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Abstract

In this paper, we advocate the use of the uncompressed form of i-vector and depend on subspace modeling using
probabilistic linear discriminant analysis (PLDA) in handling the speaker and session (or channel) variability. An i-vector is
a low-dimensional vector containing both speaker and channel information acquired from a speech segment. When
PLDA is used on an i-vector, dimension reduction is performed twice: first in the i-vector extraction process and second
in the PLDA model. Keeping the full dimensionality of the i-vector in the i-supervector space for PLDA modeling and
scoring would avoid unnecessary loss of information. We refer to the uncompressed i-vector as the i-supervector. The
drawback in using the i-supervector with PLDA is the inversion of large matrices in the estimation of the full posterior
distribution, which we show can be solved rather efficiently by portioning large matrices into smaller blocks. We also
introduce the Gaussianized rank-norm, as an alternative to whitening, for feature normalization prior to PLDA modeling.
We found that the i-supervector performs better during normalization. A better performance is obtained by combining
the i-supervector and i-vector at the score level. Furthermore, we also analyze the computational complexity of the
i-supervector system, compared with that of the i-vector, at four different stages of loading matrix estimation, posterior
extraction, PLDA modeling, and PLDA scoring.
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1 Introduction
Recent research in text-independent speaker verification
has been focusing on the problem of compensating the
mismatch between training and test speech segments.
Such mismatch in most part is due to the variations
induced by the transmission channel. There are two
fundamental approaches to tackling this problem. The
first approach operates at the front-end via the exploration
of discriminative information in speech in the form of
features (e.g., voice source, spectro-temporal, prosodic,
high-level) [1-6]. The second approach relies on the effective
modeling of speaker characteristic in the classifier de-
sign (e.g., GMM-UBM, GMM-SVM, JFA, i-vector, PLDA)
[4,7-15]. In this paper, we focus on the speaker modeling.
Over the past few years, many approaches based on

the use of Gaussian mixture models (GMM) in a GMM
universal background model (GMM-UBM) framework
[7] have been proposed to improve the performance of
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speaker verification system. The GMM-UBM is a gen-
erative model in which a speaker model is trained only
on data from the same speaker. New criteria have then
been developed that allow discriminative learning of
generative models. Support vector machine (SVM) is ac-
knowledged as one of the pre-eminent discriminative ap-
proaches [16-18], and it has been successfully combined
with GMM, such as the GMM-SVM [8,9,19-21]. Never-
theless, approaches based on GMM-SVM are unable to
cope well with the channel effects [22,23]. To compensate
for the channel effects, it was shown using the joint factor
analysis (JFA) technique that the speaker and channel
variability can be confined as two disjoint subspaces in the
parameter spaces of GMM [12,24]. The word ‘joint’ refers
to the fact that not only the speaker, but also the channel
variability is treated in a single JFA model. However, it was
been reported that the channel space obtained by the JFA
does contain some residual speaker information [25].
Inspired by the JFA approach, it was shown in [13]

that speaker and session variability can be represented by
a single subspace referred to as the total variability space.
The major motivation for defining such a subspace is to
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extract a low-dimensional identity vector (i.e., the
so-called i-vector) from the feature sequence of a
speech segment. The advantage of i-vector is that it
represents a speech segment as a fixed-length vector
instead of a variable-length sequence of acoustic features.
This greatly simplifies the modeling and scoring processes
in speaker verification. For instance, we can assume that
the i-vector is generated from a Gaussian density [13]
instead of the mixture of Gaussian densities as usual
in the case of acoustic features [7]. In this regard,
linear discriminant analysis (LDA) [13,26,27], nuisance
attribute projection (NAP) [8,13,28], within-class covari-
ance normalization (WCCN) [13,29,30], probabilistic LDA
(PLDA) [10,31], and the heavy-tailed PLDA [32] have
shown to be effective for such fixed-length data. In this
paper, we focus on PLDA with Gaussian prior instead
of heavy-tailed prior. It was recently shown in [33] that
the advantage of the heavy-tailed assumption diminishes
with a simple length normalization on the i-vector before
PLDA modeling.
Because the total variability matrix is always a low-rank

rectangular matrix, a dimension reduction process is also
imposed by the i-vector extractor [12]. In this study,
we advocate the use of the uncompressed form of
the i-vector. Similar to that in [13], our extractor con-
verts speech sequence into a fixed-length vector but re-
tains its dimensionality in the full supervector space.
Modeling of speaker and session variability is then car-
ried out using PLDA, which has shown to be effective in
handling high-dimensional data. By doing so, we avoid
reducing the dimensionality of the i-vector twice: first in
the extraction process and second in the PLDA model.
Any dimension reduction procedure will unavoidably
discard information. Our intention is therefore to keep
the full dimensionality until the scoring stage with PLDA
and to investigate the performance of PLDA in the
i-supervector space. We refer to the uncompressed
form of i-vector as the i-supervector, or the identity
supervector, following the nomenclature in [13,29]. Simi-
lar to that in the i-vector extraction, the i-supervector
is computed as the posterior mean of a latent variable, but
with a much higher dimensionality.
The downside of using i-supervector with PLDA is

that we have to deal with the inversion of large matrices.
The size of the matrices becomes enormous when more
sessions are available for each speaker in the development
dataa. One option is to estimate the subspaces in a
decoupled manner, which might lead to suboptimal solu-
tion [12,24]. In [34], we showed that the joint estimation
of subspaces can be accomplished by partitioning large
matrices into smaller blocks, thereby making the inversion
and the joint estimation feasible. In this study, we
present the same approach with more detail and further
refinement. We also look into various normalization
methods and introduce the use of the Gaussianized
rank-norm for the PLDA. In the experiments, we compare
the performance of both i-vector and i-supervector under
no normalization and various normalization conditions.
Meanwhile, a fusion system that combines the i-vector
and i-supervector is presented as well. In addition, we
provide an analysis of the computational complexity
associated with the i-vector and i-supervector at four
different stages: loading matrix estimation, i-vector
and i-supervector extraction, PLDA model training,
and verification score calculation.
The paper is organized as follows. In Section 2, we

introduce the i-vector paradigm, which includes the formu-
lation of the i-vector and i-supervector and its relationship
to the classical maximum a posteriori (MAP). Section 3
introduces the probabilistic LDA, where we show that the
inversion of a large matrix in PLDA can be solved by
exploiting some inherent structure of the precision matrix.
Section 4 deals with PLDA scoring and introduces the
Gaussianized rank-norm. We present some experimental
results in Section 5 and conclude the paper in Section 6.

2 I-vector paradigm
2.1 I-vector extraction
The purpose of i-vector extraction is to represent variable-
length utterances with fixed-length low-dimensional
vectors. The fundamental assumption is that the feature
vector sequence, O, was generated from a session-specific
GMM. Furthermore, the mean supervector obtained by
stacking the means from all mixtures, m, is constrained to
lie in a low-dimensional subspace with origin ℳ as
follows:

m ¼ ℳ þ Tx; ð1Þ

where m and ℳ are the mean supervectors of the
speaker (and session)-dependent GMM and the UBM,
respectively. The subspace spanned by the columns of
the matrix T captures the speaker and session variability,
and hence the name total variability [13]. The weighted
combination of the columns of T, as determined by the
latent variable x, gives rise to the mean supervector m
with ℳ as an additive factor.
The i-vector extraction process was formulated as the

MAP estimation problem [13,35]. Notice that in (1),
the equation is concerned with the construction of the
mean supervector m from the parameters ℳ ;Tf g and
the latent variable x. The variable x is unobserved (or
latent) as is the supervector. The optimal value of
x is determined by the observed sequence O and is
given by the mode (equivalent to the mean in the
current case) of the posterior distribution of the latent
variable x:
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ϕ ¼ argmax
x

YC
c¼1

YNc

t¼1

Nðotjℳ c þ Tcx;ΦcÞ
" #

N x 0; IÞ:jð

ð2Þ

The first point to note is that the latent variable xeN
0; Ið Þ is assumed to follow a standard normal prior. The
parameters ℳc and Φc denote the mean vector and
covariance matrix of the c-th mixture of the UBM,
while Nc indicates the number of frames ot aligned to
each of the C mixtures. Also, we decompose the total

variability matrix T ¼ TT
1 ; TT

2 ; …; TT
C

� �T
to its

component matrices, one associated with each Gaussian.
Given an observation sequence O , its i-vector repre-
sentation is given by (2), the solution [13] of which is
given by

ϕx ¼ L−1
x

XC
c¼1

TT
c Φ

−1
c fc

 !
; ð3Þ

where

L−1
x ¼ Iþ

XC
c¼1

NcT
T
c Φ

−1
c Tc

 !−1

ð4Þ

is the posterior covariance, fc = ∑ t γc,tot − Ncℳc is the
centralized first-order statistics [35] for the c-th Gaussian,
and γc,t denotes the occupancy of vector ot to the c-th
Gaussian. Since T is always a low-rank rectangular matrix,
the dimension D of the i-vector is much smaller compared
to that of the supervector, i.e., D ≪ C⋅F, where F is the
dimensionality of the acoustic feature.
Figure 1 Comparison between i-vector (upper panel) and i-supervect
2.2 I-supervector extraction
Consider the case where the latent variable is allowed to
grow into the full supervector space, for which D = C⋅F.
One straightforward approach to achieving this is by
using a CF-by-CF full matrix for T in (1). However, the
number of parameters would be enormous, causing diffi-
culty in the training. Another option is to impose a diagonal
constraint on the loading matrix as follows:

m ¼ ℳ þDz; ð5Þ
where D is now a CF-by-CF diagonal matrix and the latent
variable z has the same dimensionality as the mean
supervector m. Similar to the variable x in (1), the variable
z is unobserved. Given an observed sequence O, we esti-
mate the mode of the posterior distribution as follows:

ϕ ¼ argmax
z

YC
c¼1

YNc

t¼1

Nðot jℳ c þDczc;ΦcÞN ðzcj0; IÞ
" #

:

ð6Þ
Here, zc is the sub-vector of z and Dc is the F-by-F

sub-matrix corresponding to the mixture c. Notice that
such notations are necessary as the likelihood is computed
over the acoustic vector ot. Following the procedure as in
[35], it can be shown that solution to (6) is a CF-by-1
supervector:

ϕz ¼ L−1
z DTΦ−1f
� �

; ð7Þ
where L−1

z is a CF-by-CF diagonal matrix given by

L−1
z ¼ IþDTNΦ−1D

� �−1
: ð8Þ

In (7), f is the CF-by-1 supervector obtained by
concatenating the fc from all mixtures (see Figure 1). In
or (lower panel) extraction followed by PLDA modeling.
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(8), N is the CF-by-CF diagonal matrix whose diagonal
blocks are NcI, and Φ is a block diagonal matrix with Φc

at its diagonal. Recall that Nc and fc are the occupancy
count and centralized first-order statistics extracted using
the UBM.
We refer to ϕz as the i-supervector analogous to the

i-vector since ϕz is computed as the posterior mean of a
latent variable similar to that in the i-vector extraction,
but with a much higher dimensionality. It is worth to
note that there exist some subtle differences between the
i-supervector extraction and the classical MAP estimation
of GMM [36]. In particular, the so-called relevance MAP
widely used in the GMM-UBM [7] could be formulated in
similar notations. In particular, the mean supervector of
the adapted GMM is given by

ϕrel ¼ ℳ þ τIþNð Þ−1f : ð9Þ

One could deduce (9) from (7) and (8) by setting
DTD = τ−1Σ and using the results in (5). The parameter
τ is referred to as the relevance factor, which is set empir-
ically in the range between 8 and 16 [7]. This is different
from that in (7), where the matrix D is trained from a
dataset using the EM algorithm in a manner similar to the
matrix T for the i-vector. Secondly, the i-supervector is
taken as the posterior of the latent variable z which is ab-
sent in the relevance MAP formulation.
The i-supervector extractor can be implemented by

adopting the diagonal modeling part of the JFA [12,24] with
Figure 2 The EM steps for estimating the loading matrix D for the i-s
a slight modification: the diagonal model D is trained per
utterance instead of per speaker basis in order to capture
both speaker and session variability. Figure 2 summarizes
the EM steps. The diag(.) operator sets the off-diagonal
elements to zeros, only the diagonal elements are com-
puted in our implementation. Notice that the sufficient
statistics {f, N} are session-dependent. We omitted the
session index for simplicity.

2.3 From i-vector to i-supervector
The i-vector extraction is formulated in probabilistic
terms based on a latent variable model as in (2), similarly
for the case of i-supervector in (6). One obvious benefit is
that in addition to obtain the i-vector as the posterior
mean ϕx of the latent variable x, we could also compute
the posterior covariance (4) which quantifies the uncer-
tainty of the estimate and fold in the information in subse-
quent modeling [37]. Nevertheless, any form of dimension
reduction would unavoidably discard information. Fol-
lowing the same latent variable modeling paradigm, we
proposed the i-supervector as an uncompressed form
of i-vector representation.
Figure 1 compares the i-vector and i-supervector ap-

proaches from the extraction process to the subsequent
PLDA modeling (recall that the parameter C denotes the
number of mixtures in the UBM. F is the size of the acous-
tic feature vectors. D is the length of the i-vector while the
i-supervector has a much higher dimensionality of C·F.).
The biggest difference is that there are two rounds of
upervector extractor.
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dimension reduction which occurred in the i-vector PLDA
system, whereas there is only one time reduction for the
case of i-supervector PLDA. In this paper, our motivation
is to keep the full dimensionality of the supervector as the
input to the PLDA model which has shown to be an effi-
cient model for high-dimensional data [10]. We envisage
that more information would be preserved via the use of i-
supervector, which could be exploited with the use of
PLDA.

3 PLDA modeling in i-supervector space
3.1 Probabilistic LDA
The i-vector and the i-supervector represent a speech
segment as a fixed-length vector instead of a variable-
length sequence of vectors. Taking the fixed-length vector
ϕij as input, PLDA assumes that it is generated from a
Gaussian density as follows:

p ϕij

� �
¼ N ϕijjμ; FFT þ GGT þ Σ

� �
;

ð10Þ
where μ denotes the global mean and Γ = FFT +GGT + Σ
is the covariance matrix. Here, ϕij is i-supervector (or
i-vector) representing the j-th session of the i-th
speaker. We use ϕ referring either to the i-vector ϕx

or i-supervector ϕz in the subsequent discussion.
The strength of PLDA lies at the modeling of the

covariance Γ in structural form as FFT + GGT + Σ.
To see this, we rewrite (10) as marginal density:

pðϕijÞ ¼ ∬pðϕij hi;wijÞN ðhi 0; IÞN ðwij 0; IÞ dhi dwij;
������

ð11Þ
where the conditional density is given by

pðϕij hi;wijÞ ¼ N ϕ μþ Fhi þ Gwij;ΣÞ:
����� ð12Þ

In the above equations, hi is the speaker-specific latent
variable pertaining to the i-th speaker, while wij is the
session-specific latent variable corresponding to the j-th
session of the i-th speaker. Both latent variables are
assumed to follow a standard Gaussian prior. The low-
rank matrices F and G model the subspaces corresponding
to speaker and session variability (we denote their rank as
NF and NG, respectively), while the diagonal matrix Σ
covers the remaining variation. From (12), the mean vector
of the conditional distribution is given by

μij ¼ μþ F;G½ � hi

wij

	 

: ð13Þ

Comparing (1) and (13), we see that both i-vector
extraction process and the PLDA model involve dimen-
sion reduction via a similar form of subspace modeling.
This observation motivates us to explore the use of PLDA
on i-supervector. The extraction process serves as the
front-end which converts a variable-length sequence O to
a fixed-length vector without reducing the dimension.
Speaker modeling and channel compensation are then
carried out in the original supervector space.
The downside of using i-supervector with PLDA is

that we have to deal with large matrices as illustrated in
the lower panel of Figure 1. The size of the matrices
becomes enormous when more sessions are available for
each speaker in the development data. This is typically the
case for speaker recognition where the number of utter-
ances per speaker is usually in the range from ten to over a
hundred [38,39]. In the following, we estimate the pa-
rameters μ; F; G; Σf g of the PLDA model using the
expectation maximization (EM) algorithm. We show how
large matrices could be partitioned into sub-matrices,
thereby making the matrix inversion and EM steps feasible.

3.2 E-step: joint estimation of posterior means
We assume that our development set consists of speech
samples from N speakers each having J sessions, though
the number of sessions J could be different for each
speaker. All the J observations from the i-th speaker are
collated to form the compound system [10]:

ϕi1
ϕi2
⋮
ϕiJ

2664
3775

|{z}
~ϕ i

¼
μ
μ
⋮
μ

2664
3775

|{z}
~μ

þ
F G 0 ⋯ 0
F 0 G ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
F 0 0 ⋯ G

2664
3775

|{z}
~A

hi

wi1

wi2

⋮
wiJ

266664
377775

|{z}
yi

þ
εi1
εi2
⋮
εiJ

2664
3775

|{z}
εi

:

ð14Þ

Each row in (14) says that each observation ϕij = μ +
Fhi + Gwij + εij consists of a speaker-dependent compo-
nent μ + Fhi and session-dependent component Gwij + εij,
where εijeN 0;Σð Þ is responsible for the residual variation
in (10). In the E-step, we infer the posterior mean of the

compound latent variable yi ¼ hT
i ; wT

i1; …; wT
iJ

� �T
as

follows:

E yif g ¼ L−1⋅Α˜ TΣ˜ −1 ϕ˜
i−μ

� �
; ð15Þ

where Σ˜ is a block diagonal matrix whose diagonal
blocks are Σ, and L−1 is the posterior covariance given
by

L−1 ¼ Α˜ TΣ˜ −1Α˜ þ I
h i−1

: ð16Þ

The posterior inference involves the inversion of the

matrix ¼ Α˜ TΣ˜ −1 Α˜ þI . Following the notations in (14),
we could express the matrix inversion as
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L−1 ¼

JFTΣ−1Fþ I FTΣ−1G FTΣ−1G ⋯ FTΣ−1G
GTΣ−1F GTΣ−1Gþ I 0 ⋯ 0
GTΣ−1F 0 GTΣ−1Gþ I ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
GTΣ−1F 0 0 ⋯ GTΣ−1Gþ I

266664
377775
−1

:

ð17Þ
The matrix is large as we consider the joint inference

of latent variables hi; wi1; …; wiJf g representing a
speaker and all sessions from the same speaker. The size
of the matrix increases with the number of sessions J,
while more sessions are always desirable for more robust
parameter estimation. Direct inversion of the matrix
becomes intractable.
The precision matrix L possesses a unique structure since

all sessions from the same speakers are tied to one speaker-
specific latent variable. As depicted in (17) and (18), the
matrix L can be partitioned into four sub-matrices: A, B,
BT, and C. Using the partitioned inverse formula [40], the
inverse of the matrix L could be obtained as

L−1 ¼ A B
BT C

	 
−1
¼ M −MBC−1

−C−1BTM C−1 þ C−1BTMBC−1

	 

;

ð18Þ

Where

M ¼ A−BC−1BT
� �−1

: ð19Þ

The matrix M−1 is known as the Schur complement of
L with respect to C [18]. Using these formulae, there are
still two matrices to be inverted. The first is C−1 in the
left-hand side of (18) and the second is the M in (19).
The inversion C−1 is simple as C is block diagonal, where
the inversion Q = (GTΣ−1G + I)−1 can be computed
directly from the NG-by-NG matrix. Using the notations in
(14) and (18), M is given by

M ¼ J FTJFþ I
� �−1

; ð20Þ

where J is obtained via the matrix inversion lemma:

J ¼ GGT þ Σ
� �−1 ¼ Σ−1−Σ−1G GTΣ−1Gþ I

� �−1
GTΣ−1:

ð21Þ

Using (18) in (15), it can be shown that the posterior
mean of the speaker-specific latent variable hi is given by

E hif g ¼ M FTJ⋅
XJ
j¼1

ϕij−μ
� �" #

; ð22Þ

while the session-specific posterior mean of wij could be
inferred as
E wij
� � ¼ GTΣ−1Gþ I

� �−1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Q

GTΣ−1 ϕij −μ− F ⋅ E hif g
h i

:

ð23Þ

One interesting point to note from (23) is that the
i-supervector ϕij is first centralized to the global mean
μ and the speaker mean F⋅E{hi} before projection to the
session variability space.
From computation perspective, the matrices Q =

(GTΣ−1G + I)−1, Λ = Q⋅GTΣ−1F, and J could be pre-
computed and used for all sessions and speakers in
the E-step. The matrix M depends on the number of
sessions J per speaker. In the event where J is different for
each speaker (which is usually the case), we compute

MJ≡ J ⋅ FTJFþ I
� �−1 ¼ V J ⋅Eþ I½ �−1VT; ð24Þ

where FTJF =VEVT is obtained via eigenvalue decompos-
ition in whichV is the square matrix of eigenvectors and is
E the diagonal matrix of eigenvalues.

3.3 M-step: model estimation
The M-step can also be formulated in terms of sub-

matrices. Let w˜ ij ¼ hT
i ; wT

ij

h iΤ
be a compound vector

by appending hi to each session wij belonging to the same
speaker. We update the loading matrices F and G jointly
as follows:

F̂ ; Ĝ
� � ¼ XN

i¼1

XJ
j¼1

ϕij−μ
� �

E w˜ ij
T

n o( ) XN
i¼1

XJ
j¼1

E w˜ ij w
˜
ij
T

n o( )−1

;

ð25Þ

where E w˜ ij
T

n o
could be obtained by concatenating the

results from (22) and (23). The second moment E
w˜ ij w

˜
ij
T

n o
is computed for each individual session and

speaker as follows:

E w˜ ij w
˜
ij
T

n o
¼ M −MΛΤ

−ΛM Qþ ΛMΛΤ

	 

þ E w˜ ij

n o
w˜ ij

T
n o

ð26Þ

The covariance matrix of the PLDA model could then
be updated as

Σ̂ ¼ 1
N⋅J

XN
i¼1

XJ
j¼1

diag ϕij−μ
� �

ϕij−μ
� �T

− F̂ ; Ĝ
� �

E w˜ ij
n o

ϕij−μ
� �T	 


;

ð27Þ

where the operator diag(⋅) diagonalizes a matrix by setting
the off-diagonal elements to zeros.
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4 Likelihood ratio computation
4.1 Model comparison
Speaker verification is a binary classification problem,
where a decision has to be made between two hypotheses
with respect to a decision threshold. The null hypothesis
H0 says that the test segment is from the target speaker,
while the alternative H1 hypothesizes the opposite. Using
the latent variable modeling approach with PLDA, H0 and
H1 correspond to the models as shown in Figure 3. In the
model H0, {ϕ1, ϕ2} belong to the same speaker and hence
share the same speaker-specific latent variable h1,2. On the
other hand, {ϕ1, ϕ2} belong to different speakers and
hence have separate latent variables, h1 and h2, in the
model H1. The verification score is calculated as the
log-likelihood ratio between two models:

s ϕ1;ϕ2ð Þ ¼ logp ϕ1;ϕ2 H0Þ− logp ϕ1;ϕ2 H1Þ;jðjð ð28Þ

where the likelihood terms are evaluated using (10)
(we shall give more details in the next section). One
key feature of the PLDA scoring function in (28) is
that no speaker model is built or trained. The verification
scores are computed by comparing the likelihood of two
different models which describe the relationship between
the training and test i-supervectors (or i-vector) through
the use of PLDA model.

4.2 PLDA verification score
To solve for (28), we first recognize from Figure 1 that
the generative equation for the model H0 is given by

ϕ1
ϕ2

	 

|fflffl{zfflffl}
~ϕ

¼ μ
μ

	 

|ffl{zffl}
μ

þ F G 0
F 0 G

	 

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~A

h12

w1

w2

24 35þ ε1
ε2

	 

: ð29Þ

Using the compound form of (29) in (10), we compute
the log-likelihood of the model H0 by
Figure 3 Using PLDA for verification task.
logpðϕ1;ϕ2 H0Þ ¼ logN ~ϕ
� ��~μ; ~A ~AT þ ~X�

¼ −
1
2

~ϕ−~μ
� �T ~A ~AT þ ~X� �−1 ~ϕ−~μ

� �
−
1
2
log ~A ~AT þ ~X�� ��−αlog 2πð Þ;

ð30Þ

where α = C⋅F for the case of i-supervector while α = D for
the case of i-vector. To evaluate the log-likelihood function,
we have to solve for the inversion and log-determinant of
the following covariance matrix:

~Α ~ΑT þ ~Σ
� � ¼ F

F

	 

FT FT
� �þ GGT þ Σ 0

0 GGT þ Σ

	 

:

ð31Þ

The inversion of the above matrix could be obtained by
applying twice the matrix inversion lemma. In particular,
we first compute J = (GGT + Σ)−1, the result of which is
given by (21), and apply again the matrix inversion lemma
on the right-hand side of (31), which leads to

~Α ~ΑT þ ~Σ
� �−1 ¼ J 0

0 J

	 

−

JF
JF

	 

�M2 � FTJ; FTJ

� �
;

ð32Þ

where M2 is computed using the solution in (24) by
setting J = 2. Now, to solve for the log-determinant of the
same matrix in (31), we apply twice the matrix determin-
ant lemma in a much similar way as the matrix inversion.
Taking the log of the result leads to

log ~Α ~ΑT þ ~Σ
�� �� ¼ −2log Jj j− log M2j j: ð33Þ

Using (32) and (33) in (30), we arrive at
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logpðϕ1;ϕ2 H0j Þ ¼ 1
2

X2

l¼1
FTJ ϕl−μð Þ

h iT
M2

X2

l¼1
FTJ ϕl−μð Þ

h i
−
1
2

X2

l¼1
ϕl−μð ÞTJ ϕl−μð Þ þ 1

2
log M2j j

þ log Jj j−αlog 2πð Þ:
ð34Þ

For the alternative hypothesis H1, we form the follow-
ing compound equation:

ϕ1
ϕ2

	 

¼ μ

μ

	 

þ F G 0 0

0 0 F G

	 
 h1

w1

h2

w2

2664
3775þ ε1

ε2

	 

:

ð35Þ
The first thing to note is that the first and second rows

of the system are decoupled and therefore could be
treated separately. The log-likelihood of the alternative
hypothesis H1 is therefore given by the following sum of
log-likelihoods:

logpðϕ1; ϕ2 H1Þ ¼
X2

l¼1
logNðϕl μ; FF

T þ GGT þ ΣÞ:�����
ð36Þ

Using a similar approach as for the case of the null hy-
pothesis, it can be shown that the solution to (36) is
given by

logpðϕ1;ϕ2jH1Þ ¼ 1
2

X2

l¼1
FTJ ϕl−μð Þ� �T

M1 FTJ ϕl−μð Þ� �
−
1
2

X2

l¼1
ϕl−μð ÞTJ ϕl−μð Þ þ log M1j j

þ log Jj j−α log 2πð Þ
ð37Þ

Using (34) and (37) in (28), canceling out common
terms, we arrive at the following log-likelihood ratio
score for the verification task:

s ϕ1;ϕ2ð Þ ¼ 1
2

X2

l¼1
φT
l

h i
M2

X2

l¼1
φl

h i
−
1
2

X2

l¼1
φT
l M1φl þ K :

ð38Þ
For brevity of notations, we have let

φl ¼ FTJ ϕl−μð Þ: ð39Þ
One way to look at (39) is that it centralizes the vector

ϕl and projects it onto the subspace F where speaker
information co-vary the most (i.e., dimension reduction)
while de-emphasizing the subspace pertaining to channel
variability. In (38), K = log|M2|/2 − log|M1| is constant
for the given set of parameters F; G; Σf g. Though K
diminishes when score normalization is applied, we
could calculate the two log-determinant terms easily
by using the property of eigenvalue decomposition. In
particular, we compute log|M2| as −
XNF

n¼1
log 2λn þ 1ð Þ

and log|M1| as −
XNF

n¼1
log λn þ 1ð Þ , where {λn: n = 1,

2,…, NF} are the eigenvalues of the matrix FTJF (c.f. (24)).

4.3 I-supervector pre-conditioning
Another prerequisite for good performance with PLDA is
that the i-supervectors have to follow a normal distribu-
tion, as in (10). It has been shown in [33], for the case
of i-vector, that whitening followed by length normalization
helps toward this goal. However, whitening can never be
possible for i-supervector due to data scarcity. To this end,
we advocate the use of a Gaussianized version of rank norm
[34,41]. The i-supervector is processed element-wise with
warping functions mapping each dimension to a standard
Gaussian distribution (instead of uniform distribution as in
rank norm). To put it mathematically, let ϕl(m), for m = 1,
2,…, CF, denote the elements of the i-supervector ϕl. We
first get the normalized rank of ϕl(m) with respect to a
background set Bm as follows:

rm ¼ b∈Bm : b < ϕl mð Þf gj j
Bmj j ; ð40Þ

where |⋅| denotes the cardinality of a set. The Gaussianized
value is then obtained by using the inverse cumulative
density function (CDF) of a standard Gaussian distribution
(i.e., the probit function) as follows:

ϕl mð Þ←
ffiffiffi
2

p
erf−1 2rm−1ð Þ; ð41Þ

where erf−1(⋅) denotes the inverse error function. This
can then be followed by length normalization prior to
PLDA modeling.

5 Experiment
5.1 Experimental setup
Experiments were carried out on the core task (short2-
short3) of NIST SRE08 [42]. We use two well-known
metrics in evaluating the performance, namely, equal
error rate (EER) and minimum detection cost (MinDCF).
Two gender-dependent UBMs consisting of 512 Gaussians
were trained using data drawn from the SRE04. Speech
parameters were represented by a 54-dimensional vector
of mel frequency cepstral coefficients (MFCC) with first
and second derivatives appended.
The loading matrices T in (1) and D in (5) were both

trained with similar sets of data drawn from Switchboard,
SRE04, and SRE05. We use 500 factors for T, while D was
a diagonal matrix by definition. The dimensionality of
i-vector was therefore 500, while i-supervector is of
CF = 27,648 in dimensionality. The rank of the matrices
F and G in the PLDA model was set to 300 and 200,



Table 2 Performance comparison of i-vector and
i-supervector on NIST SRE08 core task with no
normalization applied

Male Female

EER MinDCF EER MinDCF

i-vector

Det1 (raw) 9.6696 4.3332 13.9834 5.4534

Det4 (raw) 5.9883 2.7667 14.5646 5.8298

Det5 (raw) 5.9601 2.4829 11.4183 3.9617

Det6 (raw) 6.1785 3.1206 8.1486 3.7028

i-supervector

Det1 (raw) 8.7329 3.9681 12.5471 5.3874

Det4 (raw) 4.7950 2.4082 12.3123 5.7750

Det5 (raw) 5.6250 2.3139 8.1731 3.8216

Det6 (raw) 5.2632 2.6605 6.7976 3.3368

Table 3 Performance comparison of normalization
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respectively, for the case of i-supervector. For i-vector,
best result was found with the rank of F set to 300 and
using a full matrix for Σ, for which G was no longer
required. This observation was consistent with that
reported in [32]. Table 1 summarizes all the corpora used
to train the UBM, loading matrices T and D, PLDA
model, whitening transformation matrix, Gaussianized
rank-norm, and the cohort data for s-norm [32].

5.2 Feature and score normalization
Experiments were performed on the so-called det1 (int-int),
det4 (int-tel), det5 (tel-mic), and det6 (tel-tel) common
conditions as defined in NIST SRE08 short2-short3 core
task. The term int refers to interview style recorder over
microphone channel. For the det1 common condition, the
training and test utterances were both int style of speech.
Similar definition applied for other common conditions.
The first set of experiments aimed at verifying the effect-
iveness of PLDA model in the i-supervector space without
normalization (raw). Table 2 shows the results. It is evi-
dent that the i-supervector system performed much better
than i-vector in all the four common conditions for both
male and female trials. For the particular case of female
trials, the EER for the i-supervector system was lower by
10.27%, 15.46%, 28.42%, and 16.58% in det1, det4, det5,
and det6 compared to that of the i-vector system. One
possible reason may be that the Gaussian assumption in
(10) can be better fulfilled in the i-supervector space with
higher dimensionality compared to that of the i-vector.
The second set of experiments aimed at investigating

the effectiveness of different normalization methods on
i-supervector prior to PLDA modeling (i.e., length
normalization, whitening, and Gaussianized rank-norm)
and also the effects of score normalization (we used s-norm
as reported in [32]). For simplicity, we used only telephone
data and report the results on det6 (i.e., tel-tel common
condition) in Table 3. We observed similar performance for
other common conditions. From Table 3, it is clear that
length normalization (len) always outperforms raw for both
i-vector and i-supervector. Notice that i-vector gains huge
Table 1 Corpora used for training various components of
the system

Switchboard NIST SRE04 NIST SRE05 NIST SRE06

Tel Tel Tel Mic Tel Mic

UBM X

T X X X

D X X X

PLDA model X X X X

Whitening X X X X X X

G-rank-norm X X X X X X

s-norm X X X X

The terms ‘Tel’ and ‘Mic’ refer to telephone (landline or mobile) and
microphone channel recordings.
improvement from length normalization. For the MALE
subset, we observed 20.0% and 6.5% of relative improve-
ment in EER when length normalization was applied
on i-vector and i-supervector, respectively. Whitening
followed by length normalization (white + len) further im-
proves the performance for i-vector. Similarly, in the case
of i-supervector, we used Gaussianized rank-norm followed
by length normalization (grank + len) to cope with the
high dimensionality. Finally, we also noticed that s-norm
gives consistent improvement for both i-vector and i-
supervector.

5.3 Channel factors in i-supervector space
The low-rank matrices G model the subspace correspond-
ing to channel variability as described in Section 3.1. We
evaluated the performance of the i-supervector system at
different numbers of channel factors, NG. Table 4 shows
the results for the det6 common condition. We can see
that when NG = 0, which corresponds to a fully diagonal
PLDA model, the EER and MinDCF for both of male and
female were very poor. A slight increment in the number
methods on i-vector and i-supervector

Male Female

EER MinDCF EER MinDCF

i-vector

raw 6.1785 3.1206 8.1486 3.7028

len 4.9411 2.6286 6.4409 3.0581

white + len 4.5458 2.4546 6.3193 3.0065

white + len + snorm 4.3478 2.2155 6.1530 3.0034

i-supervector

raw 5.2632 2.6605 6.7976 3.3368

len 4.9199 2.6271 6.3667 3.3624

grank + len 4.8982 2.6676 6.0976 3.2588

grank + len + snorm 4.5888 2.3737 6.2639 3.1132



Table 4 Performance of i-supervector PLDA system with
different numbers of channel factors, NG

Number of
channel factors, NG

Male Female

EER MinDCF EER MinDCF

0 15.9148 5.6324 19.1796 6.8120

10 8.3524 3.9297 10.2550 4.5087

20 6.1785 3.2124 8.9246 3.9208

30 5.6114 2.8483 7.6497 3.5515

40 5.1487 2.7037 7.6497 3.4161

50 4.8552 2.5573 6.9290 3.3179

100 4.6911 2.4875 6.5196 3.2814

150 4.5974 2.3983 6.4856 3.1239

200 4.5888 2.3737 6.2639 3.1132

250 5.0099 2.5092 6.4302 3.1420

300 4.7693 2.5843 6.2084 3.1114
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of channel factors NG to 10 reduces the EER by 47% and
46% for male and female sets, respectively. Further incre-
ment in NG reduces the EER gradually until it levels off at
NG = 200 after which no further improvement could be
attained. We set NG = 200 for the i-supervector PLDA
system in subsequent experiments.

5.3.1 Performance comparison
In this section, we compared the performance of i-
supervector and i-vector under different train-test
channel conditions. The PLDA models used for i-vector
and i-supervector were the same as described in Section
5.2. In addition, we included microphone data (drawn
from SRE05 and SRE06) for the whitening transform,
Gaussianized rank-norm, and s-norm to better handle the
interview (int) and microphone (mic) channel conditions.
Table 5 shows the results when full normalization

(i.e., white + len + snorm for i-vector, grank + len +
snorm for i-supervector) was applied. Here, we consider
the EER and MinDCF by pooling together the male and
female scores. The DET curves under the four common
Table 5 Performance comparison under various train-test
channel conditions of NIST SRE08 short2-short3 core task

Conditions

det1 (int-int) det4 (int-tel)

EER MinDCF EER MinDCF

i-vector 7.2964 3.5189 5.7919 2.7576

i-supervector 7.8769 3.6724 5.9421 3.0541

Fusion 7.0711 3.4100 5.2489 2.5892

det5 (tel-mic) det6 (tel-tel)

EER MinDCF EER MinDCF

i-vector 6.0462 2.0975 5.5602 2.7556

i-supervector 4.7554 2.2475 5.7740 2.8949

Fusion 4.4158 2.0260 5.3398 2.7537
conditions are plotted in Figure 4. Similar to the observa-
tion in Section 5.1, i-vector gives better performance than
i-supervector for the case with full normalization except
in det5 where the i-supervector gives a much lower
EER though the MinDCF is slightly worse. This again
shows that current normalization strategy (Gaussianized
rank-norm followed by length normalization), though ef-
fective, has to be further improved. Also shown in Table 5
and Figure 4 are the results by fusing the i-vector and
i-supervector systems. The fusion of the two systems
gives competitive performance with slightly lower EER
and MinDCF across all four common conditions. The
two systems were fused at the score level as follows:

s ¼ β� s1 þ 1−βð Þ � s2 ð42Þ

where s1 and s2 are i-vector and i-supervector scores,
respectively. The fusion weight β is set to 0.5, 0.5, 0.3, and
0.4, respectively, for det1, det4, det5, and det6.

5.4 Computation complexity comparison
The experiments were carried out using the following
hardware configuration: Centos 6.4 system, Intel Xeon
processor E5-2687w (8-core, 3.1 GHz/core) with 128 GB
memory. We compared the total time and the real-time
factor of i-supervector and i-vector systems at four differ-
ent stages, namely, loading matrix estimation, posterior ex-
traction, PLDA modeling, and PLDA scoring. The total
variability matrix T in (1) and D in (5) were both trained
using a similar set of data drawn from Switchboard,
SRE04, and SRE05. Table 6 lists the time of training T and
D with ten EM iterations. We can see that it takes about
16.75 h for training T using 348 h of speech, which implies
a real-time factor of 0.048. On the contrary, it took only
380 s for training D. Because D is a diagonal matrix, simple
vector multiplication can be used instead of large matrix
multiplication.
After training the total variability space, we extracted

i-vector and i-supervector for all utterances. Table 6
shows the time required for extracting the i-vectors and
i-supervectors from the entire SRE04 dataset. The result
shows that i-vector extraction consumes much more
time than i-supervector. PLDA models were then trained
for i-vectors and i-supervectors drawn from Switchboard,
SRE04, and SRE05. We can see that training a PLDA
model on the i-vector takes much lesser time than for the
i-supervector. Finally, we compared the computation
requirement for PLDA scoring on the NIST SRE08
short2-short3 core task with 98,776 trials. It can be
seen that i-supervector scoring took more time than
i-vector mainly due to its comparatively high dimensional-
ity. In summary, the i-supervector system requires less
computation at the front-end while the i-vector system is
faster at the back-end PLDA.



(a)

(c)

(b)

(d)
Figure 4 The DET curves of the i-vector and i-supervector evaluated on NIST SRE08 short2-short3 core task. (a) Common condition det1,
(b) common condition det4, (c) common condition det5, and (d) common condition det6.

Table 6 Comparison of computational complexity (total time/real time factor) at various stages of implementation

Loading matrix Posterior extraction PLDA modeling PLDA scoring

i-vector 60,300 s/4.8e−2 470 s/2.83e−3 47 s/3.74e−7 142 s/4.30e−4

i-supervector 380 s/3.03e−6 24 s/1.45e−4 950 s/7.57e−6 425 s/1.29e−3

Jiang et al. EURASIP Journal on Audio, Speech, and Music Processing 2014, 2014:29 Page 11 of 13
http://asmp.eurasipjournals.com/content/2014/1/29



Jiang et al. EURASIP Journal on Audio, Speech, and Music Processing 2014, 2014:29 Page 12 of 13
http://asmp.eurasipjournals.com/content/2014/1/29
6 Conclusions
We have introduced the use of the uncompressed form of
i-vector (i.e., the i-supervector) for PLDA-based speaker
verification. Similar to i-vector, an i-supervector repre-
sents a variable-length speech utterance as a fixed-length
vector. But different from i-vector, we keep the total vari-
ability space having the same dimensionality as the ori-
ginal supervector space. To this end, we showed how
manipulation of high-dimensional matrices can be done
efficiently in training and scoring with the PLDA model.
We also introduced the use of Gaussianized rank-norm
for feature normalization prior to PLDA modeling.
Compared to i-vector, we found that i-supervector per-

forms better when no normalization (on both feature and
score) was applied. This suggests that the Gaussian as-
sumption imposed by PLDA becomes less stringent and
easier to fulfill in the higher dimensional i-supervector
space. However, the performance improvement given by
the high dimensionality diminishes when full normali-
zation is applied. As such, current normalization strategy,
though effective, has to be improved for better perform-
ance. This is a point for future work. We also showed that
fusion system can give competitive performance com-
pared to either i-vector or i-supervector. Furthermore,
we analyzed the computational complexity of the i-
supervector system, compared to that of the i-vector,
at four different stages, namely, loading matrix estimation,
posterior extraction, PLDA modeling, and PLDA scoring.
Actually, the results showed that the i-supervector system
took much less time than the i-vector system in terms of
loading matrix and posterior extraction.

Endnote
aThe number of sessions is usually limited in face rec-

ognition for which PLDA was originally proposed in
[10].
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