Skip to main content

Table 9 Comparison of signal pairs 〈log( U 1 ( τ )), log( U 2 ( τ ))〉 and 〈log( U 1 ( τ )), log( U 3 ( τ ))〉 with each distance measure

From: Using information theoretic distance measures for solving the permutation problem of blind source separation of speech signals

Distance measure 〈log(U1(τ)), log(U2(τ))〉 〈log(U1(τ)), log(U3(τ))〉
Bhattacharyya coefficient 0,03 0,71
Kullback-Leibler divergence 0,0 0,03
Log of the maximum ratio 0,0 0,30
Jensen-Rényi divergence, α = 0.5 17,83 7,48
Jensen-Rényi divergence, α = 1 7,54 1,58
Jensen-Rényi divergence, α = 2 0,99 0,01
Mod. Jensen-Rényi divergence, α = 0.5 4,79 1,26
Mod. Jensen-Rényi divergence, α = 1 1,23 0,26
Mod. Jensen-Rényi divergence, α = 2 0,11 0,01
Mutual information 4,59 6,43
  1. The most dependent value of each distance measure is marked in bold.