Skip to main content

Table 6 Average values of the obtained results of Algorithm 2 in terms of Δ SIR and SDR for each distance measure

From: Using information theoretic distance measures for solving the permutation problem of blind source separation of speech signals

Distance measure ΔSIR SDR
  M 2 M 3 M 4 M 2 M 3 M 4
Bhattacharyya coefficient 2.21 3.23 3.54 5.53 3.65 1.10
Kullback-Leibler divergence 3.78 5.23 5.47 5.97 4.2 1.46
Log of the maximum ratio 3.52 4.99 4.14 6.32 4.12 1.14
Jensen-Rényi divergence, α = 0.5 3.83 4.93 5.77 6.19 3.92 1.64
Jensen-Rényi divergence, α = 1 4.00 5.04 5.45 6.39 4.12 1.44
Jensen-Rényi divergence, α = 2 2.84 4.42 5.34 6.04 4.14 1.41
Mod. Jensen-Rényi divergence, α = 0.5 7.31 8.14 8.53 8.01 5.63 2.44
Mod. Jensen-Rényi divergence, α = 1 7.35 8.15 8.61 8.07 5.67 2.47
Mod. Jensen-Rényi divergence, α = 2 7.40 8.27 8.43 8.12 5.76 2.50
Mutual information 7.31 8.50 8.37 8.18 6.00 2.60
  1. M i stands for the average Δ SIR/SDR value calculated over all mixtures of N = i signals. The best performance for each case M i is marked in bold.