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Abstract

The benefit of auditory models for solving three music recognition tasks—onset detection, pitch estimation, and
instrument recognition—is analyzed. Appropriate features are introduced which enable the use of supervised
classification. The auditory model-based approaches are tested in a comprehensive study and compared to
state-of-the-art methods, which usually do not employ an auditory model. For this study, music data is selected
according to an experimental design, which enables statements about performance differences with respect to
specific music characteristics. The results confirm that the performance of music classification using the auditory
model is comparable to the traditional methods. Furthermore, the auditory model is modified to exemplify the
decrease of recognition rates in the presence of hearing deficits. The resulting system is a basis for estimating the
intelligibility of music which in the future might be used for the automatic assessment of hearing instruments.

Keywords: Music recognition, Classification, Onset detection, Pitch estimation, Instrument recognition, Auditory
model, Music intelligibility, Hearing impairment

1 Introduction
Hearing-impaired listeners like to enjoy music as well as
normal-hearing listeners although this is impeded by a
distorted perception of music signals. Recently, several
listening experiments have been conducted to assess the
impact of hearing loss on music perception for hearing-
impaired listeners (e.g., [1–4]). For many applications
like optimization of hearing instruments, it is desirable
to measure this impact automatically using a simula-
tion model. Therefore, we investigate the potential of
emulating certain normal-hearing and hearing-impaired
listeners by automatically assessing their ability to
discriminate music attributes via an auditory model.
Auditory models are computational models which mimic
the human auditory process by transforming acoustic
signals into neural activity of simulated auditory nerve
fibers (channels). Since these models do not explain the
whole listening comprehension of higher central auditory
stages, a back end is needed relying on the output of
the auditory periphery. Similar ideas have already been
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proposed for measuring speech intelligibility in [5, 6]
where this back end is an automatic speech recognition
system, resulting in the word recognition rate as a natural
metric. However, no such straightforward method exists
to measure the corresponding “music intelligibility” in
general. Unlike speech, music spectra are highly variable
and have a much greater dynamic range [7]. For estimat-
ing “music intelligibility,” its constituent elements (pitch,
harmony, rhythm, and timbre) have to be assessed in an
independent manner [8]. Therefore, we focus on three
separate music recognition tasks, i.e., onset detection,
pitch estimation, and instrument recognition. Contrary
to state-of-the-art methods, here, we extract informa-
tion from auditory output only. In fact, some recent
proposals in the field of speech recognition and music
data analysis use auditory models, thus exploiting the
superiority of the human auditory system (e.g., [9–11]).
However, in most of these proposals, the applied audi-
tory model is not sufficiently detailed to provide adequate
options for implementing realistic hearing deficits. In
the last decades, auditory models have been developed
which are more sophisticated and meanwhile can simu-
late hearing deficits [12–15]. In [16, 17], it is shown that
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simple parameter modifications in the auditory model
are sufficient to realistically emulate auditory profiles of
hearing-impaired listeners.
In this study, we restrict our investigation on chamber

music which includes a predominant melody instrument
and one or more accompanying instruments. For fur-
ther simplification, we are only interested in the melody
track which means that all accompanying instruments are
regarded as interferences. This actually means that the
three recognition tasks are described more precisely as
predominant onset detection, predominant pitch estima-
tion, and predominant instrument recognition.
The article is organized as follows. In Section 2, related

work is discussed. The contribution of this paper is sum-
marized in Section 3. In Section 4, the applied auditory
model of Meddis [18] (Section 4.1) and our proposals
for the three investigated music recognition tasks are
described (Sections 4.2–4.4). At the end of that section,
the applied classification methods—Random Forest (RF)
and linear SVM—are briefly explained (Section 4.5).
Section 5 provides details about the experimental design.
Plackett-Burman (PB) designs are specified for selecting
the data set, which enable assessments about perfor-
mance differences w.r.t. the type of music. In Section 6,
we present the experimental results. First, the proposed
approaches are compared to state-of-the-art methods,
and second, performance losses due to the emulation of
hearing impairments are investigated. Finally, Section 7
summarizes and concludes the paper and gives some
suggestions for future research.

2 Related work
Combining predominant onset detection and predomi-
nant pitch estimation results in a task which is better
known as melody detection. However, the performance of
approaches in that research field are rather poor to date
compared to human perception [19]. In particular, onset
detection is still rather error-prone for polyphonic music
[20]. Hence, in this study, all three musical attributes of
interest are estimated separately, which means the true
onsets (and offsets) are assumed to be known for pitch
estimation and instrument recognition, excluding error
propagation from onset detection.

2.1 Onset detection
The majority of onset detection algorithms consists of
optional pre-processing stage, a reduction function (called
onset detection function), which is derived at a lower
sampling rate, and a peak-picking algorithm [21]. They
all can be summarized into one algorithm with sev-
eral parameters to optimize. In [22], we systematically
solve this by using sequential model-based optimiza-
tion. The onset detection algorithm can also be applied
channel-wise to the output of the auditory model where

each channel corresponds to a different frequency band.
Here, the additional challenge lies in the combination of
different onset predictions of several channels. In [23], a
filter bank is used for pre-processing, and for each band,
onsets are estimated which together build a set of onset
candidates. Afterwards, a loudness value is assigned to
each candidate and a global threshold and aminimum dis-
tance between two consecutive onsets are used to sort out
candidates. A similar approach, but this time for combin-
ing the estimates of different onset detection functions,
is proposed in [24] where the individual estimation vec-
tors are combined via summing and smoothing. Instead of
combining the individual estimations at the end, in [25],
we propose a quantile-based aggregation before peak-
picking. However, the drawback of this approach is that
the latency of the detection process varies for the dif-
ferent channels, which is difficult to compensate before
peak-picking. Onset detection of the predominant voice
is a task which to our best knowledge has not been
investigated, yet.

2.2 Pitch estimation
Most pitch estimation algorithms are either based on the
autocorrelation function (ACF), or they work in the fre-
quency domain by applying a spectral analysis of potential
fundamental frequencies and their corresponding par-
tials. For both approaches, one big challenge is to pick the
correct peak which is particularly difficult for polyphonic
music where the detection is disturbed by overlapping
partials. In order to solve that issue, several improvements
are implemented in the popular YIN algorithm [26] which
in fact uses the difference function instead of the ACF. A
further extension is the pYIN method which is introduced
in [27]. It is a two-stage method which takes past estima-
tions into account. First, for every frame, several funda-
mental frequency candidates are predicted, and second,
the most probable temporal path is estimated, according
to a hiddenMarkovmodel. In [28], a maximum-likelihood
approach is introduced in the frequency domain. Another
alternative is a statistical classification approach which is
proposed in [29].
For pitch estimation, also, a few approaches using an

auditory model—or at least some of its components—
have been introduced. In [11], an outer/middle ear filter
is proposed for pre-processing which reduces the num-
ber of octave errors. A complete auditory model is applied
in [30, 31]. In those studies, an autocorrelation method
is proposed where the individual running ACFs of each
channel are combined by summation (averaging) across all
channels (SACF). The results of that approach are equiv-
alent to human performance for some specific sounds.
However, the approach is not tested for complex music
signals, yet. Also here, the challenge of picking the cor-
rect peak remains. All previously discussed approaches
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are originally designed for monophonic pitch detection.
However, pitch estimation can be extended to its pre-
dominant variant by identifying the most dominant pitch,
which many peak-picking methods implicitly calculate.
Also for polyphonic pitch estimation, approaches exist.

One approach is proposed in [10]. Instead of just
picking the maximum peak of the SACF, the strength
of each candidate (peak) is calculated as a weighted
sum of the amplitudes of its harmonic partials. Another
approach is introduced in [32], where the EM algorithm is
used‘ to estimate the relative dominance of every possible
harmonic structure.

2.3 Instrument recognition
The goal of instrument recognition is the automatic detec-
tion of music instruments playing in a given music piece.
Different music instruments have different compositions
of partial tones, e.g., in the sound of a clarinet, mostly
odd partials occur. This composition of partials is, how-
ever, also dependent on other factors like the pitch, the
room acoustic, and the performer [33]. For building a
classifier, meaningful information of each observation has
to be extracted, which is achieved by appropriate fea-
tures. Timbral features based on the one-dimensional
acoustic waveform are the most common features for
instrument recognition. However, features based on an
auditory model have also been introduced in [34]. Also,
biomimetic spectro-temporal features, requiring a model
of higher central auditory stages, have been successfully
investigated for solo music recordings in [35]. Predomi-
nant instrument recognition can be solved similarly to the
monophonic variant, but is much harder due to the addi-
tional “noise” from the accompanying instruments [36].
An alternative is starting with sound source separation in
order to apply monophonic instrument recognition after-
wards [37]. Naturally, this concept can only work if the
sources are well separated, a task which itself is still a
challenge.

3 Contribution of the paper
As there exist only very few approaches for music recog-
nition tasks using a comprehensive auditory model, in this
study, new methods are proposed. For onset detection,
we adapt the ideas of [23, 24] to develop a method for
combining onset estimations of different channels. The
main drawback of the approach in [23] is that the selection
procedure of onset candidates is based on a loudness esti-
mation and a global threshold which makes it unsuitable
for music with high dynamics. Instead, in [24] and also
in our approach, relative thresholds are applied. However,
the proposal in [24] can only combine synchronous onset
estimations, i.e., the same sampling rate has to be used
for the onset detection functions of all basic estimators.
Our new approach can handle asynchronous estimations

which enables the use of different hop sizes. Furthermore,
we propose parameter optimization to adapt the method
to predominant onset detection. Sequential model-based
optimization (MBO) is applied to find optimal parameter
settings for three considered variants of onset detection:
(1) monophonic, (2) polyphonic, and (3) predominant
onset detection. For pitch estimation, inspired by [29], we
propose a classification approach for peak-picking, where
each channel nominates one candidate.
In [29], potential pitch periods derived from the origi-

nal signal are used as features, whereas in our approach,
features need to be derived using the auditory model.
Our approach is applicable to temporal autocorrelations
as well as to frequency domain approaches. Addition-
ally, we test the SACF method, where we investigate two
variants for peak-picking. For instrument recognition, we
adapt common timbral features for instrument recogni-
tion by extracting them channel-wise from the auditory
output. This is contrary to [34], where the features are
defined across all channels. The channel-wise approach
preserves more information, can be more easily adapted
to the hearing-impaired variants, and enables assessments
of the contribution of specific channels to the recognition
rates.
All approaches are extensively investigated using a

comprehensive experimental design. The experimental
setup is visualized in Fig. 1. The capability of audi-
tory models to discriminate the three considered music
attributes is shown via the normal-hearing auditorymodel
which is compared to the state-of-the-art methods. For
instrument recognition, the approach using the auditory
model output even performs distinctly better than the
approach using standard features. As a prospect of future
research, performance losses based on hearing deficits
are exemplified using three so-called hearing dummies as
introduced in [17].

4 Music classification using auditory models
4.1 Auditory models
The auditory system of humans and other mammals con-
sists of several stages located in the ear and the brain.
While the higher stages located in the brainstem and cor-
tex are difficult to model, the auditory periphery is much
better investigated. This stage models the transformation
from acoustical pressure waves to release events of the
auditory nerve fibers. Out of the several models simu-
lating the auditory periphery, we apply the popular and
widely analyzed model of Meddis [18], for which simu-
lated hearing profiles of real hearing impaired listeners
exist [17].
The auditory periphery consists of the outer ear, the

middle ear, and the inner ear. The main task of the outer
ear is collecting sound waves and directing them further
into the ear. At the back end of the outer ear, the eardrum
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Fig. 1 Structure of the experiments for the music recognition tasks

transmits vibrations to the stapes in the middle ear and
then further to the cochlea in the inner ear. Inside the
cochlea, a traveling wave deflects the basilar membrane
at specific locations dependent on the stimulating fre-
quencies. On the basilar membrane, inner hair cells are
activated by the velocity of the membrane and evoke spike
emissions (neuronal activity) to the auditory nerve fibers.
The auditory model of Meddis [18] is a cascade of

several consecutive modules, which emulate the spike
firing process of multiple auditory nerve fibers. A block
diagram of this model can be seen in Fig. 2. Since auditory
models use filter banks, the simulated nerve fibers are also
called channels within the simulation. Each channel cor-
responds to a specific point on the basilar membrane. In
the standard setting of the Meddis model, 41 channels are
examined. As in the human auditory system, each channel
has an individual best frequency (center frequency) which
defines the frequency that evokes maximum excitation.
The best frequencies are equally spaced on a log scale with
100 Hz for the first and 6000 Hz for the 41st channel.
In the last plot of Fig. 3, an exemplary output of

the model can be seen. The 41 channels are located
on the vertical axis according to their best frequencies.
The grayscale indicates the probability of spike emissions
(white means high probability). The acoustic stimulus of
this example is a harmonic tone which is shown in the
first plot of the figure. The first module of the Meddis
model corresponds to the middle ear where sound waves

are converted into stapes displacement. The resulting
output of the sound example is shown in the second plot.
The secondmodule emulates the basilar membrane where
stapes displacement is transformed into the velocity of the
basilar membrane at different locations, implemented by
a dual-resonance-non-linear (DRNL) filter bank, a bank
of overlapping filters [38]. The DRNL filter bank consists
of two asymmetric bandpass filters which are processed
in parallel: one linear path and one nonlinear path. The
output of the basilar membrane for our sound example
can be seen in the third plot of the figure. Next, time-
dependent basilar membrane velocities are transformed
into time-dependent inner hair cell cilia displacements.
Afterwards, these displacements are transformed by a
calcium-controlled transmitter release function into spike
probabilities p(t, k), the final output of the considered
model, where t is the time, and k is the channel num-
ber. For details about the model equations, the reader is
refered to the appendix in [18].
For the auditory model with hearing loss, we con-

sider three examples, called “hearing-dummies,” which are
described in [16, 17]. These are modified versions of the
Meddis auditory model. The goal of the hearing-dummies
is to mimic the effect of real hearing impairments [39].
In the original proposal [17], channels with best frequen-
cies between 250 Hz and 8 kHz are considered, whereas in
the normal-hearing model described above, channel fre-
quencies between 100 Hz and 6 kHz are used. Note that

Fig. 2 Block diagram of Meddis’ model of the auditory periphery
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Fig. 3 Exemplary output of Meddis’ model of the auditory periphery: (1) original signal (200 Hz + 400 Hz), (2) middle ear output (stapes displacement),
(3) basilar membrane (BM) output with respect to the channels’ best frequencies (BF), (4) auditory nerve (AN) output with respect to the BFs

this difference is just a matter of the user’s interesting
frequency range and not influenced by any hearing dam-
age. For a better comparison, the same best frequencies
will be taken into account for all models. Since the range
between 100 Hz and 6 kHz seems to be more suitable to
music, we adjust the three hearing-dummies accordingly.
The first hearing dummy simulates a strong mid- and

high-frequency hearing loss. In the original model, this is
implemented by retaining the channel with the best fre-
quency of 250 Hz only and by disabling the nonlinear
path. In our modified version of that dummy, the first ten
channels are retained—all of them having best frequencies
lower than or equal to 250 Hz—and the nonlinear path
is disabled for all of them. The second hearing dummy
simulates a mid-frequency hearing loss indicating a clear
dysfunction in a frequency region between 1 and 2 kHz.
Therefore, we disable 16 channels (channels 17 to 32) for
the modified version of the hearing dummy. The third
hearing dummy is a steep high-frequency loss, which is
implemented by disabling all channels with best frequen-
cies above 1750 Hz corresponding to the last 12 channels
in the model. The parameterization of the three hearing
dummies is summarized in Table 1.

4.2 Onset detection
The task of onset detection is to identify all time
points where a new tone begins. For predominant onset

detection, just the onsets of the melody track are of inter-
est. First, we define the baseline algorithm which operates
on the acoustic waveform x[ t]. Second, we adapt this algo-
rithm to the auditory model output in a channel-wise
manner. Third, we describe the performed parameter tun-
ing which we apply to optimize onset detection. Last, we
introduce our approaches using the auditory model by
aggregating the channel-wise estimations.

4.2.1 Baseline onset detection approach
The baseline onset detection approach we use in our
study consists of seven steps illustrated in Fig. 4. The
corresponding parameters, used for the optimization, are
shown in parentheses.
In the first step, the incoming signal is split into small

frames with a frame size of M samples and a hop size
h which is the distance in samples between the starting

Table 1 Parameterization of the three considered hearing
dummies and the normal hearing model

Remaining channels Nonlinear path

Normal hearing 1–41 Yes

Hearing dummy 1 1–10 No

Hearing dummy 2 1–16 and 33–41 Yes

Hearing dummy 3 1–29 Yes
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Fig. 4 Block diagram for classical onset detection (without auditory model)

points of subsequent frames. For each frame, the mag-
nitude spectrum of the discrete Fourier transform (DFT)
|X[ n,μ] | is computed where n denotes the frame index
and μ the frequency bin index. Afterwards, two pre-
processing steps are applied (step 2). First, a filter-bank
F[μ, ν] filters the magnitude spectrum according to the
note scale of western music [40]. The filtered spectrum is
given by

Xfilt[ n, ν]=
M∑

μ=1
|X[ n,μ] | · F[μ, ν] , (1)

where ν is the bin index of this scale which consists of B =
82 frequency bins (12 per octave), spaced in semitones for
the frequency range from 27.5 Hz to 16 kHz. Second, the
logarithmic magnitude of the spectrum is computed:

Xlog[ n, ν]= log(γ · Xfilt[ n, ν]+1), (2)

where γ ∈] 0, 20] is a compression parameter to be opti-
mized.
Afterwards, a feature is computed in each frame (step

3). Here, we use the spectral flux (SF(n)) feature, which
is the best feature for onset detection w. r. t. the F mea-
sure according to recent studies. In [41], this is shown on a
music data set with 1065 onsets covering a variety of musi-
cal styles and instrumentations, and in [40], this is verified
on an even larger data set with 25,966 onsets. Spectral flux
describes the degree of positive spectral changes between
consecutive frames and is defined as:

SF(n) =
B∑

ν=1
H(Xlog[ n, ν]−Xlog[ n − 1, ν] )

with H(x) = (x + |x|)/2.
(3)

Joining the feature values over all frames consecutively
yields the SF vector.
Next, exponential smoothing (step 4) is applied, defined

by

SFs(1) = SF(1) and
SFs(n) = α · SF(n) + (1 − α) · SFs(n − 1)

for n = 2, . . . , L,
(4)

where L is the number of frames and α ∈[ 0, 1].

A threshold function (step 5) distinguishes between rel-
evant and nonrelevant maxima. To enable reactions to
dynamic changes in the signal, a moving threshold is
applied, which consists of a constant part δ and a local part
weighted by λ [41]. The threshold function is defined as

T(n) = δ + λ · mean(SFs(n − lT ), . . . , SFs(n + rT )),
for n = 1, . . . , L,

(5)

where lT and rT are the number of frames to the left and
to the right, respectively, defining the subset of considered
frames.
The localized tone onsets are selected by two conditions

(step 6):

O(n) =
⎧
⎨

⎩

1, if SFs(n) > T(n)and SFs(n) =
max(SFs(n − lO), . . . , SFs(n + rO))

0, otherwise.
(6)

O = (O(1), . . . ,O(L))T is the tone onset vector and lO
and rO are additional parameters, representing again the
number of frames to the left and right of the actual frame.
Frames with O(n) = 1 are converted into time points

by identifying their beginnings (in seconds). Finally, all
estimated onset time points are shifted by a small time
constant τ (step 7) to account for the latency of the detec-
tion process. Compared to the physical onset, which is the
target in our experiments, the perceptual onset is delayed,
affected by the rise times of instrument sounds [42]. In the
same manner, these rise times also affect the maximum
value of spectral flux and other features.
Then, OTP = (OTP1, . . . , OTPCest) denotes the

resulting vector of these final estimates, where Cest is the
number of estimated onsets. A found tone onset is cor-
rectly identified if it is inside a tolerance interval around
the true onset. We use ±25 ms as the tolerance which is
also used in other studies [40].
The performance of tone onset detection is measured by

the F-measure taking into account the tolerance regions:

F = 2 · mT+

2 · mT+ + mF+ + mF−
, F ∈ [0, 1] , (7)
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where mT+ is the number of correctly detected onsets,
mF+ is the number of false alarms, andmF− is the number
of missed onsets. F = 1 represents an optimal detection,
whereas F = 0 means that no onset is detected correctly.
Apart from these extremes, the F-measure is difficult to
interpret. Therefore, we exemplify the dependency of the
number of missed onsets on the number of true onsets
Ctrue = mT+ +mF− and the F value for the scenario where
no false alarm is produced:

mF+ = 0 =⇒ mF− =
(
1 − F

2 − F

)
× Ctrue. (8)

In a listening experiment, we would assume a rela-
tively low number of false alarms. Hence, we will use the
scenariomF+ = 0 for a comparison to human perception.

4.2.2 Parameter optimization
The baseline onset detection algorithm contains the
11 parameters summarized in Table 2. Parameter
optimization is needed to find the best parameter setting
w.r.,t. a training data set and to adapt the algorithm to
predominant onset detection and to the auditory model
output. Since evaluation of one parameter setting—also
called point in the following—is time consuming (5 to
15 min on the used Linux-HPC cluster system [43]),
we apply sequential model-based optimization (MBO).
After an initial phase, i.e., an evaluation of some ran-
domly chosen starting points, new points are proposed
and evaluated iteratively w.r.t. a surrogate model fitted
to all previous evaluations, and an appropriate infill cri-
terion decides which point is the most promising. The
most prominent infill criterion is expected improvement
(EI) which looks for a compromise of surrogate model
uncertainty in one point and its expected function value.
For a more detailed description of MBO, see [44, 45].

Table 2 Parameters and their ranges of interest for the classical
onset detection approach

Parameter name Minimum value Maximum value

Frame sizeM 210 212

Hop size h 400 1600

γ 0.01 20

α 0 1

λ 0 1

δ 0 10

lT 0 s 0.5 s

rT 0 s 0.5 s

lO 0 s 0.25 s

rO 0 s 0.25 s

τ −0.025 s 0.025 s

4.2.3 Onset detection using an auditorymodel
The baseline onset detection algorithm can also be per-
formed on the output of each channel of the auditory
model p(t, k). Again, we use MBO to optimize the algo-
rithm on the data, this time individually for each channel
k, getting the estimation vectorOTPk . Now, the additional
challenge arises how to combine different onset predic-
tions of several channels. We compare two approaches.
First, as a simple variant, we just consider the channel
which achieves the best F-value on the training data.
Second, we introduce a variant which combines the final
results of all channels. This approach is illustrated in
Fig. 5. Again, the parameters we want to optimize are
shown in parentheses.
Since particularly the performance of the highest

channels are rather poor as we will see in Section 6, and
furthermore, considering that fewer channels lead to a
reduction of computation time, we allow the omission
of the lowest and the highest channels by defining the
minimum kmin and the maximum channel kmax. All
estimated onset time points of the remaining channels are
pooled into one set of onset candidates:

OTPcand =
kmax⋃

k=kmin

OTPk . (9)

Obviously, in this set, many estimated onsets occur
several times, probably with small displacements, which
have to be combined to a single estimation. Additionally,
estimations which just occur in few channels might be
wrong and should be deleted. Hence, we develop the
following method to sort out candidates. For each estima-
tion, we count the number of estimations in their temporal
neighborhood, defined by an interval of ±25 ms (corre-
sponding to the tolerance of the F measure). In a next
step, only estimations remain where this count is a local
maximum above a global threshold. The threshold is
defined by

β · (kmax − kmin + 1), (10)

where β is a parameter to optimize. For each candidate
time point n, the interval within which it must fulfill the
maximum condition is set to [ n− tloc, . . . , n+ tloc], where
tloc is another parameter to optimize.
This results in four free parameters which we optimize

in a second MBO run. The ranges of interest for these
parameters are listed in Table 3. Since optimizing just
four parameters is much faster than optimizing the eleven
parameters of the conventional method, the overhead of
computation time can be ignored.
The adaption to predominant onset detection using the

auditory model output is again just performed by search-
ing the best parameter setting with respect to the reduced
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Fig. 5 Block diagram for the proposed approach for onset detection using an auditory model

target time points (not including the onset time points of
the accompaniment).

4.3 Predominant pitch estimation
Here, we understand pitch estimation as a synonym for
fundamental frequency (F0) estimation, where we allow a
tolerance of a half semitone (50 cents). This is equivalent
to a relative error of approximately 3% on the frequency
scale (Hz). In the predominant variant, we are just inter-
ested in the pitch of the melody instrument. As already
mentioned above, we assume that the onsets and offsets of
each melody tone are known. This information is used to
separate the auditory output of each song temporally into
individual melody tones (including the accompaniment at
this time).
Our tested approaches using the auditory model can

be divided into two groups—autocorrelation approach
and spectral approach—which are described in the fol-
lowing. Additionally, we use the YIN algorithm [26]
and its extension pYIN [27], which do not employ an
auditory model, for comparison reasons in our experi-
ments. The mean error rate over all tones is applied to
measure the performances of the approaches, i.e., it is
assumed that all tones are equally important, regardless of
their length.

4.3.1 Autocorrelation approach
One challenge of autocorrelation analysis of the auditory
output is again the combination of several channels. In
[30, 31], this is achieved by first computing the individual
running autocorrelation function (ACF) of each channel
and combining them by summation (averaging) across all
channels (SACF). The SACF is defined by

Table 3 Parameters and their ranges of interest for the
aggregation approach (onset detection with auditory model)

Parameter name Minimum value Maximum value

tlocMax 0 s 0.125 s

β 0 1

kmin 1 20

kmax 21 41

s(t, l) = 1
K

K∑

k=1
h(t, l, k), (11)

where K is the number of considered channels and
h(t, l, k) is the running ACF of each auditory channel k
at time t and lag l. The peaks of the SACF are indica-
tors for the pitch where the maximum peak is a promising
indicator for the fundamental frequency. The model is
successfully tested for several psychophysical phenomena
like pitch detection with missing fundamental frequency
[30, 31]. However, for complex musical tones, often the
maximum peak of the SACF is not located at the fun-
damental frequency, but instead at one of its multiples.
Hence, we propose an improved peak picking version
which takes the first peak of the SACF which is above an
optimized threshold:

min[ t ∈ tlM : SACF(t) > λ · max(SACF(t))] , (12)

where tlM is the set of all local maxima of the SACF and
λ ∈ [0, 1] has to be optimized on a training set.

4.3.2 Spectral approach
We propose a classification method partly based on fea-
tures which we introduced in [46, 47] for detecting the
frequencies of all partials. Here, the feature set is adapted
for pitch estimation and some additional features are
added. At first, the DFT magnitude spectrum |P[μ, k] |
of each auditory channel k is computed where each
maximum peak within an interval around the channel’s
best frequency—limited by the best frequencies of the
two neighboring channels—is considered as the channel’s
pitch candidate:

μ∗[ k]= argmax
μ∈{BF[k−1],...,BF[k+1]}

|P[μ, k] |, k = 1, . . . ,K ,

(13)

where BF[ k] is the frequency bin which comprises the
best frequency of channel k (for k = 1, . . . ,K ), ranging
from 100Hz to 6 kHz. For the limits of the first and the last
channel, we additionally define BF[0] as the frequency bin
which comprises 50 Hz and BF[K+1] as the frequency bin
which comprises 10 kHz. The center frequency CF(μ) of
the frequency binμ∗[k] is the candidate c[k]= CF(μ∗[k] ).
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The classification target is to identify the channel with
minimal distance between its best frequency and the
fundamental frequency. The frequency candidate of this
channel is returned as the estimated pitch. The follow-
ing features are computed individually for each channel
respectively and for each candidate:

• The frequency of the candidate c[k],
• The spectral amplitude of the candidate’s frequency

bin: ac[k]= |P[μ∗[k] , k] |,
• The bandwidth b[ k] of the candidate, defined by the

distance between the two closest frequency bins to
the left and right of the candidate, where the spectral
amplitude is below 10% of the candidate’s amplitude
(see also Fig. 6):

b[k]= CF(μ∗
right[k] ) − CF(μ∗

left[k] ). (14)

The band edges are defined by

μ∗
right[k]= min

(
μ ∈

{
μ∗[k] , . . . , M

2

}
:

ac[k]
10

> |P[μ, k] |
)
,

(15)

Fig. 6 Features for pitch estimation. a Bandwidth b[ k] of the
candidate peak, b distance to maximum left dleft[ k], and c distance to
maximum right dright[ k]the candidate) across

where μ∗
right[k] is set to

M
2 , if no such μ exists, and

μ∗
left[k]= max

(
μ ∈ {1, . . . ,μ∗[ k] } :

ac[k]
10

> |P[μ, k] |
)
,

(16)

where μ∗
left[k] is set to 0, if no such μ exists,

• The distances of the candidate’s frequency to the
maxima to the left and right, respectively, restricted
by the candidate’s band edges (two features: dleft[k]
and dright[k], see also Fig. 6):

dleft[k]= c[k]−CF(mleft[k] ),where
mleft[k]= argmax

μ∈{1...μ∗
left[k]}

(P[μ, k] ) and (17)

dright[k]= CF(mright[k] ) − c[k] ,where
mright[k]= argmax

μ∈
{
μ∗
right[k]...

M
2

}(P[μ, k] ). (18)

• The spectral amplitude of these two maxima (2
features): |P[mleft[k] ] | and |P[mright[k] ] |.

• Average and maximum spike probabilities of the
channel: pmean[k] and pmax[k],

• Average and maximum spectral magnitude of the
first nine partials (pl = 1, . . . , 9) across all channels:

Pmean
pl [k]= 1

K

K∑

n=1
P[ fb(pl · c[k] ), n] , (19)

where fb(i) is the frequency bin which comprises
frequency i and

Pmax
pl [k] ) = max

n∈{1,...,K}
(P[ fb(pl · c[k] ), n] , ), (20)

Studies have shown that humans can resolve the first
7 to 11 partials [48, 49]. Hence, the first nine partials
might be beneficial for pitch estimation.

• In the same manner, average and maximum spectral
magnitude of the first undertone (half frequency of
the candidate) across all channels: Pmean

1
2

[k] and
Pmax

1
2

[k].

Altogether, this results in 29 features for each channel,
i.e., 29 × 41 = 1189 features for the auditory model.
As a third method for pitch estimation, this classifica-

tion approach is also applied in the same way to the ACF.
Here, the same 29 features are extracted, but this time
based on the ACF instead of the DFT.

4.4 Predominant instrument recognition
Instrument recognition is a typical supervised classifica-
tion task. First, meaningful features need to be extracted,
and second, a classification model is learned which maps
the feature space to the instrument categories. Although
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one could assume the same predominant instrument
during one song, we do not use the information about
previous tones, since we want to use instrument recog-
nition as an indicator for correctly perceived timbre.
We think this is best characterized by tone-wise classi-
fication without using additional knowledge. Hence, also
here, the auditory output of each song is separated into
temporal segments defined by the individual tones of
the predominant instrument, and for each segment—
corresponding to onemelody tone—features are extracted
separately.
We use 21 features, listed in Table 4, which we already

considered in previous studies [50]. These features are
common for instrument recognition based directly on
the time domain waveform and are linked to tim-
bre in the literature [51]. For our approach using an
auditory model, they are computed on each of the
41 channels, thus, we obtain 41 × 21 = 861 fea-
tures for each tone. The first 20 features are computed
by means of the MIRtoolbox [52]. The last feature is the
Shannon-Entropy:

H(X[μ] ) = −
M∑

μ=1
pr(|X[μ] |) log2 pr(|X[μ] |), (21)

where X[μ] is the DFT of a signal frame (respectively
the DFT of a channel output in the auditory model vari-
ant) and pr(|X[μ] |) = |X[μ]|∑M

ν=1 |X[ν]| is the share of the
μth frequency bin with respect to the cumulated spectral
magnitudes of all bins. H(X[μ] ) measures the degree of
spectral dispersion of an acoustic signal and is taken as a
measure for tone complexity.

4.5 Classification methods
Supervised classification is required for our approaches in
pitch estimation and instrument recognition. Formally, a
classifier is a map f : 	 → 
 , where 	 is the input space
containing characteristics of the entities to classify and 


Table 4 Features for instrument recognition [50]

Feature no. Feature name

1 Root-mean-square energy

2 Low energy

3 Mean spectral flux (see Eq. 3)

4 Standard deviation of spectral flux

5 Spectral rolloff

6 Spectral brightness

7 Irregularity

8–20 Mel-frequency cepstral coefficients (mfcc):

First 13 coefficients

21 Entropy

is the set of categories or classes. Here,	 is a (reduced) set
of features and 
 is a set of labels of musical instruments
or channels (pitch candidates).
In our experiment, we apply two important classes of

methods, namely linear large margin methods (repre-
sented by the linear support vector machine, SVM) and
ensembles of decision trees (Random Forests, RF).

4.5.1 Decision trees and Random Forests
Decision trees are one of the most intuitive models
used in classification. The model is represented as a set
of hierarchical “decision rules,” organized usually in a
binary tree structure. When a new observation needs
to be classified, it is propagated down the tree tak-
ing either the left or right branch in each decision
node of the tree, depending on the decision rule of
the current node and the corresponding feature value.
Once a terminal node has been reached, a class label
is assigned. For a more detailed description of decision
trees, see [53].
Sometimes, a single classification rule is not powerful

enough to sufficiently predict classes of new data. Then,
one idea is to combine several rules to improve pre-
diction. This leads to so-called ensemble methods. One
example is Random Forests (RF), a combination of many
decision trees (see, e.g., [54]). The construction of the dif-
ferent classification trees has random components—i.e.,
for each tree, only a random subset of observations, and
for each decision node, only a random subset of features
is considered—leading to the term Random Forests.

4.5.2 Support vectormachines
Support vector machines (SVMs) [55] are among the
state-of-the-art machine learning methods for linear
and non-linear classification. They are often among the
strongest available predictors, and they come with exten-
sive theoretical guarantees. To simplify our experimental
design, we consider only linear SVMs.
The linear SVM separates two classes by a hyperplane

maximizing a so-called safety margin between the classes.
As we cannot exclude the existence of outliers, so-called
slack variables are applied, one per training point, measur-
ing the amount ofmargin violation. Overall, maximization
of the margin is traded against minimization of margin
violations.
Many practical problems—like our music recognition

tasks—involve three or more classes (G > 2). There-
fore, the large margin principle has been extended to
multiple classes. We apply the one-versus-one approach,
where the G-class problem is converted into G(G−1)

2
binary problems. For each pair of classes, a SVM deci-
sion function is trained for separating the two specific
classes. The prediction rule then picks the class which is
voted the most.
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4.5.3 Feature selection
Feature selection filters the important features in order
to reduce computation time for feature extraction as well
as for the classification process itself. Another advantage
of feature selection is a better interpretability of a classi-
fication model based on lesser features. Knowing which
features are important might also help to design improved
feature sets. Lastly, feature selection can even improve
classification results since classifiers have problems with
meaningless or redundant features.
Two basic approaches exist for feature selection: for-

ward selection and backward selection [56]. Forward
selection is a greedy search approach which starts with an
empty set of features. In each iteration, the feature which
yields the most improvement w.r.t. the error rate is added
to the set until no feature yields an improvement higher
than a specified threshold. Backward selection works the
other way round. It starts with all features, and in each
iteration, the feature is removed which yields the least
improvement. Here, the stopping threshold is usually a
small negative value allowing also small increases of the
error rate in order to simplify the model.
Both approaches have a complexity of O(n2) which

results in too much computation time when dealing with
n ≈ 1000 features as we consider for pitch estima-
tion and instrument recognition. Hence, we propose to
group the features into feature groups and to handle each
group as one single feature for forward and backward
selection, respectively. There are two natural grouping
mechanisms since the features can be categorized by two
dimensions: the channel index and the feature name. The
first approach is to combine the related features across all
channels into one group, and the second approach is to
combine all features generated in the same channel into
one group. The first approach results in 29 feature groups
for pitch estimation and 21 groups for instrument recog-
nition. For both tasks, the second approach results in K
feature groups. An additional benefit of channel-based
grouping is the potential of sorting out entire channels
which also reduces computation time for the simulated
auditory process. In our experiments, we set the mini-
mum improvement for forwards selection to 0.01 and for
backward selection to −0.001.

5 Design of experiments
5.1 Data
Our data base consists of 100 chamber music pieces
recorded in MIDI which include a specific melody instru-
ment and one or more accompanying instruments, either
piano or strings. The ISP toolbox inMatlab with the “Fluid
(R3) General MIDI SoundFont” is applied for synthesizing
MIDI files in a sample-based way [57]. For simplifica-
tion reasons, only standard playing styles are considered,
e.g., bowed for cello. Naturally, real music recordings

would be preferable, but the chosen concept provides a
labeled data base with onset times, pitches, and the instru-
ments being played which is sufficiently large to apply our
experimental design.
In most studies of music data, experiments are per-

formed on a rather arbitrary data base of music samples
where it is difficult to determine how well it represents
a whole entity of music. Instead, we construct a more
structured data base using an experimental design based
on eight musical factors which might have an influence
on music intelligibility. This enables identification of the
most problematic music w.r.t. classification performance.
We apply Plackett-Burman (PB) designs which require
just two levels for each factor [58]. After all experiments
(music samples) are evaluated, a linear regressionmodel is
fitted to predict the target variables w.r.t. the factor levels.
For onset detection, the target variable is the F measure;
for instrument recognition, it is the classification error
rate; and for pitch estimation, it is the mean error rate
using a tolerance of a half semitone. If no factor has a sig-
nificant influence on the target variable, we can assume
that the approach works equally well for all considered
music pieces. The goodness of fit of the regression model
is measured by the so-called R-squared (R2 ∈ [0, 1]) which
indicates the proportion of variance that is explained by
the factors. R2 = 1 means that the results are completely
explained by the considered factors, whereas R2 = 0
means that the factor values do not influence the results,
i.e., the results are independent of the type of music. Since
R2 also depends on the number of factors, adjusted R2 are
used to compensate this effect [59]:

R2
a = 1 − nexp − 1

nexp − pfac − 1
(1 − R2), (22)

where nexp is the number of experiments and pfac is the
number of factors [60].
In the context of music, influence factors can be sep-

arated into two groups: factors where changes produce
unnatural new tone sequences and factors where changes
mostly preserve a given composition. Obviously, the prob-
lematic group is the first one since we are not interested
to analyze music which sounds unnatural, and hence, we
keep these factors constant. Instead, we identify origi-
nal music extracts for each possible combination of these
factor levels. Only the factors of the second group are
changed in theMIDI annotation to get every desired com-
bination of factor levels. We define four factors which
belong to the first group and four factors which belong
to the second group. The factor levels are determined by
identifying typical values, considering our data base of
100 chamber music pieces. They are chosen such that the
numbers of song extracts which belong to each of the two
levels are rather equal, and in addition, a clear gap between
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the two levels is ensured. The factors of the first group are
as follows:

• Mean interval size: This is the mean interval step
between two consecutive tones of the melody,
measured in semitones. We define two factor levels:
< 2.5 and > 3.5.

• Onsets in accompaniment : This factor defines the
common individual onsets produced by the
accompanying instrument(s) which do not occur in
the track of the melody instrument w.r.t. to all onsets.
We apply two factor levels: < 0.4 and > 0.6.

• Dynamics: We define the dynamics of a song by the
mean absolute loudness difference of consecutive
melody tones, measured in MIDI velocity numbers.
We consider two factor levels: < 0.5 and > 1.0.

• Accompanying instrument: We consider two
instruments as factor levels: piano and strings.

The four factors of the second group can take values
which are, within limits, freely adjustable:

• Melody instrument: We consider three instruments
of different instrument groups as factor levels: cello,
trumpet, and clarinet. Here, no natural aggregation
into two factor levels exist. Hence, it is not
considered within the PB designs, and instead, the
designs are repeated three times, one repetition for
each instrument.

• Mean pitch of the melody: We restrict the minimum
and maximum allowed pitches for the melody to the
pitch range of the three considered instruments
which is from E3 (165 Hz) to A6 (1047 Hz). For the
experimental design, we define two levels. The first
level transposes the song extract (including the
accompaniment) such that the average pitch of the
melody is D4 (294 Hz), and the second level
transposes the song extract such that the average
pitch of the melody is D5 (587 Hz). Afterwards, we
apply the following mechanism to prevent unnatural
pitches w.r.t. the instruments. If the pitch of one tone
violates the allowed pitch range, the pitch of all tones
within the considered song extract is shifted until all
pitches are valid.

• Tone duration: We define the factor tone duration by
the duration of the song extracts in order to maintain
the rhythmic structure. If this factor is modified, all
tone lengths of the song extract are adjusted in the
same way. We consider two factor levels: 12 and 25 s
which, for our data, results in tone lengths between
0.1 and 0.5 s for the first level and between 0.2 and
1.0 s for the second level.

• Mean pitch of accompaniment : This factor is the
difference of the average pitch of the accompaniment
compared to the average pitch of the melody. For

changing this factor, we only permit transpositions of
the accompaniment tracks by full octaves (12
semitones). The two considered levels are defined by
the intervals [−6,6] and [−24,−12] measured in
semitones. If the pitches of melody and
accompaniment are similar, we expect higher error
rates for the considered classification tasks. The case
where the accompaniment is significantly higher than
the melody is neglected since this is rather unusual at
least for western music.

The factors and their specified levels are summarized
in Table 5. We apply PB designs with 12 experiments and
pfac = 7 factors (as noted above the melody instrument is
not considered within the PB design) to generate appro-
priate song extracts. Each experiment defines one specific
combination of factor levels. First, for each experiment, all
possible song extracts with a length of 30 melody tones
are identified from our data base of 100 MIDI songs w.r.t.
the specification of the first factor group. Second, for each
experiment, one of these song extracts is chosen and the
factors of the second group are adjusted as defined by the
design. Finally, each song extract is replicated three times,
changing the melody instrument each time. Overall, this
results in 3 × 12 × 30 = 1080 melody tones for each PB
design. We apply three independent designs and choose
different song excerpts in order to enable cross-validation.
Hence, we get nexp = 3 × 12 = 36 experiments alto-
gether. To ensure that the accompaniment is not louder
than the melody, we use a melody to accompaniment ratio
of 5 dB.

5.2 Structure of the comparison experiments
At first, the approaches described in the previous section
are compared using the original auditory model without a
simulated hearing loss. The structure of the whole process
is illustrated in Fig. 1.
For all experiments, threefold cross-validation is applied

which means the excerpts of two designs are used
for training of the classification models—or in the
optimization stage in case of onset detection—and the

Table 5 Plackett-Burman designs: factor levels

Factors 1st level 2nd level

Mean interval <2.5 >3.5

Onsets accompaniment <0.4 >0.6

Dynamic <0.5 >1.0

Accompaniment Piano Strings

Mean pitch D4 D5

Song (tone) duration 12 s 25 s

Pitch difference: [−6, 6] [ 12, 24]

melody − accompaniment Half tones Half tones
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remaining excerpts of the third design are used for test-
ing. Additionally, the approaches are also compared on
monophonic data using the same excerpts but without
any accompanying instruments. Without any distortion
by the accompaniment, misclassification rates should be
marginal.
Since the predominant variant of onset detection is

a novel issue, a comparison to existing approaches is
difficult. Searching for all onsets, as well as the mono-
phonic case, are the standard problems of onset detection.
Hence, apart from the monophonic and the predominant
variant, we also investigate the approaches w. r. t. usual
polyphonic onset detection (all onsets). All nine cases—
three approaches (two with and one without an auditory
model) combined with the three variants—are individ-
ually optimized using MBO with 200 iterations, which
means 200 different parameter settings are tested on the
training data.
For pitch estimation and instrument recognition, all

classification approaches are tested in two variants: RF
and linear SVM (Section 4.5). For instrument recogni-
tion, features are extracted from the auditory model or
the original signal which results in four considered vari-
ants altogether. For pitch estimation, eleven approaches
are compared: four classification approaches with
auditory features—RF or SVM combined with DFT or
ACF features—(Section 4.3.1), two peak-picking vari-
ants for the SACF approach (Section 4.3.2) and five
variants of the YIN (respectively pYIN) algorithm as the
state-of-the-art approaches without an auditory model.
For the YIN algorithm, standard settings are used,

except for the lower and the upper limits of the search
range which are set to 155 and 1109 Hz, respectively.
These values corresponds to the pitch range of the melody
in the considered song extracts. In contrast to the other
tested approaches, the YIN and the pYIN algorithms
estimate the fundamental frequency for short frames and
not for complete tones. Hence, an aggregation mecha-
nism is needed to aggregate the fundamental frequency
estimations of several frames into one estimation for the
complete tone. For the YIN algorithm, three aggregation
approaches are tested. The first method selects the esti-
mation of the frame which has the smallest “aperiodic
power” component which might be an indicator for the
estimation uncertainty [26]. The second method returns
the median estimation. This method is also tested for the
pYIN algorithms which, however, often wrongly estimates
a higher partial. This effect might be rectified by lower
quantiles, and hence, we also test the 10% quantile for YIN
and pYIN.
For pitch and instrument recognition, the feature selec-

tion approaches, described in Section 4.5.3, are used to
investigate the importance of channels (best frequencies)
and features. Finally, all experiments conducted for the

auditory model without hearing loss are repeated for the
three hearing dummies described in Section 4.1. This
means also the optimization stage of onset detection and
the training stages of pitch and instrument recognition are
conducted separately for each hearing model.

5.3 Software
For classification, the R package mlr [61] is applied using
the package randomForest [62] for RFs and the package
kernlab [63] for SVMs. MBO is performed by using the R
packagemlrMBO [64]. Finally, the huge number of experi-
ments performed is managed by the R packages BatchJobs
and BatchExperiments [65].

6 Results
First, we present the main results regarding the normal
hearing auditory model in comparison to the reference
approaches (Section 6.1). Second, we consider the perfor-
mance loss of models with hearing deficits exemplified by
the three hearing-dummies (Section 6.2).

6.1 Comparison of proposed approaches
We will look at the results of onset detection, pitch
estimation, and instrument recognition, consecutively.

6.1.1 Onset detection
Table 6 shows the results of onset detection for the
three considered approaches: (1) common onset detec-
tion on the original signal (without any auditory model),

Table 6 Results (mean F measure) for onset detection with and
without an auditory model (AM)

Design All Melody Monoph.

W/o AM

Cello 0.65 0.57 0.80

Clarinet 0.79 0.72 0.80

Trumpet 0.87 0.84 0.97

Mean 0.77 0.71 0.86

AM, best ch.

Cello 0.44 0.37 0.68

Clarinet 0.65 0.61 0.80

Trumpet 0.70 0.79 0.99

Mean 0.60 0.59 0.82

AM, aggr.

Cello 0.53 0.46 0.79

Clarinet 0.71 0.72 0.76

Trumpet 0.85 0.87 0.98

Mean 0.69 0.68 0.84
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(2) onset detection using the auditory model output by
choosing the output of the best single channel, and (3)
onset detection where the estimated onset time points of
several channels are combined. For all approaches, the rel-
evant parameters are separately optimized for three tasks:
monophonic onset detection (songs without accompani-
ment), predominant onset detection where we are just
interested in the melody onsets, and onset detection
where we are interested in all onsets.
All approaches perform worse than expected, even the

reference approach without the auditory model, which is
the state-of-the-art method for monophonic data. Solving
onset detection by using only one of the auditory chan-
nels performs very differently from channel to channel as
can be seen in Fig. 7. For the predominant task, channels
with a medium best frequency are better than low and
high channels. The best performance is achieved by using
the output of channel 23 resulting in an average F value
of 0.59. However, the approach which aggregates the final
estimations of all channels improves this result. Interest-
ingly, in the optimum, all channels are considered, also the
highest ones which individually perform very poorly as we
have seen above. The average F value of 0.68 in the pre-
dominant variant is still slightly worse than the common
onset detection approach based on the original signal.
However, the aggregation is based on a relatively simple
classification approach, which uses just the number of
estimations in the neighborhood as a single feature.
In all variants, the performance for trumpet—which has

a clear attack—is by far the best, whereas in most variants,
the performance for cello is the worst. In the predom-
inant variant, the detection of cello tones is even more
difficult when it is disturbed by string accompaniment.
Note that a comparison of different approaches for a spe-
cific instrument should be done with care, since only the
overall performance is optimized. This means, e.g., a small

loss of performance for trumpet might be beneficial if this
leads to a bigger gain for cello or clarinet. As expected,
the results for the polyphonic variants are distinctly worse
than for the monophonic variant. Furthermore, finding all
onsets seems to be simpler than finding just the melody
onsets, at least for the considered melody to accompani-
ment ratio of 5 dB.
In Table 7, the evaluation of the experimental design

for the channel-aggregating method, averaged over the
three instruments, can be seen. In the monophonic vari-
ant, the adjusted R2 (R2

a) is negative, which indicates that
the performance is independent of the type of music. This
is also supported by the p values, since none of them
shows a significant impact. Obviously, this was expected
for some factors which correspond to the accompaniment
so that they should only have an impact in the polyphonic
case. However, before conducting the experiments, we
expected that greater values of the mean interval should
simplify onset detection.
For the other two variants of onset detection, the good-

ness of fit is relatively high
(
R2
a > 0.5

)
—note that we

describe music pieces by just eight dimensions which
explains the relatively high amount of noise in all eval-
uation models of the experimental design. Nevertheless,
we can identify some important influence factors w.r.t.
the performance of the proposed algorithm. In the pre-
dominant variant, the performance is better if the number
of onsets solely produced by the accompaniment is low.
Obviously, this was expected since false alarms caused by
tones of the accompaniment are decreased in that case.
However, a higher mean pitch and shorter tones also seem
to be beneficial. In the polyphonic variant, piano accom-
paniment is better than string accompaniment. This effect
is explained by the bad performance of onset detection for
string instruments in general as we have already seen for
cello. Furthermore, also in this scenario, a smaller number

Fig. 7 Results (mean F measure) for predominant onset detection using the output of just one channel



Friedrichs et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2017) 2017:7 Page 15 of 22

Table 7 Evaluation over all instruments and all Plackett-Burman designs for the proposed aggregation approach (factors as in Table 5)

a b c

Fit R2 = 0.13, R2a = −0.09 R2 = 0.65, R2a = 0.56 R2 = 0.61, R2a = 0.51

Factors Estimates p value Estimates p value Estimates p value

(Intercept) 0.8448 < 2e−16 0.6815 < 2e−16 0.6945 < 2e−16

Mean interval −0.0015 0.90 −0.0041 0.76 0.0308 0.17

Onsets accompaniment −0.0021 0.87 −0.0636 4e−05 −0.0448 0.05

Dynamic −0.0146 0.25 −0.0186 0.17 −0.0019 0.93

Accompaniment 0.0177 0.16 −0.0109 0.41 −0.1313 2e−06

Mean pitch 0.0029 0.81 0.0510 6e−04 0.0198 0.37

Tone duration −0.0087 0.49 −0.0348 0.01 −0.0026 0.91

Pitch: mel. - acc. 0.0051 0.68 −0.0224 0.10 −0.0213 0.34

The average F value is the target variable—a: monophonic onset detection, b: predominant onset detection, and c: polyphonic onset detection (italics = significant at 10%
level)

of individual onsets produced by the accompaniment is
beneficial, probably because mutual onsets of melody and
accompaniment are easier to identify.

Comparison to human perception Although there is a
wide range of publications dealing with the human per-
ception of rhythm (see [66] for an overview), none of them
analyzes the human ability to recognize onsets in musi-
cal pieces. Reason for this might be the fact that onset
detection is a rather trivial task for normal-hearing listen-
ers at least for chamber music. This is particularly the case
for monophonic music where only the detection of very
short tones and the separation of two identical consecu-
tive tones of bowed instruments seem to be challenging.
According to Krumhansl, the critical duration between
two tones for event separation is 100 ms [66], a threshold
which is exceeded for all pairs of tones in this study.
An informal listening test with our monophonic music

data indicates that even all onsets of identical consecu-
tive tones can be identified by a trained normal-hearing
listener. However, to study a worst-case scenario, let us
assume (s)he does not recognize these onsets in case of
the cello. That means, 94 out of the 3240 onsets are missed
which corresponds to a misclassification rate of 2.9% and
an F value of 0.99. Contrary, even the state-of-the-art
method without the auditory model achieves a mean F
value of only 0.86 which, according to (8), means that
24.6% of all onsets are missed if we assume that the algo-
rithm does not produce any false alarm. In conclusion, in
the field of automatic onset detection, big improvements
are necessary in order to emulate human perception.

6.1.2 Pitch estimation
Table 8 lists the average error rates of pitch detection using
the methods described in Section 4.3 for the three instru-
ments. Additionally, the results for the monophonic data
are listed. Out of the approaches with auditory model,

our approach using spectral features of the auditory out-
put and a linear SVM for classification performs best with
a mean error rate of 7% in the polyphonic and 2% in
the monophonic case. The YIN algorithm with median
aggregation performs even better with a mean error rate
of only 3% for polyphonic music, whereas the “aperiodic
power” variant performs extremely poor. The pYIN algo-
rithm performs worse than the YIN algorithm. Reason
for this is that it more often confuses the frequency of a
higher partial with the fundamental frequency. Paradox-
ically, this effect occurs even more often in the mono-
phonic variant. Contrary, all other approaches perform as
expected clearly better in the monophonic variant than
in the polyphonic one. Applying the 10% quantile instead
of the median decreases the confusion of the higher par-
tials and improves the performance which, nevertheless,

Table 8 Mean error rates of pitch detection methods (italics
indicates the best results for the mean performance)

Polyphonic/predominant Mono.

Method Cello Clar. Trump. Mean Mean

SACF max. 0.55 0.52 0.54 0.54 0.20

SACF thresh. 0.24 0.12 0.17 0.18 0.05

DFT + RF 0.14 0.02 0.08 0.08 0.02

DFT + SVM 0.11 0.01 0.08 0.07 0.02

ACF + RF 0.24 0.08 0.30 0.20 0.05

ACF + SVM 0.21 0.05 0.24 0.17 0.04

YIN + aperiodic power 0.36 0.15 0.32 0.28 0.05

YIN + median 0.04 0.01 0.04 0.03 0.00

YIN + 10% quantile 0.11 0.04 0.09 0.08 0.03

pYIN + median 0.04 0.17 0.07 0.09 0.12

pYIN + 10% quantile 0.04 0.10 0.01 0.05 0.04
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is distinctly worse than the YIN algorithm with median
aggregation.
Interestingly, clarinet tones are the main challenge for

pYIN, whereas for all other approaches, the error rates for
clarinet are the lowest and cello tones seem to be the most
difficult ones. In general, the pitch of clarinet tones is eas-
ier to estimate because these tones have a relatively low
intensity of the even partials which might prevent octave
errors. For trumpet and cello tones, often the frequency
of the second partial is confused with the fundamental
frequency. Again, pitches of cello tones which are accom-
panied by string instruments are especially difficult to
estimate.
For the best method with auditory model—the classifi-

cation approach using spectral features and either linear
SVM or RF—group-based feature selection is performed
(as introduced in Section 4.5.3. The corresponding results
are listed in Table 9. Especially, feature-based grouping
shows good results. For both classification methods, the
forward variant finishes with just two feature groups—
instead of 29 without feature selection—where the perfor-
mance reduction is only small. Interestingly, the two clas-
sifiers choose different features. For RF, c[k] and dright[k]
are picked, whereas for SVM, pmean[k] and Pmean

1 [k] are
chosen. In the backward variant, the SVM just needs
the following nine feature groups to achieve the same
error rate as with all features: c[k], pmean[k], pmax[k],
b[k], dleft[k], dright[k], Pmean

4 [k], Pmean
8 [k], and Pmean

9 [k]. All
other features might be meaningless or redundant.
Also some channels can be omitted: For classification

with SVM, 23 channels instead of all 41 are sufficient to
get the best error rate of 0.07. The ignored channels are
located in all regions, which means no priority to lower or
higher channels can be observed, and the crucial informa-
tion is redundant in neighboring (overlapping) channels.
Table 10a shows the evaluation of the experimental

design. The goodness of fit
(
R2
a = 0.12

)
is rather low but

some weakly significant influence factors can be identi-
fied. For example, a bigger distance between the average
pitch of melody and accompaniment seems to be advan-
tageous. This was expected, since a bigger distance leads
to a lesser number of overlapping partials. Additionally,
there is a small significant influence regarding the kind
of accompaniment: piano accompaniment seems to be

beneficial. Again, this is expected as it is difficult to
distinguish cello tones from tones of other string instru-
ments.

Comparison to human perception There exist several
studies which investigate the ability of human pitch per-
ception (see [66, 67] for an overview). In most of these
studies, the ability to recognize relative changes of consec-
utive tones is quantified. Frequency differences of about
0.5% can be recognized by a normal-hearing listener [68].
However, quantifying these differences is a much harder
challenge. Discriminating thresholds for this task are in
the magnitude of a semitone for listeners without musi-
cal training which corresponds to a frequency difference
of approximately 6% [69]. The ability to recognize such
relative changes is called relative pitch which is the nat-
ural way most people perceive pitches. However, relative
pitch remains poorly understood, and the standard view
of the auditory system corresponds to absolute pitch since
common pitch models make absolute, rather than rela-
tive, features of a sound’s spectrum explicit [67]. In fact,
also humans can perceive absolute pitch. It is assumed
that this requires acquisition early in life. Also abso-
lute pitch possessors make errors—most times octave
and semitone errors—whose rate varies strongly between
individuals [70].
In conclusion, comparing the results of our study to

human data constitutes a big challenge. We can assume
that a normal-hearing listener might be able to perceive
relative pitches almost perfectly w.r.t. the tolerance of
1
2 semitone at least in the monophonic case. This esti-
mation approximately corresponds to the result of the
classification method with DFT features which yields a
mean error rate of 2% in our study. The human ability
for the perception of polyphonic music has not yet been
adequately researched to make a comparison. Hence, in
future studies, extensive listening tests are necessary.

6.1.3 Instrument recognition
The error rates for instrument recognition are listed in
Table 11. Here, the auditory model-based features per-
form distinctly better than the standard features. In both
cases, the linear SVM performs slightly better than the RF.
Distinguishing trumpet from the rest seems to be slightly

Table 9 Feature selection for pitch classification with auditory model and DFT: number of selected features and error rates

Method No selection Channel groups Feature groups

Forward Backward Forward Backward

RF: number of features 41 × 29 = 1189 4 × 29 = 116 35 × 29 = 1015 41 × 2 = 82 41 × 28 = 1148

RF: error rate 0.08 0.10 0.07 0.09 0.08

SVM: number of features 41 × 29 = 1189 5 × 29 = 145 23 × 29 = 667 41 × 2 = 82 41 × 9 = 369

SVM: error rate 0.07 0.10 0.07 0.09 0.07
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Table 10 Evaluation over all instruments and all Plackett-Burman
Designs (factors as in Table 5)

a b

Fit R2 = 0.30, R2a = 0.12 R2 = 0.37, R2a = 0.21

Coefficients Estim. p value Estim. p value

(Intercept) 0.0660 2e−08 0.0111 9e−04

Interval −0.0074 0.40 0.0049 0.11

Onsets acc. 0.0056 0.53 0.0037 0.23

Dynamic −0.0142 0.11 −0.0019 0.54

Acc. 0.0148 0.10 0.0056 0.07

Mean pitch −0.0068 0.44 0.0062 0.05

Tone dur. −0.0025 0.78 0.0025 0.42

Mel. − acc. −0.0185 0.04 −0.0056 0.07

The error rate is the target variable— a: pitch estimation and SVM (auditory model +
DFT), b: instrument recognition and SVM (auditory model features)—(italics =
significant at 10% level)

more difficult than identifying cello or clarinet. In the
monophonic variant, the results are nearly perfect for all
variants. Since the auditory model-based features are only
beneficial in the polyphonic case, we conclude that these
features enhance the ability to separate individual voices
or instruments.
Table 12 shows the result of feature selection for instru-

ment recognition. Here, both backward variants even
slightly improve the no-selection result for RF. Using only
the features of 12 channels leads to the best result which
is equally good as the SVM with all features. The selected
channels are 8, 12, 19, 21, 22, 24, 26, 27, 28, 32, 33, and
41. Comparing the best frequencies of these channels and
the pitch range of the melody explains why the low chan-
nels are unimportant. The fundamental frequency of the
considered melody tones is between 165 and 1047 Hz,
corresponding to the channels 6 to 24 which have best
frequencies between 167 and 1053 Hz. Also, some of the
higher channels are important which supply information
about overtones and possibly the fine structure. How-
ever, the deselection of several channels also illustrates the
redundancy of neighboring channels.
According to the results of forward selection, two chan-

nels are sufficient to get error rates of about 3%. Channels
26 and 41 are chosen for RF and channels 29 and 41

for SVM. The gain of higher channels for instrument
recognition is further illustrated in Fig. 8. Applying the
features of one of the first channels leads to an error rate
of almost 40%, whereas the features of the 41st channel
generate a model with an error rate below 5%. This is also
interesting for our examination of auditory models with
hearing loss since usually particularly the higher channels
are degraded the most. Also, in the backward variant of
channel-based grouping, the lowest channels are omitted.
In the feature-based forward variant, the same three fea-

ture groups are selected for SVM and RF, respectively:
mean spectral flux, root-mean-square energy, and spectral
rolloff. In the backward variant using the SVM, these three
features are also chosen and five additional ones: irregu-
larity and the first, the third, the fourth, and the seventh
MFCC coefficients.
Table 10b shows the evaluation of the experimental

design for predominant instrument recognition. Here, the
goodness of fit is moderate

(
R2
a = 0.21

)
and three weakly

significant influence factors can be identified. The most
significant influence has the mean pitch, i.e., lower tones
can be distinguished better. Also, string accompaniment
affects the error rates more than piano accompaniment.
Again, the reason might be the difficulty to distinguish
cello from other string instruments. Additionally, a bigger
distance between the pitches of melody and accompani-
ment also seems to be beneficial.

Comparison to human perception Most studies about
timbre in the field of music psychology try to quantify dis-
similar ratings and analyze their correlations to physical
features, whereas the common task in the field of music
information retrieval is instrument recognition. Although
both tasks are very similar, there exists one important
difference which causes diverging results of the two dis-
ciplines. Dissimilar ratings are subjective measures which
rely on judgements of humans, whereas instrument recog-
nition is a well-defined task [51]. Nevertheless, also, some
studies have conducted experiments about the human
ability to distinguish music instruments (see [71] for a
tabular overview). The most comprehensive experiment
is reported in [72], a listening experiment with music
experts. The subjects had to distinguish isolated notes of

Table 11 Mean error rates of instrument recognition methods (italics indicates the best result for the overall performance)

Polyphonic Monophonic

Method Cello vs. all Clarinet vs. all Trumpet vs. all Overall Overall

AM features, RF 0.012 0.017 0.029 0.019 0.002

AM features, SVM 0.007 0.007 0.014 0.011 0.001

Standard features, RF 0.044 0.034 0.052 0.063 0.000

Standard features, SVM 0.025 0.019 0.054 0.035 0.002
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Table 12 Feature selection for instrument recognition with auditory model features: number of selected features and error rates

Method No selection Channel groups Feature groups

Forward Backward Forward Backward

RF number of features 41 × 21 = 861 2 × 21 = 42 12 × 21 = 420 41 × 3 = 123 41 × 17 = 697

RF error rate 0.019 0.034 0.011 0.058 0.016

SVM number of features 41 × 21 = 861 2 × 21 = 42 12 × 21 = 420 41 × 3 = 123 41 × 8 = 328

SVM error rate 0.011 0.030 0.017 0.045 0.015

27 instruments. The recognition accuracy was 46% for
individual instruments and 92% for instrument families
which included the five categories string, brass, double
reed, clarinet, and flutes. The latter result can be com-
pared to the monophonic variant in this study although
the task here is distinctly easier since only three cate-
gories have to be distinguished and for each category only
one representantive instrument is considered. Some infor-
mal listening experiments indicate that a trained normal-
hearing listener might distinguish the three instruments
as perfectly as the classification approach does. To our
best knowledge, no experiments exist which study the
human ability for instrument recognition in a polyphonic
scenario. As for pitch estimation, this is a crucial topic for
future studies.

6.2 Evaluation of hearing dummies
The results of onset detection for the three hearing
dummies (HD) described in Section 4.1 are listed in
Table 13. For all three considered tasks—monophonic,
predominant, and polyphonic—HD2 and HD3 perform
just a little worse than the normal-hearing model.
This is an indicator that these moderate hearing
losses have no big impact on the recognition rates
of tone onsets, although this result should be con-
sidered with caution due to the overall relative poor

results of automatic onset detection. However, for a
strong hearing loss such as HD1, it performs distinctly
worse, particularly in the case of predominant onset
detection.
In Table 14, the error rates of predominant pitch

estimation for hearing dummies are listed. For all con-
sidered approaches, the results are as expected worse
than the normal hearing model. The greater the hear-
ing deficit is, the greater are the error rates. Even HD3
performs a little worse than the model without hear-
ing loss, although the kind of hearing loss affects only
frequencies above the fundamental frequencies of all con-
sidered tones. However, this is consistent with results of
psychoacoustic experiments which also report an impor-
tant impact of higher partials (and channels) on pitch
estimation [73].
Also for instrument recognition, the results of the hear-

ing dummies are worse than the result of the normal
hearing model as can be seen in Table 15. In contrast
to pitch estimation, this time HD2 performs better than
HD3, since here, higher channels are the most relevant
ones as we have already seen in Fig. 8.

Comparison to human perception In contrast to the
case of normal hearing, here the comparison to existing
listening experiments is even more challenging since the

Fig. 8Mean misclassification error (MMCE) for predominant instrument recognition using the features of just one channel and the linear SVM
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Table 13 Results (mean F measure) of onset detection for hearing dummies (HD) compared to the normal hearing (NH) model

Task Monophonic Melody onsets All onsets

Hearing impairment NH HD1 HD2 HD3 NH HD1 HD2 HD3 NH HD1 HD2 HD3

Cello 0.79 0.67 0.74 0.78 0.46 0.37 0.44 0.45 0.53 0.46 0.50 0.53

Clarinet 0.76 0.75 0.77 0.72 0.72 0.58 0.70 0.69 0.71 0.62 0.70 0.69

Trumpet 0.98 0.99 0.98 0.98 0.87 0.70 0.80 0.86 0.85 0.74 0.81 0.83

Mean 0.84 0.80 0.83 0.83 0.68 0.55 0.65 0.67 0.69 0.61 0.67 0.68

recognition rates of hearing-impaired listeners strongly
depends on their individual hearing deficits. In existing
listening experiments, hearing-impaired people are only
roughly grouped into two or three categories due to the
typically low number of test persons. Hence, there exist no
studies which consider the ability of music perception for
hearing-impaired listeners which are affected by the exact
deficits as the modeled hearing dummies. Nevertheless,
the performance results of this study are consistent to the
results of listening experiments.
It is reported that rhythm perception is not much

affected by moderate hearing impairments [74], to which
group HD2 and HD3 belong. For fundamental frequency
discrimination, it is well established that hearing loss
adversely affects the perception ability [75]. The results
of pitch estimation in this study confirm this effect for
all hearing dummies. In [3], the ability to discriminate
musical instruments is tested with respect to the degree
of hearing loss. Listeners with a high hearing loss can
discriminate instruments worse than NH listeners. In
this study, the instrument recognition performance is
worse for all hearing dummies compared to the results
of the model with normal hearing. However, there are
two differences in our experiments compared to the
listening experiments in [3]: First, no amplification is
considered, and second, polyphonic music is considered
which is particularly challenging for hearing-impaired
listeners.
Apart from the degree of hearing loss, the human ability

to perceive music also depends on the level of musi-
cal experience. For example, human pitch perception is
supported by expectations which notes are likely to occur,

Table 14 Mean error rates of pitch detection methods for
hearing dummies (HD) compared to the normal hearing (NH)
model (italics indicates the best result for each dummy)

Method NH HD1 HD2 HD3

SACF max. 0.54 0.67 0.60 0.56

SACF thresh. 0.18 0.44 0.34 0.22

DFT + RF 0.08 0.32 0.29 0.10

DFT + SVM 0.07 0.32 0.24 0.09

ACF + RF 0.20 0.91 0.42 0.21

ACF + SVM 0.17 0.90 0.40 0.18

and trained musicians perform better on pitch tasks than
nonmusicians [67]. Such cognitive factors are not consid-
ered in the presented simulation model.

7 Conclusions
Music intelligibility is simplified into three tasks of
music classification: onset detection, pitch estimation, and
instrument recognition. We can conclude that pitch esti-
mation and instrument recognition are solved well by
using the output of an auditory model. For instrument
recognition, the performance of the proposed approach
is even better than the performances of the reference
approaches without an auditory model.
The results for onset detection are disappointing, but

this is also true for the reference approach. State-of-
the-art in onset detection performs rather poorly espe-
cially when dealing with polyphonic music. Especially, the
detection of cello onsets is problematic, where the average
F value in the predominant variant is just 0.57. Neverthe-
less, we think that these results convey information about
the level of difficulty for tone onset recognition. Also, for
a human listener, tone onsets of a trumpet are easier to
identify than onsets of a cello. Another strategy is just ana-
lyzing the results for musical instruments which perform
satisfactorily, e.g., for trumpet, the average F value is 0.84
in the predominant case, and in the monophonic case, an
almost perfect performance of 0.97 is achieved.
Classical onset detection can be easily adapted to a sin-

gle channel output of the auditory model. The challenge
arises how to combine the estimations of several channels.
Our approach which handles each proposed onset time
point as a candidate and subsequently classifies whether it
is in fact an onset seems to be promising.
For predominant pitch detection, our introduced

approach which applies spectral features and reduces the
problem to a classification problem performs clearly bet-
ter than the autocorrelation method. The linear SVM

Table 15 Mean error rates of instrument recognition methods
for hearing dummies (HD) compared to the normal hearing (NH)
model (italics indicates the best result for each dummy)

Method NH HD1 HD2 HD3

AM and RF 0.02 0.28 0.03 0.05

AM and SVM 0.01 0.26 0.02 0.04
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performs best with an error rate of 7%. However, further
improvements might be possible since the YIN algorithm,
the state-of-the-art method which does not employ an
auditory model, performs even better with an error rate of
only 3%.
For the classification approach, the number of features

can be drastically reduced without decreasing the predic-
tion rate by applying group-based feature selection. The
features of 23 channels (instead of 41) or the reduction to
9 types of features (instead of 29) lead to equally accept-
able error rates as the full model. For future studies, it
would be interesting to combine the two feature selec-
tion strategies whichmight reduce computation time even
more. The features corresponding to the average spectral
amplitude over all channels of the partials (Pmean

pl [k]) seem
to be more meaningful than the features corresponding
to the maximum amplitude (Pmax

pl [k]). However, most of
the (Pmean

pl [k]) features are excluded by feature selection.
Nearly all other features described in Section 4.3 seem to
be important and are included by feature selection.
For predominant instrument recognition, the three con-

sidered instruments can be almost perfectly distinguished
with an error rate of 1.1% by using the auditory features
and either linear SVM or RF. Particularly important are
the features of the higher auditory channels. For the RF, 12
auditory channels are sufficient to achieve the best error
rate. Since the standard features (without auditory model)
are competitive in the monophonic variant, the benefit of
auditory model features seems to be an enhanced ability
for separating different instruments in a polyphonic envi-
ronment. However, this hypothesis needs to be verified in
future studies focusing solely on instrument recognition
with larger taxonomies of instruments.
For all three considered hearing dummies, the error

rates increase for all classification tasks. The degree of
performance loss seems to be plausible with respect to the
specific hearing deficits. In future studies, these results
should be compared to and verified by listening tests,
which were beyond the scope of this study.
Applying an experimental design for selecting the exam-

ined song excerpts offers the interesting possibility to
identify the type of music for which specific tasks are
significantly harder or easier to solve than on average.
We got some unexpected results, e.g., higher pitches and
shorter tones are beneficial for predominant onset detec-
tion, whereas lower pitches improve the results of pre-
dominant instrument recognition. In future studies, the
experimental design could be enhanced by further factors,
e.g., varying the melody to accompaniment ratio might be
interesting.
In future work, we want to verify the results of the

simulation experiments by a listening test. Such test is
also necessary for the investigation how to combine the
individual error measures into one overall measure for

music intelligibility. This measure could be applied for
assessing and optimizing hearing instruments for music
with several parameters to adjust.
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