Skip to main content

Table 5 Average values of the obtained results of Algorithm 1 in terms of Δ SIR and SDR for each distance measure

From: Using information theoretic distance measures for solving the permutation problem of blind source separation of speech signals

Distance measure ΔSIR SDR
  M 2 M 3 M 4 M 2 M 3 M 4
Bhattacharyya coefficient 0.97 1.32 2.5 3.21 2.77 1.78
Kullback-Leibler divergence 0.86 2.12 1.93 5.03 3.01 1.02
Log of the maximum ratio 0.62 2.14 1.22 4.63 2.76 0.82
Jensen-Rényi divergence, α = 0.5 3.00 3.65 5.44 5.33 3.17 1.43
Jensen-Rényi divergence, α = 1 4.00 4.50 6.44 6.08 3.49 2.15
Jensen-Rényi divergence, α = 2 4.01 3.94 6.09 5.75 3.29 1.45
Mod. Jensen-Rényi divergence, α = 0.5 7.89 7.27 8.99 8.12 4.86 2.78
Mod. Jensen-Rényi divergence, α = 1 7.89 7.27 8.97 8.12 4.87 2.74
Mod. Jensen-Rényi divergence, α = 2 7.89 7.28 8.98 8.12 4.87 2.78
Mutual information 7.35 7.66 8.15 7.79 5.23 2.59
  1. M i stands for the average Δ SIR/SDR value calculated over all mixtures of N = i signals (cf. Tables 1, 2, 3, and 4). The best performance for each case M i is marked in bold.