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1. INTRODUCTION

The popularity of voice over internet protocol (VoIP)
coupled with an increasing expectation for natural com-
munication over packet-switched networks has called for
improvement in VoIP technologies in recent years. As
network systems migrate from traditional voice telephony
over public switch telephone network (PSTN) to packet-
switched networks for VoIP, improving the quality of services
(QoS) for VoIP has been and will remain a challenge [1,
2]. As described in [1], several factors that can affect the
QoS for VoIP include the choice of speech coder-decoders
(codecs) [3], algorithmic processing delay [4], and packet
loss [5], where the algorithmic delay is one of the significant
factors for determining the budget for delay introduced by
network echo cancellers. The problem of network echo is
introduced by the impedance mismatch between the 2- and
4-wire circuits of a network hybrid [6], which occurs in
VoIP systems, where analog phones are involved in PC-
to-phone or phone-to-phone connections [7], where “PC”
represents all-digital terminals. Acoustic echo, on the other
hand, occurs when hands-free conversations are conducted
[8]. Transmission and algorithmic processing cause the echo

to be transmitted back to the originator with a delay, hence
impeding effective communication. As a result, network echo
cancellation for IP networks has received increased attention
in recent years. For effective network echo cancellation
(NEC), adaptive filters such as shown in Figure 1 have been
employed for the estimation of network impulse response.
Using the estimated impulse response, a replica of the echo
is generated and subtracted from the far-end transmitted
signal. The main aim of this work is therefore to address
the problem of (NEC) with reduced complexity and low
algorithmic delay through the use of adaptive algorithms.

In VoIP systems, where traditional telephony equipment
is connected to the packet-switched network, the result-
ing network impulse response such as shown in Figure 2
is typically of length 64–128 milliseconds. This impulse
response exhibits an “active” region in the range of only 8–
12 milliseconds duration, and, consequently, it is dominated
by “inactive” regions, where magnitudes are close to zero
making the impulse response sparse. The “inactive” region
is principally due to the presence of bulk delay caused by
unknown network propagation, encoding, and jitter buffer
delays [7]. One of the first algorithms which exploits this
sparse nature for the identification of network impulse
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Figure 1: Network echo cancellation.

responses is the proportionate normalized least-mean-
square (PNLMS) algorithm [9], where each filter coefficient
is updated with a step-size which is proportional to the
coefficient magnitudes. The PNLMS algorithm is then shown
to outperform classical adaptive algorithms with a uniform
step-size across all filter coefficients such as the normalized
least-mean-square (NLMS) algorithm for NEC application
[9]. Although the PNLMS algorithm achieves fast initial
convergence, its rate of convergence reduces significantly.
This is due to the slow convergence of filter coefficients hav-
ing small magnitudes. To mitigate this problem, subsequent
improved versions such as the improved PNLMS (IPNLMS)
[10] and the improved IPNLMS [11] algorithms were
proposed. These algorithms share the same characteristic of
introducing a controlled mixture of proportionate (PNLMS)
and nonproportionate (NLMS) adaptation. Consequently,
these algorithms perform better than PNLMS for sparse
impulse responses.

The increase in VoIP traffic in recent years has resulted
a high demand for high density NEC in which it is
desirable to run several hundred echo cancellers in one
processor core. Defining L as the length of the impulse
response, the PNLMS and IPNLMS algorithms require
approximately O(3L) and O(4L) number of multiplications
per sample iteration respectively compared to O(2L) for the
substantially slower converging NLMS algorithm. Hence, in
order to reduce the computational complexity of PNLMS
and IPNLMS, the sparse partial update NLMS (SPNLMS)
algorithm was recently proposed [12], which combines two
adaptation strategies: sparse adaptation for improving rate of
convergence and partial-updating for complexity reduction.
For the majority of adapting iterations, under the sparse
partial (SP) adaptation, only those taps corresponding to
tap-inputs and filter coefficients both having large magni-
tudes are updated. However, from time to time the algorithm
gives equal opportunity for the coefficients with smaller
magnitude to be updated by employing MMax tap-selection
[13]. This only updates those filter taps corresponding to the
M < L largest magnitude tap-inputs. It is noted that partial
update strategies have also been applied to the filtered-X LMS
(FxLMS) algorithms as described in [14, 15]. Other ways to
reduce the complexity of adaptive filtering algorithm include
the use of a shorter adaptive filter to model only the active
region of the sparse impulse responses as described in [16].
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Figure 2: A sparse network echo impulse response, sampled at
8 kHz.

It is well known that frequency-domain adaptive filtering
such as the fast-LMS (FLMS) algorithm [17] offers an attrac-
tive means of achieving efficient implementation. In contrast
to time-domain adaptive filtering algorithms, frequency-
domain adaptive algorithms incorporate block updating
strategies, whereby the fast-Fourier transform (FFT) algo-
rithm [18] is used together with the overlap-save method [19,
20]. However, one of the main drawbacks of these frequency-
domain approaches is the delay introduced between the
input and output, which is generally equal to the length of
the adaptive filter. Since reducing the algorithmic processing
delay for VoIP applications is crucial, frequency-domain
adaptive algorithms with low delay are desirable especially
for the identification of long network impulse responses.
The multidelay filtering (MDF) algorithm [21] has been
proposed in the context of acoustic echo cancellation for
mitigating the problem of delay. This algorithm partitions an
adaptive filter of length L into K blocks each of length N . As
a result, the delay of MDF algorithm is reduced by a factor of
K compared to FLMS. The benefit of low delay for MDF over
FLMS in the context of NEC has been shown in [22].

The aim of this work is to develop a low complexity, low
delay, and fast converging adaptive algorithm for identifying
sparse impulse responses presented in the problem of NEC
for VoIP applications. We achieve this by incorporating the
MMax and SP tap-selection into the frequency-domain MDF
structure. As will be shown in this work, applying the MMax
and SP tap-selection to frequency-domain adaptive filtering
presents significant challenges since the time-domain sparse
impulse response is not necessarily sparse in the frequency
domain. We first review in Section 2 the SPNLMS and MDF
algorithms. We then propose, in Section 3.1, to incorporate
MMax tap-selection into MDF structure for complexity
reduction. We show how this can be achieved using two
approaches and we compare their tradeoffs in terms of com-
plexity and performance. We next illustrate, in Section 3.2,
how the sparseness of the Fourier transformed impulse
response varies with the number of blocks K in the MDF
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structure. Utilizing these results, we show how the SP tap-
selection can be incorporated into the MDF structure for fast
convergence and low delay. The computational complexity
for the proposed algorithm is discussed in Section 3.3. In
Section 4, we present the simulation results and discussions
using both colored Gaussian noise (CGN) and speech inputs
for NEC. Finally, conclusions are drawn in Section 5.

2. REVIEWOF THE SPNLMS ANDMDF ALGORITHMS

We first review the problem of sparse system identification.
With reference to Figure 1, we define tap-input vector x(n),
network impulse response h, and coefficients of adaptive
filter ĥ(n) as

x(n) = [x(n) · · · x(n− L + 1)]T ,

h = [h0 · · ·hL−1
]T

,

ĥ(n) = [ĥ0(n) · · · ĥL−1(n)
]T

,

(1)

where L is the length of h and [·]T is defined as vector/matrix

transposition. The adaptive filter ĥ(n), which is chosen to be
of the same length as h, will model the unknown impulse
response h using the near-end signal

y(n) = xT(n)h + w(n), (2)

where w(n) is the additive noise.

2.1. The SPNLMS algorithm

The sparse partial (SP) update NLMS (SPNLMS) algorithm
[12] utilizes the sparse nature of network impulse response.
This algorithm incorporates two updating strategies: MMax
tap-selection [13] for complexity reduction and SP adapta-
tion for fast convergence. Although it is normal to expect that
adapting filter coefficients using partial-updating strategies
suffers from degradation in convergence performance, it was
shown in [12] that such degradation can be offset by the SP
tap-selection.

The updating equation for SPNLMS is given by

ĥ(n) = ĥ(n− 1) + μ
Q(n)x(n)e(n)
‖Q(n)x(n)‖2

2 + δ
, (3)

where μ is the step-size, δ is the regularization parameter and
‖·‖2 is defined as the l2-norm. As shown in Figure 1, the a
priori error is given by

e(n) = y(n)− xT(n)ĥ(n− 1). (4)

The L× L tap-selection matrix

Q(n) = diag
{
q0(n) · · · qL−1(n)

}
(5)

in (3) determines the step-size gain for each filter coefficient
and is dependent on the MMax and SP updating strategies
for SPNLMS. The relative significance of these strategies is

controlled by the variable T ∈ Z+ such that for mod(n,T) =
0, elements qi(n) for i = 0, . . . ,L− 1 are given by

qi(n) =
⎧⎨⎩1 i ∈ {indices of the M1 maxima of |x(n− i)|},

0 otherwise,
(6)

and for mod(n,T) /= 0,

qi(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 i ∈ {indices of the M2 maxima of∣∣x(n− i)ĥi(n− 1)

∣∣},

0 otherwise.

(7)

The variables M1 and M2 define the number of selected taps
for MMax and SP, respectively, and the MMax tap-selection
criteria given by (6) for the time-domain is achieved by
sorting x(n) using, for example, the SORTLINE [23] and
short sort [24] routines. It has been shown in [12] that,
including the modest overhead for such sorting operations,
the SPNLMS algorithm achieves lower complexity than
NLMS. To summarize, SPNLMS incorporates MMax tap-
selection given by (6) and SP tap-selection given by (7) for
complexity reduction and fast convergence, respectively.

2.2. TheMDF algorithm

The MDF algorithm [21] mitigates the problem of delay
inherent in FLMS [17] by partitioning the adaptive filter into
K subfilters each of length N , with L = KN and K ∈ Z+.
As a consequence of this partitioning, the delay for the MDF
is reduced by a factor of K compared to FLMS. To describe
the MDF algorithm, we define m as the frame index and the
following time-domain quantities given by

X(m) = [x(mN) · · · x(mN + N − 1)
]
, (8)

y(m) = [y(mN) · · · y(mN + N − 1)
]T

, (9)

ĥ(m) = [ĥT0 (m) · · · ĥTK−1(m)
]T

, (10)

ŷ(m) = [ ŷ(mN) · · · ŷ(mN + N − 1)
]T

= XT(m)ĥ(m),
(11)

e(m) = y(m)− ŷ(m). (12)

We also define a 2N × 1 tap-input vector

χ(m− k) = [x(mN − kN −N) · · · x(mN − kN + N − 1)
]T

,
(13)

where k = 0, . . . ,K − 1 is defined as the block index and the
subfilters in (10) are given as

ĥk(m) = [ĥkN (m) · · · ĥkN+N−1(m)
]T
. (14)

We next define F2N as the 2N × 2N Fourier matrix and a
2N × 2N matrix

D(m− k) = diag
{
F2Nχ(m− k)

} = diag
{
χ(m− k)

}
, (15)
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with diagonal elements containing the Fourier transform of
χ(m − k) for the kth block. We also define the following
frequency-domain quantities [8]

y(m) = F2N

⎡⎣0N×1

y(m)

⎤⎦ , ĥk(m) = F2N

⎡⎣ĥk(m)

0N×1

⎤⎦ ,

e(m) = F2N

[
0N×1

e(m)

]
,

G01 = F2NW01F−1
2N , W01 =

[
0N×N 0N×N
0N×N IN×N

]
,

G10 = F2NW10F−1
2N , W10 =

[
IN×N 0N×N
0N×N 0N×N

]
,

(16)

where 0N×N is the N ×N null matrix and IN×N is the N ×N
identity matrix. The MDF algorithm is then given by [21]

e(m) = y(m)−G01
K−1∑
k=0

D(m− k)ĥk(m− 1), (17)

S(m) = λS(m− 1) + (1− λ)D∗(m)D(m), (18)

P(m) = S(m) + δI2N×2N = diag
{
p0(m) · · · p2L−1(m)

}
,

(19)

ĥk(m) = ĥk(m− 1) + μG10D∗(m− k)P−1(m)e(m), (20)

where ∗ denotes complex conjugate, 0 � λ < 1 is the
forgetting factor and μ = β(1 − λ) is the step-size with
0 < β ≤ 1 [21]. Letting σ2

x be the input signal variance, the
initial regularization parameters [8] are S(0) = σ2

x /100 and
δ = 20σ2

xN/L. For N = L and K = 1, MDF is equivalent to
FLMS [17].

3. THE SPARSE PARTIAL UPDATEMULTIDELAY
FILTERING ALGORITHM

Our aim is to utilize the low delay inherent in MDF as well as
the fast convergence and reduced complexity brought about
by combining SP and MMax tap-selection for NEC. We
achieve this aim by first describing how MMax tap-selection
given in (6) can be incorporated into MDF. We next show,
using an illustrative example, how the sparse nature of the
impulse response is exploited in the frequency domain which
then allows us to integrate the SP tap-selection given by (7).
The proposed MMax-MDF and SPMMax-MDF algorithms
are described by (17), (18), (19), and

ĥk(m) = ĥk(m− 1) + μG10D̃
∗

(m− k)P−1(m)e(m). (21)

The difference between (20) and (21) is that the latter
employs D̃

∗
(m − k), and we will describe in the following

how this 2N × 2N diagonal matrix can be obtained for the
cases of MMax and SP tap-selection criterion.

3.1. TheMMax-MDF algorithm

As described in Section 2.1, the MMax tap-selection given
in (6) is achieved by sorting x(n). In the frequency-domain

MDF implementation, however, elements in D̃(m − k) are
normalized by elements pi(m) in the vector P(m) defined in
(19). Hence, for the frequency-domain MMax tap-selection,
we select taps corresponding to the M1 maxima of the
Fourier transformed tap-inputs normalized by pi(m) with
i = 0, . . . , 2L − 1. For this tap-selection strategy, the
concatenated Fourier transformed tap-input across all K
blocks is given as

g(m) = [χT(m) · · · χT(m− K + 1)
]T

= [χ
0
(m) · · · χ

2L−1
(m)

]T
,

(22)

where χ(m−k) is defined in (15) and χ
i
(m), i = 0, . . . , 2L−1

denotes the ith element of g(m). Elements of the 2L × 2L
diagonal MMax tap-selection matrix Q(m) are given by

qi(m)=

⎧⎪⎪⎨⎪⎪⎩
1 i∈

{
indices of the M1 maxima of

χ∗
i

(m)χ
i
(m)

pi(m)

}
,

0 otherwise,
(23)

for i = 0, . . . , 2L − 1 with 1 ≤ M1 ≤ 2L. Due to the nor-
malization by pi(m) in (23), we denote this algorithm as
MMax-MDFN and define a 2L × 1 vector g̃(m) containing
the subselected Fourier transformed tap-inputs as

g̃(m) = Q(m)g(m) = [χ̃
0
(m) · · · χ̃

2L−1
(m)

]T
. (24)

The 2N × 2N diagonal matrix D̃(m− k) for MMax-MDFN is
then given by

D̃(m− k) = diag
{
χ̃

2kN
(m) · · · χ̃

2kN+2N−1
(m)

}
,

k = 0, . . . ,K − 1.
(25)

Hence, it can be seen that elements in the vector D̃(m − k)
are obtained from the kth block of the selected Fourier
transformed tap-inputs contained in g̃(m) with indices from
2kN to 2kN + 2N − 1. The adaptation of MMax-MDFN

algorithm is described by (23)–(25) and (21).
It is noted that the MMax-MDFN algorithm requires 2L

additional divisions for tap-selection due to the normal-
ization by pi(m) in (23). Hence, to reduce the complexity
even further, we consider an alternative approach where such
normalization is removed so that elements of the 2L × 2L
diagonal tap-selection matrix Q(m) are expressed as

qi(m) =
⎧⎨⎩1, i ∈ {indices of the M1 maxima of

∣∣χ
i
(m)

∣∣},

0, otherwise,
(26)

for i = 0, . . . , 2L − 1 and 1 ≤ M1 ≤ 2L. As opposed
to MMax-MDFN, we denote this scheme as the MMax-
MDF algorithm since normalization by pi(m) is removed.
Accordingly, elements in D̃(m − k) for MMax-MDF are
computed using (24) and (25), where Q(m) is obtained from
(26). Hence, the adaptation of MMax-MDF algorithm is
described by (24)–(26) and (21).
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As will be shown in Section 4, the degradation in con-
vergence performance due to tap-selection is less in MMax-
MDFN than in MMax-MDF. However, since reducing com-
plexity is our main concern, we choose to use MMax-MDF
as our basis for reducing the computational complexity of
the proposed algorithm. As will be described in Section 3.2,
the proposed algorithm incorporates the SP tap-selection to
achieve, in addition, a fast rate of convergence.

3.2. The SPMMax-MDF algorithm

We show in this section how the SP tap-selection can
be incorporated into the frequency domain. The SP tap-
selection defined by (7) was proposed to achieve fast con-
vergence for the identification of sparse impulse responses.
We note that the direct implementation of SP tap-selection
into frequency-domain adaptive filtering such as FLMS is
inappropriate since impulse response in the transformed
domain is not necessarily sparse. To illustrate this, we study
the effect of K ≥ 1 on the concatenated impulse response of
the MDF structure h defined by

h = F2L

⎡⎣[ h0

0N×1

]T

· · ·
[
hK−1

0N×1

]T
⎤⎦T

, (27)

where

hk =
[
hkN · · ·hkN+N−1

]T
, (28)

for k = 0, . . . ,K − 1 is the kth subfilter to be identified and

F2L =

⎡⎢⎢⎢⎣
F2N · · · 0

...
. . .

...

0 · · · F2N

⎤⎥⎥⎥⎦
2L×2L

(29)

is a 2L × 2L matrix constructed by K Fourier matrices each
of size 2N × 2N . As indicated in (28), the impulse response
h is partitioned into smaller blocks in the time domain as
K increases. Figure 3 shows the variation of the magnitude
of h for K = 1, K = 16 and K = 64, where MDF is
equivalent to FLMS for K = 1. As can be seen from the
figure, the magnitude of h is not sparse for K = 1. Hence
SP tap-selection in the MDF structure will not improve the
convergence performance for K = 1. For the cases where
K > 1, the number of taps with small magnitudes in h
increases withK , that is, the number of subfilters. In Figure 4,
we show how the sparseness of the magnitude of h varies with
K using the sparseness measure given by [25, 26]

ξ = L

L−√L

[
1− ‖h‖1√

L‖h‖2

]
, (30)

where ‖·‖1 denotes l1-norm and it was shown in [26, 27]
that ξ increases with the sparseness of h, where 0 ≤ ξ ≤ 1. As
can be seen from Figure 4, the magnitude of h becomes more
sparse as K increases. As a consequence, we would expect SP
tap-selection to improve the convergence rate of MDF for
sparse system identification.
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(a) Index of Fourier transformed h for K = 1
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(b) Index of Fourier transformed h for K = 16
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(c) Index of Fourier transformed h for K = 64

Figure 3: Variation of the magnitude of h of length 2L with L = 512
for (a) K = 1, (b) K = 16, and (c) K = 64.
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Figure 4: Sparseness of the magnitude of h against K .

Although integrating SP tap-selection can be beneficial
in the frequency domain, it requires careful consideration
since as can be seen from (13), the length of the input
frame χ(m − k) is 2N compared to L for the adaptive
filter. This causes a length mismatch between χ(m − k)

and ĥ(m). We overcome this problem by concatenating all
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frequency-domain subfilters, ĥ
T

k (m), k = 0, . . . ,K − 1 to

obtain ĥ(m), which is of length 2L, that is,

ĥ(m) = [ĥT0 (m) · · · ĥTK−1(m)
]T

= [ĥ0(m) · · · ĥ2L−1(m)
]T
.

(31)

Since SPMMax-MDF aims to obtain fast convergence with
low complexity, our approach of achieving SP tap-selection

is then to select 1 ≤ M2 ≤ 2L elements from |χ
i
(m)ĥi(m)|

for i = 0, . . . , 2L − 1, where elements χ
i
(m) can be obtained

from g(m) defined in (22). Elements of the 2L× 2L diagonal
tap-selection matrix Q(m) are therefore given by

qi(m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 i ∈ {indices of the M2 maxima of∣∣χ

i
(m)ĥi(m)

∣∣},

0 otherwise,

(32)

for i = 0, . . . , 2L − 1. Employing (32), the diagonal matrix
D̃(m−k) in (21) for the SP tap-selection can be described by
(24) and (25).

It should be noted that additional simulations performed

using selection criteria by sorting |χ∗
i

(m)χ
i
(m)ĥi(m)/pi(m)|

showed no significant improvement for SPMMax-MDF as it

was found that the sparseness effect of |ĥi(m)| dominates the
selection process compared to the term χ∗

i
(m)χ

i
(m)/pi(m),

which results in selecting the same filter coefficients for
adaptation as would be selected using (32). In addition,
normalization by pi(m) incurs an extra 2L divisions, which is
not desirable for our VoIP application. As a final comment,
since the number of the “active” coefficients of h reduces with
increasing K , we choose M2 to be

M2 = (2− a)L
K

+ aL. (33)

This enables M2 to reduce with increasing K hence allowing
adaptation to be more concentrated on the “active” region.
A good choice of a has been found experimentally to be
given by a = 1. The proposed SPMMax-MDF algorithm is
described in Algorithm 1.

3.3. Computational complexity

Although it is well known, from the computational com-
plexity point of view, that N = L is the optimal choice
for the MDF algorithm, it nevertheless is more efficient
than time-domain implementations even for N < L [8].
As shown in Algorithm 1, the proposed SPMMax-MDF
computes D̃(m− k) using tap-selection matrix Q(m), which
is defined by (26) and (32) for mod(m,T) = 0 and
mod(m,T) /= 0, respectively. We show in Table 1 the number
of multiplications and divisions required for MDF, MMax-
MDF, MMax-MDFN, and SPMMax-MDF to compute the

term D̃
∗

(m − k)P−1(m)e(m). We have also included the
recently proposed IPMDF algorithm [22] for comparison.
It should be noted that for MMax and SP tap-selection in

Table 1: Complexity of algorithms.

Algorithm Multiplication Division

MDF 2L 2L

IPMDF 3L 4L

MMax-MDF M1 M1

MMax-MDFN M1 M1 + 2L

SPMMax-MDF
[
M1 + (T − 1)M2

]
/T

[
M1 + (T − 1)M2

]
/T

Table 2: Complexity for the case of L = 512, T = 8, M1 = 0.5×2L,
and K = 64.

Algorithm Multiplication Division

MDF 1024 1024

IPMDF 1536 2048

MMax-MDF 512 512

MMax-MDFN 512 1536

SPMMax-MDF 519 519

(26) and (32), no additional computational complexity is

introduced since |χ
i
(m)| and |χ

i
(m)ĥi(m)| can be obtained

from (18) and (17), respectively. For MMax-MDFN, however,
computing the selected filter coefficients for adaptation using
(23) incurs additional number of divisions. The complexity
for each algorithm for an example case of L = 512, T = 8,
M1 = 0.5 × 2L, and K = 64 is shown in Table 2. It can
be seen that the complexity of the proposed SPMMax-MDF
is approximately 50% of that for the MDF. Compared to
MMax-MDF, SPMMax-MDF requires only an additional 2%
of multiplications and divisions. However, as will be shown
in Section 4, the performance of SPMMax-MDF is better
than MMax-MDF. Finally, the complexity of SPMMax-MDF
is 33% and 25% of that for the IPMDF algorithm in terms of
multiplications and divisions, respectively.

4. RESULTS ANDDISCUSSIONS

We present simulation results to illustrate the performance
of the proposed SPMMax-MDF algorithm for NEC using
a recorded network impulse response h with 512 taps [12],
as shown in Figure 2. The performance is measured using
normalized misalignment defined as

η =
∥∥h− ĥ(n)

∥∥2
2

‖h‖2
2

. (34)

We used a sampling frequency of 8 kHz and white Gaussian
noise (WGN) w(n) was added to achieve a signal-to-noise
ratio (SNR) of 20 dB. The following parameters for the
algorithms are chosen for all simulations [22]: T = 8, λ =
[1 − 1/(3L)]N , S(0) = σ2

x /100, δ = 20σ2
x2N/L. Step-size

control variable β has been adjusted for each algorithm so
as to achieve the same steady-state performance.

We first compare the variation in convergence of MMax-
MDFN and MMax-MDF with M1 using step-size control
variables β = 0.7 and β = 0.6 for MMax-MDFN and
MMax-MDF, respectively. We used a CGN input generated



Xiang (Shawn) Lin et al. 7

δ = 20σ2
xN/L,

λ =
[

1− 1
3L

]N
,

μ = β(1− λ), 0 < β ≤ 1,
S(0) = σ2

x /100,

ĥk(m) = [ĥkN (m)ĥkN+1(m) · · · ĥkN+N−1(m)
]T

,

ĥk(m) = F2N

[
ĥk(m)
0N×1

]
,

g(m) = [χ
0
(m)χ

1
(m) · · · χ

2L−1
(m)

]
,

i = 0, 1, . . . , 2L− 1,
MMax tap-selection for mod(m,T) = 0,

qi(m) =
⎧⎨⎩1 i ∈ {indices of the M1 maxima of

∣∣χ
i
(m)

∣∣},

0 otherwise,

SP tap-selection for mod(m,T) /= 0,

M2 = (2− a)L/K + aL,

qi(m) =
⎧⎨⎩1 i ∈ {indices of the M2 maxima of

∣∣χ
i
(m)ĥi(m)

∣∣},

0 otherwise,

g̃(m) = Q(m)g(m) = [χ̃
0
(m) · · · χ̃

2L−1
(m)

]T
,

D̃(m− k) = diag
{
χ̃

2kN
(m) · · · χ̃

2kN+2N−1
(m)

}
,

e(m) = y(m)−G01
∑K−1

k=0 D(m− k)ĥk(m− 1),

S(m) = λS(m− 1) + (1− λ)D∗(m)D(m),

P(m) = S(m) + δI2N×2N ,

ĥk(m) = ĥk(m− 1) + μG10D̃
∗

(m− k)P−1(m)e(m).

Algorithm 1: The SPMMax-MDF algorithm.

by filtering zero-mean WGN through a lowpass filter with a
single pole [12]. It can be seen from Figure 5 that for each
case of M1, the degradation in convergence performance due
to tap-selection is less for the MMax-MDFN than the MMax-
MDF. However, as shown in Tables 1 and 2, MMax-MDFN

incurs 2L additional divisions compared to the MMax-MDF
algorithm.

We next compare the convergence performance of
SPMMax-MDF with MDF and IPMDF using CGN input
for K = 1 in Figure 6. We have used T = 8 and β = 0.6
for all algorithms. We have also used M1 = 0.5 × 2L since
it was shown in [28] that by such setting, a good balance
between complexity reduction and performance degradation
due to MMax tap-selection can be reached. As can be seen
from the figure, the performance of SPMMax-MDF is close
to that for the MDF since for K = 1 which results in M2 =
2L according to (33). Consequently, under the condition
of mod(m,T) /= 0, all the 2L filter coefficients are updated,
while under the condition of mod(m,T) = 0, M1 =
0.5 × 2L coefficients are updated. As a result of this, and
consistent with any partial update algorithms presented in
[28], the performance of SPMMax-MDF approaches that

for the MDF. Compared to IPMDF, SPMMax-MDF only
requires approximately 63% and 47% of the number of
multiplications and division, as indicated in Table 1.

We show in Figure 7 the convergence performance of
SPMMax-MDF, MDF, and IPMDF for K > 1 using CGN
input. As before, we have used the same step-size control
variable of β = 0.6 for all algorithms except for the cases of
SPMMax-MDF, where β = 0.8 is used to archive the same
steady-state performance. It can be seen that for K = 64, the
proposed SPMMax-MDF algorithm achieves faster rate of
convergence in terms of normalized misalignment compared
to the more complex MDF during adaptation. Since, as
shown in Figure 4, ξ increases with K , it can therefore be
expected that such improvement can be increased when
larger K is employed. In addition, as the delay for MDF is
reduced by a factor of K compared to FLMS, the proposed
SPMMax-MDF can archive further delay reduction for larger
K and thus is desirable for NEC. For the case of M1 = 0.5×2L
and K = 64, the number of multiplications and divisions
required for each algorithm is shown in Table 2.

Figure 8 shows the performance of the algorithms
obtained using a male speech input. Parameters used for
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Figure 5: Variation of performance with M1 for MMax-MDFN and
MMax-MDF.
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Figure 6: Performance of SPMMax-MDF using CGN input for T =
8, M1 = 0.5× 2L, K = 1.
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Figure 7: Performance of SPMMax-MDF for CGN input with T =
8 and M1 = 0.5× 2L.
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Figure 8: Performance of SPMMax-MDF using speech input for
T = 8, M1 = 0.5× 2L, K = 64, and the computational complexity
required for each algorithm.

each algorithm are the same as that for the previous
simulations except that for SPMMax-MDF, where we have
used β = 1 to achieve the same steady-state performance.
The computational complexity required for each algorithm
is also shown in the figure between square brackets, where
the first and the second integers represent the number of
multiplications and divisions, respectively. It can be seen that
SPMMax-MDF achieves approximately 5 dB improvement
in terms of normalized misalignment with lower complexity
in comparison to MDF. In addition, the performance of
our low cost SPMMax-MDF algorithm approaches that of
IPMDF.

5. CONCLUSIONS

We have proposed SPMMax-MDF for network echo cancel-
lation in VoIP. This algorithm achieves a faster rate of conver-
gence, low complexity, and low delay by novelly exploiting
both the MMax and SP tap-selection in the frequency
domain using MDF implementation. We discussed two
approaches of incorporating MMax tap-selection into MDF
and showed their tradeoff between rate of convergence and
complexity. Simulation results using both colored Gaussian
noise and speech inputs show that the proposed SPMMax-
MDF achieves up to 5 dB improvement in convergence per-
formance with significantly lower complexity compared to
MDF. In addition, the performance of our low cost SPMMax-
MDF algorithm approaches that of IPMDF. Since the MDF
structure has been applied for acoustic echo cancellation
(AEC) [21] and blind acoustic channel identification [29],
where the impulse responses are nonsparse, the proposed
SPMMax-MDF algorithm can also be potentially applied to
these applications for reducing computational complexity
and algorithmic delay.
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