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We give a brief discussion on the amplitude and frequency variation rates of the sinusoid representation of signals. In particular,
we derive three inequalities that show that these rates are upper bounded by the 2nd and 4th spectral moments, which, in a loose
sense, indicates that every complex signal with narrow short-time bandwidths is a slowly varying sinusoid. Further discussions are
given to show how this result helps providing extra insights into relevant signal processing techniques.

1. Introduction

Sinusoid representations of signals have been widely used in
various signal processing areas including speech [1], music
[2, 3], telecommunications [4]. Given any complex variable
x = x(t), its sinusoid representation is

al) = (1), o(f) = Arg%,

(1)

x(t) = a(t)el?®,

where the real variables a(t) and ¢(t) are the amplitude
and phase angle (or phase for short) of x. By this definition
every nonzero complex variable has a unique sinusoid
representation, up to the polarization of a and 2k shift of ¢,
k € Z.In practice, these ambiguities are relieved by assuming
that a and ¢ be continuous and smooth [5].

The parameter variations considered in this paper are the
first and second derivatives of a, and the second derivative of
@, which, respectively, characterize amplitude and frequency
modulations. We say that a sinusoid representation is slowly
varying if these derivatives have small absolute values. Slowly
varying sinusoids include many signals in speech, music, and
telecommunications that we technically handle as sinusoids
[4, 6, 7], and are the central elements of sinusoid modelling.

Spectral properties of slowly varying sinusoids in terms
of parameter variation have been well studied, and have

been compared to those of stationary sinusoids [8—10]. One
result [8] relates the 2nd moment of the energy spectrum
of a time-varying sinusoid to its amplitude and phase
variations by

J(W—w0)2|X(w)|2dw

_ J((‘;((:)))2+ ((p'(t)—wo)z) (bt

where X (w) = (277) " [ x(t)e~7¢!dt is the Fourier transform
of x, and wy is a real constant. Given the Parseval’s equation
[ 1X(w)Pdw = [ a®(t)dt = ||x||*, we divide both sides of (2)
by lx|I* and get

2)

[ (0 — wo)*|1X(w)]*dw
[ 1X(w)|*dw

[(@ @)/a) + (¢'(t) — wo)*) ()t
[a2(t)dt '

(3)

We introduce an operator e, where e stands for the
operand, to simply if expressions like (3) that will appear all
through this paper. Given x(t) = a(t)e/?) € C?(—o00,+0)



and its Fourier transform X (w), we define the operator 7o,
which maps a real function of ¢ or w to a real number, by

| f(t) - a*(t)dt

2
IE4]

2
 Fa), = [ F(w) - |X§w)| dw
Il x|l

~

(1), =

>

where [lx|% = Jaz(t)dt _ J X () 2dw,
(4)

~o, is interpreted as linear averaging weighted by the energy
density of x in time or frequency domain, depending on the
operand. For example, t, and @, are the time and spectral
centroids of x, respectively. Using this notation, (3) can be
written as

T NN
(0 wp) = (%) (¢ (0) - wo)?, 5)

where we have omitted the subscript x from o . At

Wy = Wy, the term (w — wo)zx reaches its minimum whose
square root defines the L?-bandwidth of x (likewise we call

(lw — Ex\l’x)l/p the LP-bandwidth of x at wy, as it is the | X |*-
weighted LP-norm of w — @,). According to (5), the L*-
bandwidth of x is upper-bounded if a’/a and the range of
¢’ are. However, as the latter may grow very large over a long
time span, (5) does not imply that slowly varying sinusoids
have concentrated spectra, as stationary sinusoids do.

On the other hand, if ¢’ is small, then ¢" does not vary
much over a short time. In this case, (2) guarantees that
x has concentrated short-time Fourier transform (STFT),
provided that this is calculated with a low-pass window
function w(t). In fact, using (2), it is trivial to show that

I (@ — w0)? 1 X, (@) *de < sup('™2) J (t — to) 2 (w(t)a(t)) dt

" j (w(t)a(t))'2dt,
)

for any fixed ty, where X,,(w) is the Fourier transform of xw
(i.e., STFT of x with window w) and wy = ¢’ (). We call the
bandwidth of xw the short-time bandwidth of x with window
w. Figure 1 illustrates the concept of short-time bandwidth
applied to a linear chirp in the time-frequency plane. The
solid line depicts the angular frequency of the chirp as a
function of time. Its short-time spectra are evaluated using
two rectangular windows, w; and w,, whose durations are
marked along the time axis. Although the linear chirp is
not band limited, each window captures a band-limited
portion of it. The frequency content captured by window w,
distributes uniformly over (w;;, wi2) while that by window
w, distributes uniformly over (w21, ws2). If both windows
contain plenty periods of the sinusoid, then the bandwidths
of the two spectra, bw; and bw,, are roughly proportional
to wi; — wy and wy; — w,1, which are in turn proportional
to the length of w; and w, and the chirp rate of the
sinusoid.
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FIGURE 1: Measuring short-time bandwidth with different win-
dows.

A loosely related result is given in [9] by direct compar-
ison of the Fourier transforms of xw and yw where y =
agel(#0+@ot) is a stationary sinusoid, with ay = a(t), wy =
¢’ (to) and @9 = ¢(ty), and w is centred at f,. It is shown that
their difference is upper bounded by

Xu(@) = Yo(@) < supl g | - % [ | = t0)*w]d
@)
+sup|a’| - Jl(t— to)wldt,

where Y, (w) is the Fourier transform of yw. Since Y,, is
concentrated at wg, (7) shows that X, is also concentrated at
wo as long as |¢”’| and |a’| remain small. Mallet [9] used the
term windowed Fourier ridge to describe this time-frequency
distribution as it involves a spectral peak that evolves in time.
We call it spectral ridge for short.

Despite all these studies on sinusoid representations, one
question has been overlooked: what type of signals can be
modelled as slowly varying sinusoids? From the results above,
it is obvious that signals with wide short-time bandwidths,
such as wide-band noise, cannot be slowly varying sinusoids.
In this paper, we consider the inverse: do narrow short-
time bandwidths always imply a slowly varying sinusoid?
In other words, does a concentrated short-time spectrum
necessarily set certain upper bounds on a’ and ¢”? The
concentration of a spectrum is measured by the moments
of the spectral energy distribution (i.e., normalized energy
spectrum), or spectral moments for short. The nth spectral
moment of x with centre wy is given by (w — wy)", and can
be interpreted as the biased L"-bandwidth, as it becomes
the L"*-bandwidth if wy = w,. From (5), it is obvious that

(@ — wo)*, upper bounds the average amplitude derivative
and average frequency departure from wy. However, the
2nd moment is not enough to set an upper bound on
¢". In what follows, we provide a new result that employs
higher spectral moments to upper bound ¢" as well as a’
and a”.
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2. Parameter Variation Rate Upper Bounds in
Terms of 2nd and 4th Spectral Moments

High spectral moments are less often used than the 2nd
moment. Notably, [10] employs an operator approach that
relates an arbitrary spectral moment to the derivatives
of amplitude and phase. In particular, regarding the 4th
moment, we have

a’(H)\>
() )

+ (2((p’(t) — wp) t:((:)) + (p”(t))

(0—wp)* = ((q)’(t) ~ w)’
(8)

2
>

where wy can take arbitrary value. From (5) and (8) we can
prove that

a’(t) a O\ et
a(t) +<a(t)) o]

<\2(w = wo)* + 2(w — wy)?

Equation (9) states that the average parameter variation rates
are upper bounded by the 2nd and 4th spectral moments.
Two bounds respectively regarding amplitude and phase can
also be obtained as

)

Ta’ (| (d®O\ .
alt) +(a(t)) <V(w-w)' +(w-w), (10
Wﬁ\/mﬂwfwo)% (11)

A detailed proof of (9)~(11) is given in the appendix.
Identities hold in these inequalities if specific couplings exist
between amplitude and phase variations (see the appendix).
From physics’ point of view, (9)~(11) states that finite
2nd and 4th spectral moments can only “contain” limited
amount of modulation of amplitude and frequency; to allow
faster modulations one has to increase the spectral moments.
The 2nd and 4th spectral moments are further connected
through the biased kurtosis at wy, defined as

L T\4 2
ulwp), = 2= 0) s Ixll” (12)

(@ — wo)’s

We call it “biased” because it is evaluated using an arbitrary
centre w, instead of the true centroid wy. (12) gives

o
V=00 = (@=wp), - Il k(o). (13)

The kurtosis is generally understood to represent the
“peakedness” of | X (w)|: a small kurtosis indicates bulky peak
and sharp tails; a large kurtosis indicates narrow peak and
heavy tails. In the context of (13), (9)~(11) states that the
for the same 2nd moment, more modulation is allowed by
larger kurtoses.

Inequalities (9)~(11) can also be directly applied to
windowed Fourier transforms by replacing a with wa where
w is the window function. As (wa)'/wa = w'/w + a'/a,
if (wa)" and w’ are upper bounded, then so is a’. (9)~
(11) indicate that the sinusoid representation of a signal
whose STFT forms a spectral ridge is necessarily slowly
varying in terms of short-time average of parameter variation
rates. This, together with our comments in the introduction,
completes the following statement.

A complex signal has slowly varying sinusoid representation
if and only if it has narrow short-time bandwidths. ()

Here we have changed the term “spectral moment” to
“bandwidth” considering that the LP-bandwidth is simply
the pth spectral moment computed with wy = @,. In
() the “only if” part comes from the previous studies we
summarized by (6) in the introduction; the “if” part comes
from our results (9)~(11). The plural form in “bandwidths”
refers to the values evaluated in both L?- and L*-norms
at different points over the whole duration. A quantitative
presentation of () is given by rewriting (6) and (10), (11)
employing a sliding window

(w - (P,(T))zw,x

L uN2 (14)
= sup(¢"7)(t = 1’0 + (%TT((?)Z((Z))) ) ’
(we(B)a(t)) +((wf<t)a<t>)’>2
wean |, Uwea® ), s

—

< \/(w (), (-9 (M),

—

[0 (O] =\ (@= 9/ ()", +(@=-¢' (D), . (16)

where w.(t) = w(t — 1) is the window function centred at 7.

We notice that ¢” is measured differently in (14) and
(16), giving a double meaning to “slowly varying frequency”
in (). For this reason, (%) does not actually give a pair
of strictly converse statements, and the equivalence between
slowly varying sinusoids and spectral ridges, as established
by (14)~(16), should only be considered qualitatively. Nev-
ertheless, by these results we have partially answered the
question of what kind of signals can be modelled as slowly
varying sinusoids. In the rest of this paper, we focus on
() as a guideline and see how it relates to various sinusoid
modelling practices.

3. Discussions and Conclusion

3.1. Combining Sinusoids with Close Frequencies. Beating
[11] is a well known effect observed from adding two
sinusoids with similar frequencies, in which they “melt” into
a single tone with additional modulation. This phenomenon
can be easily explained by (): as slowly varying sinusoids
have short-time spectral energy concentrated near their
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FIGURE 2: Spectrograms of atomic synthesis.

angular frequencies, if the frequencies are close, then their
sum also has concentrated short-time spectral energy, there-
fore is also a slowly varying sinusoid. Additional modulation
may be introduced as the result of a wider bandwidth
contributed by the small interval between the participant
frequencies. A quantitative proof of this argument is given
in [12], which leads to an additive re-estimation algorithm
for measuring parameters of slowly varying sinusoids.

Statement () also reveals the difficulty in separating
close sinusoids by the slow variation criterion alone. Since
there are infinite number of ways to divide a spectral ridge
into 2 or more subridges, and since all narrow ridges
are necessarily slowly varying sinusoids, there are infinite
number of separations that are slowly varying.

3.2. Atomic Decomposition. In time-frequency analysis, the
term atom refers to basic waveforms with concentrated
time and frequency localization into which a signal is
decomposed. Windowed sinusoid atoms have been used in
short-time Fourier and Gabor transforms [13], matching
pursuits [14], auditory scene analysis [15], and methods for
approximating time-varying sinusoids [16, 17]. An overlap-
add sinusoidal model was proposed [16] in the typical form
of atomic decomposition

x(t) = > wi(t)a;el 92min, (17)

1

where x is a slowly varying sinusoid, a;, fi and ¢; are
constants for given i, and w' is the overlap-add window
centred at the ith reference point, say t;. Adjacent windows
are arranged to have considerable overlap.

The use of overlapping stationary sinusoids to approx-
imate time-varying sinusoids is partially justified by ().
Since windowed sinusoid atoms have concentrated spectral
energy at the sinusoid frequencies, their sum will form a
narrow spectral ridge as long as frequencies of adjacent
atoms are close enough so that the result represents a slowly
varying sinusoid. It is also apparent that if there is a large
frequency jump between any adjacent atoms, then the sum

is no longer a slowly varying sinusoid, indicating that (17) is
not a suitable representation of x.

Figure 2 illustrates atomic synthesis with 3D spectro-
gram, in which the sinusoids are directly visible as ridges.
Images in the top row show the atoms in the time-frequency
plane, in which frequency bins are marked out by dashed
lines; images in the bottom row are the corresponding
spectrograms. Figure 2(a) shows a single atom whose spec-
trogram consists of a single peak. Figure 2(b) shows a
signal constructed from seven overlapping atoms without a
frequency jump between adjacent atoms. A spectral ridge
is clearly observed from its spectrogram. In Figure 2(c), we
include a frequency jump of three bins between the 4th and
5th atoms, which is enough to break the ridge in Figure 2(b)
into two separate ridges. Representing this signal as two
sinusoids will allow much slower modulation rates than a
single-sinusoid representation.

3.3. Real Sinusoids and Analytic Signals. A real slowly varying
sinusoid can always be written as the sum of two conjugate
complex slowly varying sinusoids. According to (), its
spectrogram is made up of two spectral ridges. To find
a slowly varying double-sinusoid representation for a real
sinusoid, one only needs to separate the spectrogram into
two parts, each containing one ridge. This separation is
generally not unique. If the two parts are conjugate to
each other, then the real part of the corresponding complex
sinusoids equals half of the real sinusoid.

Most of the real sinusoids we encounter in practice have
always-positive frequencies so that each spectral ridge lies in
a half plane on either side of the time axis. In this case, the
most natural separation is obtained by splitting the spectrum
along time axis, which leads to analytic complex sinusoids
[5]. We observe by () that the analytic representation is
slowly varying by design, if the concerned sinusoid does have
a slowly varying representation at all.

As an example, we illustrate the spectrogram of a real
linear chirp in Figure 3(a) and that of the corresponding
complex linear chirp in Figure 3(b). Amplitude values are
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(a)

(c)

F1GUrE 3: Two conjugate separations of a linear chirp.

warped to the 5th root to make small amplitudes visible.
Figure 3(c) shows a nearly analytic sinusoid obtained by
setting the spectrogram in Figure 3(a), rather than the
spectrum, to zero over negative frequencies. Although
Figure 3(b) and Figure 3(c) look different, both are slowly
varying complex sinusoids with the real part equalling half
the linear chirp in Figure 3(a).

3.4. More on Slowly Varying Real Sinusoids. Although the
analytic representation has almost guaranteed slow variation,
it is generally not the slowest varying, judged by the values of
a’ and ¢”'. In [18], we have measured the parameter variation
rates by

_(dw)? o
I= ﬂj a2(t) dt+ (1 _ﬂ)I‘P (t)"dt, (18)

where € (0, 1) is a balancing factor. A necessary condition

for a and ¢ to give the slowest varying representation, in the
sense of minimizing I in (18), is given as

o _a(a’(t) —a'(t)’
1-7 a(t)

where ¢ is the 4th-order derivative of ¢. This condition is
automatically satisfied regardless of # if a is exponential and
¢ is trinomial, but can be more constraining in other cases.
Nonunique representations of real sinusoids may cause
problems in evaluating sinusoid estimators. For example,
while a complex linear chirp defines a linear frequency for
its corresponding real chirp, the latter’s analytic counterpart
defines a nonlinear frequency which is no less convincing.
Fortunately, in [18] we have shown that the difference
between various sinusoid representations of the same real
signal is bounded by their parameter variation rates. Con-
sequently, if a signal has multiple slowly varying sinusoid
representations, then they are close to each other.

tang(t) + 9@ () =0,  (19)

3.5. Conclusion. In this paper, we have given three inequali-
ties that bound the parameter variation rates of the sinusoid
representation of a complex signal by its 2nd and 4th
spectral moments, indicating that every complex signal with
narrow short-time bandwidths is necessarily a slowly varying
sinusoid. This, together with several previous results, serves
to argue towards the equivalence between slowly varying
sinusoids and signals with narrow short-time bandwidths,
which, in return, provides extra insights into various aspects
of sinusoid modelling.

Appendix
A. Proof of (9)~(11)

All variables in the appendix, with the exception of w, are
functions of ¢, and all 7, operators are defined for the same
x. For simplicity, we omit ¢ from all function notations and
subscript x from operator o .

We first summarize without proof a few properties of the
~o operator defined by (4) as follows:

(1) (linearity) f +g = ?+§, H = a?, a€R,
(2) (monotonicity) f <g = f <3,
(3) (Cauchy-Schwarz) Wz < f2-g2 mz < f3,

and immediate results of (1) and (2):

(4) (triangular inequality) | f|—Igl < [f +g| < [fI+]gl,
(5)2fg < f2+g¢2

We quote (5) and (8) here as (A.1) and (A.2)

’

(0 — wy)” = (%)2 + (9" — wo)’,

- N 2 o ’ 2
(w — w0)4 - (((P, — wo)z _ %) + (2(gowo)a +¢H> )

a
(A.2)

From (A.2) using (3), we get

- rr 2 2( ’ ) ’ 2

(w—wy)* = ‘((p’—wo)z—% + w+<p” ,
(A.3)

in which identity holds if there exist C,, C;, |(¢" — a)o)2 —
a’/al = Cy, 12(¢" — wo)a'/a + ¢"'| = C,. (A.3) yields three
inequalities

V2(w — wo)* = ’ (¢ — wo)” - %‘ +

2(¢" — wo)a’ .
a ARk

(A.4)




in which identity holds if there exist C so that

12

4 2 i
’(90 wo) a

V(o - wo)' = '(90’ —w)’ — %

in which identity holds if there exist C so that

2 ’ _ !
(¢" —wo)a rg’ =0,

V(w - wo)' =

in which identity holds if there exist C so that

a

rr

’ 2 @ _
(¢" — wo) a 0,

’2(90 —wo)a A
a
Using (4) and (A.1), we get
a’/ nr e —
‘(SD'—CUO)Z—; = —(¢’—w0)2
7 7N\ 2
== +(i) - (0 — wo)?,
a a

in which identity holds if

a//
; = (90, - wO)Zr

using (4), (5), and (A.1), we get

2(¢" — wo)a’

+ rr
a %

2(¢" — wo)a’ ,

(A.5a)

(A.5b)

(A.6)

(A.7a)

(A.7b)

(A.8)

(A.9a)

(A.9b)

(A.10)

(A.11a)

(A.13a)
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Fo' = 172@) — wo)a > 0.
a

(A.13b)

Substituting (A.10) into (A.6), we get (10), (A.12) into (A.8),
we get (11), and both into (A.4), we get (9). This concludes
the proof.

To find out when identity holds in (9), we jointly solve
(A.5a), (A.5b), (A.11a), (A.13a), and (A.13b). From (A.5a)
and (A.10), we have

124

—((p’—a)o)zzCZO,

, (A.5a&A.11a)

and from (A.13a), we have

aa - i(%) (9" —wo) 9" = (¢ —w0)* 9" (Al130)

These two together give

+¢"=C=0, (A.5a, A.11a&A.13c)

which, together with (A.13b), gives C = 0, and consequently
9" = 0,d/a = ¢ — wy = 0; that is, the sinusoid is of
constant amplitude and angular frequency at wy. Notice that
this condition implies [ a*dt being infinitely large so that "~
is not properly defined by (4). However, identity still holds in
(9) for stationary sinusoids if we accept that 0/c0 = 0.
Similarly, we derive that identity holds in (11) if the
sinusoid has constant amplitude and angular frequency at wy,
and in (10) if 2(¢" — wp)a'/a + ¢”" = 0 and there exist C = 0,

a’/a— (¢ — wo)® = C.
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