-)"
denotes conjugate transpose. The b(f) depends on the array
geometry and source directivity, as well as the array output
optimization criterion such as a signal-to-noise ratio (SNR)
gain criterion [29-31].

Suppose r(f) = [rl(f),...,rM(f)]T is the source vector
which is composed of the target source signals from the
sensors, and n(f) is the noise vector which is composed
of the spatial diffuse noises from the sensors. The array
gain is a measure of the improvement in signal-to-noise
ratio. It is defined as the ratio of the SNR at the output
of the beamforming array to the SNR at a single reference
microphone. For development of the theory, the reference
SNR is defined, as in [29], to be the ratio of average
signal power spectral densities over the microphone array,
o2(f) = E{rH(f)r(f)}/M, to the average noise-power
spectral density over the array, o2(f) = E{n''(f)n(f)}/M.
By derivation, the array gain at frequency f is expressed as

VIR ()
G = B R (1)B(F)

where R..(f) = r(f)rf(f)/o2(f) is the normalized sig-
nal cross-power spectral density matrix, and R,,(f) =
n(f)nf(f)/o2(f) is the normalized noise cross-power spec-
tral density matrix. Provided R, ( f) is nonsingular, the array
gain is maximized with the weight vector

bopt (f) = R (f)r(f). (10)

The terms R,,(f) and r(f) in (10) depend on the array
geometry and the target source direction. For a circular array,
the calculation of R,,,(f) and r(f) is given as follows [2].

Figure 5 shows an M-element circular array with a radius
of r and a target source coming from the direction (0, ¢).
The elements are equally spaced around the circumference,
and their positions, which are determined from the layout of
array, are given in the matrix form as

)

Vi Yn
v=| s (11)
VXM V}’M

The source vector r( f) can be derived as
exp(—jk(sin@ £ COS¢ - vy, +sin0 - sing - vyl))

r(f) = :
exp(—jk(sin@ - COS¢ - Yy, +sin6 - sing - vyM>>
(12)

Target g (0,¢)

Circular array

X

FiGure 5: Circular array geometry.

where k = 2n¢/f is the wave number, and c¢ is the sound
velocity. And the normalized noise cross-power spectral
density matrix Ry, (f) is expressed as

Sin(kPmlrnz)
kpmlmz

1, mp; = mp,

(Rnn(f))mlmz = o

, My F my, (13)

where (Run(f))pm, is the (mi,m;) entry of the matrix
Ruu(f),mi,my = 1,...,M, k is the wave number, p,,m, is
the distance between two microphones m; and m,

2
Pmym; = \/(mel - mez)2 + (V}’ml - V}’mZ) : (14)

After calculating the beamforming vector by (10), (12)
and (13) at each frequency bin, the time-domain beamform-
ing filter b(n) is obtained by inverse Fourier transforming
bopt ().

The procedure above is to design a beamformer with only
one target direction. For N sources with known directions,
N beams are designed pointing at them, respectively. Finally,
supposing the observed vector at M sensors is u(n) =
[ur(n),...,um(n)]", the multiple beamforming is formu-
lated as

Q-1
x(n) = B(n) xu(n) = > B(q)u(n—q),  (15)
q=0

where B(n) is a sequence of N X M matrices containing the
impulse responses of the beamformer, Q is length of the
beamforming filter, and x(n) = [x1(n),...,xn(n)]T is the
beamformed output vector.

3.2. Frequency-Domain Blind Source Separation. As dis-
cussed before, the workflow of frequency-domain blind
source separation is shown in Figure 1. Three realization
details will be addressed: instantaneous BSS, permutation
alignment, and scaling correction.
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FIGURE 6: Simulated room environment with a microphone array
beamformer.

3.2.1. Instantaneous BSS. After decomposing time-domain
convolutive mixing into frequency-domain instantaneous
mixing, it is possible to perform separation at each frequency
bin with a complex-valued instantaneous BSS algorithm.
Here we use Scaled Infomax algorithm, which is not sensitive
to initial values, and is able to converge to the optimal
solution within 100 iterations [32].

3.2.2. Permutation Alignment. Permutation ambiguity inher-
ent in frequency-domain BSS is a challenge in the combined
method. Generally, there are two approaches to cope with
the permutation problem. One is to exploit the dependence
of separated signals across frequencies. Another is to exploit
the position information of sources: the directivity pattern
of the mixing/unmixing matrix provides a good reference for
permutation alignment. However, in the combined method,
the directivity information contained in the mixing matrix
does not exist any longer after beamforming. Even if the
source positions are known, they are not much helpful for
permutation alignment. Consequently, what we can use for
permutation is merely the first reference: the interfrequency
dependence of separated signals. In [33] we have proposed a
permutation alignment approach with good results, which is
based on an interfrequency dependence measure: the powers
of separated signals. Its principle is briefly given as below.

An interfrequency dependence measure, the correlation
coefficient of separated signal power ratios, exhibits a clearer
interfrequency dependence among all frequencies. Suppose
the M X N mixing network at frequency f can be estimated
from the separation network by

A(f) =WHf) =lai(f),-.ran(f)], (16)

where a;(f) is the ith column vector of A(f), ()" denotes
inversion of a square matrix or pseudoinversion of a
rectangular matrix. The power ratio, which measures the
dominance of the ith separated signal in the observations at
frequency f, is defined, as in [11], to be

lla:(f) Yi(m, £)II°
S llae(f) Ye(m, I

where the denominator is the total power of the observed
signals X (m, f), the numerator is the power of the ith

vl (m) = (17)
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separated signal, and Y;(m, f) is the ith component of the
separated signal Y(m, f), thatis, Y(m, f) = [Yi(m, f),...,
YN(m,f)]T. Being in the range [0, 1], (17) is close to 1 when
the ith separated signal is dominant, and close to 0 when
others are dominant. The power ratio measure can clearly
exhibit the signal activity due to the sparsity of speech signals.

The correlation coefficient of signal power ratios can
be used for measuring interfrequency dependence and
solving the permutation problem. The normalized binwise
correlation coefficient between two power ratio sequences

vlfl (m) and v{z(m) is defined as

gy riU ) —wi(f)ws ()
POf) = 9

where i and j are indices of two separated channels, f; and f,

are two frequencies, r;;( f1, f») = E{v,flvjfz}, ui(f) = E] 1,

oi(f) =+E {(v,f ¥y - Ui (f) are, respectively, the correlation,
mean, and standard deviation at time m (the time index m
is omitted for clarity). Note that E{-} denotes expectation.
Being in the range [—1, 1], (18) tends to be high if the output
channels i and j originate from the same source and low if
they represent different sources. This property will be used
for aligning the permutation.

Reference [33] has proposed a permutation alignment
approach based on the power ratio measure. Binwise per-
mutation alignment is applied first across all frequency bins,
using the correlation of separated signal powers; then the full
frequency band is partitioned into small regions based on the
binwise permutation alignment result. Finally, regionwise
permutation alignment is performed, which can prevent the
spreading of the misalignment at isolated frequency bins to
others and thus improves permutation. This permutation
alignment approach is employed in the proposed method.

3.2.3. Scaling Correction. The scaling indeterminacy can be
resolved relatively easily by using the Minimal Distortion
Principle [34]:

W(f) = diag(W," () - W, (f), (19)

where W,(f) is W(f) after permutation correction and
Ws(f) is the one after scaling correction, ()"! denotes
inversion of a square matrix or pseudoinversion of a
rectangular matrix; diag(-) retains only the main diagonal
components of the matrix.

3.3. Computational Complexity Analysis. The coefficients
of the beamformer filters can be calculated off line and
stored previously. Thus compared a BSS-only method, the
combined method just increases the number of calculations
slightly. The computation of the combined method is
composed of three parts: beamforming filtering, separation
filter estimation, and unmixing filtering. Suppose there are
N sources and M microphones, the length of the input
signals is T, the number of iterations for Scaled Infomax
algorithm is iter, the filter length of the beamformer is Q,
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FiGurg 7: Comparison of the impulse responses before and after beamforming.

TaBLE 1: Computation cost of the proposed algorithm in terms of
complex-valued multiplication.

Algorithm block Computations
Beamforming filtering 2MNT -log,L
Separation filter estimation 4AN?T - (iter + 6)
Unmixing filtering 2N?T - log,L

and the length of the unmixing filter is L. The beamforming
filtering and unmixing filtering can be implemented by
FFT. The computation cost of the proposed algorithm is
summarized in Table 1. (The computation cost of separation
filter estimation is given in [33].) For convenience, only
complex-valued multiplication operations are considered.

To summarize, the total computation cost for the MT
input data points is

Cotal = 2NT - (Mlong + N(Ziter +12+ 10g2L>>. (20)

The average computation for each sample time with M
input data points is

cog = 2N - (Mlog,Q + N (2iter + 12 +log,L)).  (21)

We think the result is quite acceptable. For 4 sources
recorded by a 16-element microphone array, iter = 100,
Q = L = 2048, the average computation involves about
7200 complex-valued multiplications for each sample time
(with 16 sample points). Thus, in terms of computational
complexity, the proposed algorithm is promising for real-
time applications.

4. Experiment Results and Analysis

We evaluate the performance of the proposed method in
simulated experiments in two parts. The first part verifies the
dereverberation performance of beamforming. The second
investigates the performance of the proposed method in

various reverberant conditions, and compares it with a BSS-
only method and a beamforming-only one.

The implementation detail of the algorithm is as follows.
For blind source separation, the Tukey window is used in
STFT, with a shift size of 1/4 window length. The iteration
number of instantaneous Scaled Infomax algorithm is 100.
The processing bandwidth is between 100 and 3750 Hz
(sampling rate being 8kHz). The STFT frame size will
vary according to different experimental conditions. For
beamforming, a circular microphone array is used to design
the beamformer with the filter length 2048, the array size will
vary according to different experimental conditions.

4.1. Simulation Environment and Evaluation Measures. The
simulation environment is shown in Figure 6, the room size
is 7m X 5m X 3m, all sources and microphones are 1.5m
high. The room impulse response was obtained by using
the image method [35], and the reverberation time was
controlled by varying the absorption coefficient of the wall.

The separation performance is measured by signal-to-
interference ratio (SIR) in dB.

Before beamforming, the input SIR of the Jth channel is

max ([|hye(m)| )

S ()P = maxi ([ (m)]*)”
(22)

SIRIN; = 10log,

where M is the total number of microphones, || - 1> denotes
the norm-2 operation, hji(n) is an element of the mixing
system H (1) (see (1)).

After beamforming, the SIR of the Jth channel is

max; (|| fie(n)|[*)

S P = maxe (1] fr(m|)”
(23)

SIRBM; = 10log,,,

where N is the total number of beams, fjx(n) is an element of
F(n) = B(n) x H(n), the combined impulse response matrix
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F1GURE 9: Simulated room environment with four microphones.

from the mixing system H(#) and the bamforming system
B(n).

After blind source separation, the SIR of the Jth channel
is

maxg ([|gre(m)|*)

S gl = max (Jlgi(m)[[*)
(24)

SIROUT; = 10log,,

Output SIR (dB)

2048 3072 4096 5120

STFT analysis frame size

2 . .
0 512 1024

—6— 2 X 2 case
—0— 4 X 4 case

FiGURE 10: Performance of BSS (RTg = 300 ms) versus STFT frame
size.

where N is the total number of sources, gjx(#) is an element
of G(n) = W(n) * B(n) % H(n), the overall impulse response
matrix by combining the mixing system, beamforming, and
blind source separation.
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FIGURE 11: Performance comparison between the combined method, the BSS-only method, and the beamforming-only method in different

reverberant conditions.

4.2. Dereverberation Experiment. The proposed algorithm
is used for separating three sources using a 16-element
circular microphone array with a radius of 0.2m. The
environment is shown in Figure 6. The simulated room
reverberation time is RTg¢y = 300ms, where RTgy is the
time required for the sound level to decrease by 60dB.
This is a medium reverberant condition. One typical room
impulse response is shown in Figure 7(a). Three source
locations (2, 4, 6) are used, and the sources are two
male speeches and one female speech of 8 seconds each.
Three beams are formed by the microphone array point-
ing at the three sources, respectively. Impulse responses
associated with the global transfer function of beamform-
ing is shown in Figure 8, which are calculated from the

impulse responses of mixing filters and beamforming filters
using

F(n) = B(n) * H(n). (25)

It can be seen that the diagonal components in Figure 8
are superior to off-diagonal ones. This implies that the target
sources are dominant in the outputs. To demonstrate the
dereverberation performance of beamforming, Figure 8(a)
is enlarged in Figure 7(b) and compared with the original
impulse response in Figure 7(a). Obviously, the mixing filter
becomes shorter after beamforming, and the reverberation
becomes smaller. This indicates that dereverberation is
achieved. So far, the two advantages of beamforming, dere-
verberation and noise reduction, are observed as expected.
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bined method over the BSS-only method in different reverberant
environments.

Thus the new mixing network F(n) should be easier to
separate than the original mixing network. In this experi-
ment, the average input SIR is SIRIN = —2.8dB, and the
output one, enhanced by beamforming, is SIRBM = 3.3 dB.
Setting the STFT frame size at 2048 and applying BSS to
the beamformed signals, we get an average output SIR of
the combined method of SIROUT = 16.3dB, a 19.1dB
improvement over the input: 6.1 dB improvement at the
beamforming stage, and 13 dB further improvement at the
BSS stage.

4.3. Experiments Reverberant Environments. Three exper-
iments are conducted to investigate the performance of
the proposed method and compare it with the BSS-only
and the beamforming-only method. The first examines the
performance of the BSS-only method in medium reverbera-
tion with different STFT frame sizes. The second compares
the performance of the proposed method and the other
two methods in various reverberant conditions. The third
examines the performance of the proposed method with
various microphone array sizes.

4.3.1. BSS with Different STFT Frame Size. The simulation
environment for the BSS-only method shown in Figure 9
is the same as Figure 6 except that the microphone array
is replaced by four linearly arranged microphones. The
distance between any two adjacent microphones is 6 cm.
The reverberation time is RTgp = 300ms. One 2 x 2 (2
sources and 2 microphones) and one 4 X 4 (4 sources and
4 microphones) cases were simulated. For the 2 X 2 case,
microphones B, C, and source locations (2, 6) are used. The
sources are one male speech and one female speech of 8
seconds each. For the 4 X 4 case, all four microphones and
four source locations (1, 2, 4, 6) are used. The sources are
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two male speeches and two female speeches of 8 seconds
each. Blind source separation with different STFT frame
size ranging from 512 to 5120 is tested. The output SIR of
blind source separation is calculated in a manner similar
to the one presented in Section 4.1. The simulation results
are shown in Figure 10. The performance in the 2 X 2 case
is always better than that in the 4 X 4 case since it is
easier to separate 2 sources than 4 sources. In both 2 x 2
and 4 X 4 cases, the separation performance peaks at the
STFT frame size of 2048. This verifies the early discussion
about the dilemma in determining the STFT frame size:
the separation performance is saturated before reaching a
sufficient performance level.

Obviously, an optimal STFT frame size may exist for a
specific reverberation. However, due to complex acoustical
environments and varieties of source signals, it is difficult to
determine this value precisely. How to choose an appropriate
frame length may be a topic of our future research. Generally,
1024 or 2048 can be used as a common frame length. Here
we use an analysis frame length of 2048 for all reverberant
conditions in the remaining experiments.

4.3.2. Performance Comparison among Three Methods. The
performances of the combined method, the BSS-only
method, and the beamforming-only method are compared
in different reverberant environments. The beamforming-
only method is equal to the first processing stage of the
combined method. The simulation environment of the
combined method is shown in Figure 6 and the BSS-only
method in Figure 9. For the combined method, a 16-element
microphone array with a radius of 0.2m is used. Various
combinations of source locations are tested (2 sources and
4 sources). The sources are two male speeches and two
female speeches of 8 seconds each. RTg ranges from 100 ms
to 700 ms in increments of 200 ms. The average input SIR
does not vary significantly with the reverberation time:
it is about 0dB for 2 sources, and —5dB for 4 sources.
For all three methods, the STFT frame size is set at 2048.
The separation results are shown in Figure 11, with each
panel depicting the output SIRs of the three methods for
one source combination. It’s observed in Figure 11 that,
for each source configurations, the output SIRs of all
methods decrease with increasing reverberation; however,
the combined method always outperforms the other two.
Beamforming performs worst among the three methods,
however, it provides a good preprocessing result, and hence
the combined method works better than the BSS-only
method.

It is interesting to investigate how big an improvement
one can obtain by the use of beamforming preprocessing
in different reverberation. To measure the contribution of
this preprocessing, we define the relative improvement of the
combined method over the BSS-only method as

I.— 1y

RI = <= % 100%, (26)
I

where

I = SIROUT - SIRIN, (27)
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F1GUrE 13: Performance of the proposed method under RTs

with the subscripts (-), and (-), standing for the BSS-
only method and the combined method, respectively. We
calculate the relative performance improvement for the
4 separation scenarios listed in Figure 11 and show the
average result in Figure 12. As discussed previously, the
performance is improved by the combined method for
all reverberant conditions. However, it is also observed
in Figure 12 that the improvement in low reverberation
is not as large as in medium and high reverberation.
That is, the use of beamforming in low reverberation is
not as beneficial as it would be for high reverberation.
The reason is that, BSS can work well alone when the
circular convolution approximation problem is not evident
in low reverberation, and thus the contribution of pre-
processing is small. On the other hand, when the circular
convolution approximation problem become severe in high
reverberation, the contribution of preprocessing becomes
crucial and hence the separation performance is improved
significantly.

The experiments in this part illustrate the superiority
of the proposed method over using beamforming or blind
source separation alone. The comparison between proposed
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= 300 ms with different microphone array configurations.

method with other hybrid methods in different reverber-
ant conditions will be further investigated in our future
research.

4.3.3. Performance of the Combined Method with Differ-
ent Microphone Array Size. Since the performance of a
beamformer is significantly affected by the array size, it is
reasonable to ask how much the array size will impact the
performance of the proposed method. Some experiments
are carried out on this topic. The simulation environment
is shown in Figure 6. Three microphone arrays are used
to design the beamformer: an 8-element array with a
radius of 0.1 m, a 16-element array with a radius of 0.2m,
and a 24-element array with a radius of 0.2m. Various
combinations of source locations are tested (2 sources and
4 sources). The sources are two male speeches and two
female speeches of 8 seconds each. The STFT frame size
is set at 2048. The performance of the proposed combined
method under RTgy of 300 ms (medium reverberation) and
700 ms (high reverberation) is shown in Figures 13 and 14,
respectively. It can be seen that, for all source configurations,
the separation performance improves with increasing array
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FIGURE 14: Performance of the proposed method under RT¢

size. For example, in the two bottom panels of Figure 14,
the output SIR with an 8-element array is only about
2dB, but rises to about 6 dB with a 24-element array. A
higher output SIR can be anticipated for larger array sizes.
However, the better performance is obtained at the cost of
high computation and more hardware associated with more
microphones. Thus, a tradeoft should be considered in actual
applications.

5. Conclusion

Given the poor performance of blind source separation in
high reverberation, the paper proposes a method which
combines beamforming and blind source separation. Using
superdirective beamforming as a preprocessor of frequency-
domain blind source separation, the combined method is
able to integrates the advantages of both techniques and
complements the weakness of them alone. Simulation in
different conditions (RTgy = 100 ms—700 ms) illustrates the
superiority of the proposed method over using beamforming
or blind source separation alone; and the performance
improvement increases with the microphone array size. The
proposed method is promising for real-time processing with
its high computational efficiency.
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