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A multiresolution source/filter model for coding of audio source signals (spot recordings) is proposed. Spot recordings are a
subset of the multimicrophone recordings of a music performance, before the mixing process is applied for producing the final
multichannel audio mix. The technique enables low bitrate coding of spot signals with good audio quality (above 3.0 perceptual
grade compared to the original). It is demonstrated that this particular model separates the various microphone recordings of a
multimicrophone recording into a part that mainly characterizes a specific microphone signal and a part that is common to all
signals of the same recording (and can thus be omitted during transmission). Our interest in low bitrate coding of spot recordings
is related to applications such as remote mixing and real-time collaboration of musicians who are geographically distributed. Using
the proposed approach, it is shown that it is possible to encode a multimicrophone audio recording using a single audio channel
only, with additional information for each spot microphone signal in the order of 5kbps, for good-quality resynthesis. This is
verified by employing both objective and subjective measures of performance.
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1. INTRODUCTION

Multichannel audio offers significant advantages regarding
music reproduction when compared to two-channel stereo
audio. (In the following, when we are referring to stereo
audio, we always mean two-channel stereo.) The use of a
large number of channels around the listener results in a
more realistic acoustic space, adding more sound directions,
and thus immersing the listener into the acoustic scene. By
using a higher number of channels than in stereo systems,
multichannel audio recordings require higher datarates for
transmission. Stereo and multichannel audio coding meth-
ods attempt to significantly reduce the datarates of audio
recordings for networked audio applications or for relaxing
their storage requirements. This paper focuses on reducing
the transmission (and storage) requirements of spot micro-
phone signals (before those are mixed into the final multi-
channel audio mix), by exploiting the similarities between
such signals of the same multimicrophone recording.

MPEG-1 audio coding [1, 2] (including the popular
Layer III also known as MP3 audio coding), MPEG-2 AAC
(advanced audio coding) [3-5], and Dolby AC-3 [6, 7]
are some well-known audio coding methods for stereo and
multichannel audio content. These methods mainly exploit
the masking property of the human auditory system for
shaping the quantization noise so that it will be inaudible.
In addition to reducing the intrachannel redundancies
and irrelevancies, these methods also include algorithms
for exploring the interchannel redundancies, irrelevancies,
more specifically mid/side coding [8], for frequencies below
2kHz, and intensity stereo coding [9] above 2kHz. M/S
codes the sum and difference signals instead of the actual
channels, operating in an approximate Karhunen-Loeve (K-
L transform) manner. Intensity stereo is based on coding
only the sum signal of the channels, as well as the time
envelopes for each channel as side information, given that
these envelopes are adequate for synthesizing the spatial
image at the decoder. A useful introduction to several
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technologies for the more general area of audio compression
can be found in [10]. More recently, exact KLT methods
have been derived (e.g., [11]), while intensity stereo has
been generalized for the entire frequency spectrum by MPEG
Surround [12].

With the exception of MPEG Surround, the above-
mentioned multichannel audio coding algorithms result in
datarates which remain highly demanding for many practical
applications when the available channel bandwidth is low.
This is especially important given the fact that possibly
future multichannel audio systems will require more than
the 5.1 channels of currently popular formats [13] and
thus even higher datarates. In MPEG Surround, the concept
of spatial audio coding (SAC) has been introduced with
the objective of further taking advantage of interchan-
nel redundancies and irrelevancies in multichannel audio
recordings. Under this approach, the objective is to decode
an encoded downmix (monophonic) channel of audio using
some additional (side) information, so as to recreate the
spatial rendering of the original multichannel recording. The
side information is extracted during encoding and includes
the cues which are necessary for synthesizing the spatial
image of the uncompressed multichannel audio recording.
MPEG Surround is based on combining two theoretical
approaches on SAC, namely, binaural cue coding (BCC) and
parametric stereo (PS). In BCC [14, 15], the side information
contains the per subband interchannel level difference, time
difference, and correlation. The resulting signal contains
one channel of audio (downmix) only, along with the side
information with bitrate in the order of few kbps per
channel. Parametric stereo (PS) [16], operates in very similar
philosophy.

At a point where MPEG Surround achieves coding rates
for 5.1 multichannel audio that are similar to MP3 coding
rates for 2-channel stereo, it seems that the research in audio
coding might have no future. However, this is far from the
truth. Current multichannel audio formats will eventually be
substituted by more advanced formats. Future audiovisual
systems will not distinguish between whether the user will
be watching a movie or listening to a music recording; audio-
visual systems of the future are envisioned to offer a realistic
experience to the user who will be immersed into the content.
Thus immersive audio focuses on applications where the
environment of the listener will be seamlessly transformed
into the environment of his/her desire. Immersive audio, as
opposed to multichannel audio, is based on providing the
listener the option to interact with the sound environment.
This interactivity can be accomplished when the content can
be dynamically modified, which in practice is possible only
when the decoder has access to the microphone signals and
locally creates the final mix (remote mixing). We note that
these microphone signals are the recordings captured by the
various microphones that are placed in a venue for recording
a music performance. The number of these microphone
signals is usually higher than the available loudspeakers, thus
a mixing process is needed when producing a multichannel
audio recording. As mentioned, remote mixing is imperative
for immersive audio applications, since it offers the amount
of freedom for the creation of the content that is needed for

interactivity. Consequently, in this paper, the focus is on the
spot microphone signals of a multimicrophone recording,
before those that are mixed into the final multichannel audio
mix. In Section 2, useful information about the recording
process for multichannel audio and about the particular type
of those signals that are examined here (spot signals) is given.

In order to better explain the emphasis on remote
mixing, we briefly mention some possible immersive audio
applications, such as (network-based) telepresence of a user
in a concert hall performance in real time, where interactivity
would translate into him/her being able to move around
in the hall and appreciate the hall acoustics. In practice,
(when the user is not an experienced audio engineer) this
could be accomplished by storing at the decoder a number of
predefined mixing “files” that have been created by experts
for each specific recording. Another application of interest is
virtual music performances, where the musicians are located
all around the world. Consider for simplicity a scenario
where half members of an orchestra are located in one venue
and half at another venue. For producing the multichannel
audio mix, the spot signals must be first transmitted to a
central location where the audio engineer will have access
to all individual recordings. More generally, access to spot
signals is important in remote collaboration of geographi-
cally distributed musicians, which is a field of significance
with extensions to music education and research. Current
experiments have shown that high datarates are needed
so that musicians can perform and interact with minimal
delay [17]. Remote mixing is also a central component in
collaborative environments for the production of music,
which is of importance in the audio engineering community.

The model proposed in this paper is a source/filter re-
presentation of spot microphone signals, allowing for trans-
mission of the multiple microphone signals of a music per-
formance with moderate datarate requirements. This would
allow for transmission through low bandwidth channels such
as the current Internet infrastructure or wireless networks
for broadcasting. The proposed model is tailored towards
the transmission of the various microphone signals of a
performance before they are mixed and thus can be applied
to applications such as remote mixing and distributed
performances. Our approach relaxes the current bandwidth
constraints of these demanding applications, enabling their
widespread usage and more clearly revealing their value.
Our method operates in similar philosophy as spatial audio
coding, that is, it reduces a multichannel recording into a
single audio channel (which can be a sum of the multiple
microphone signals) and some side information of the order
of few kbps per channel. However, the focus on spot signals
instead of the audio channels after the mixing process is
a clear distinction between these two methods. In SAC,
the side information can be used to recreate the spatial
rendering of the various channels. In our method, the side
information focuses on encoding the microphone signals of
the multichannel recording. This is due to the fact that, for
audio mixing (remote or not), not only the spatial image (as
in SAC, including the “flexible rendering” approach of BCC)
but the actual content of each (monophonic) microphone
recording must be encoded, so that the audio engineer will
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have full control on the available content. Our algorithm
results in bitrates of the same order with SAC, while being
able to encode an approximate version of each mono spot
signal. We note that, as in SAC, the single wideband audio
channel, that needs to be transmitted for our algorithm,
can be encoded using any existing method of monophonic
audio compression (e.g., using perceptual audio coders).
We also note our focus in low bitrate coding applications.
Our objective is to obtain subjective results above 3.0
perceptual grade compared to the original recording, which
can be considered a good performance for low bitrate coding
applications.

The remainder of this paper is organized as follows. In
Section 2, a brief overview is given on how recordings are
made for multichannel rendering, with emphasis on concert
hall performances. In Section 3, the theoretical background
for the model used and the motivation behind the choice
of this particular model are provided. In Section 4, it is
explained how the derived model parameters can be encoded
for transmission, based on previous work of [18] derived for
coding of speech LSF parameters. In Section 5, objective and
subjective results are provided for both the model and coding
performance (emphasis on the modeling rather than the
coding method), which show that the proposed algorithm
can produce good-quality audio resynthesis with rates of
only 5kbps per microphone signal. Finally, concluding
remarks are made in Section 6.

2. RECORDING FOR MULTICHANNEL AUDIO

Before proceeding to the description of the proposed
method, a brief description is given of how the multiple
microphone signals for multichannel rendering are recorded.
In this paper, we mainly focus on live concert hall perfor-
mances, although this does not result in a loss of generality
of our methods as we show in Section5. A number of
microphones are used to capture several characteristics of the
venue, resulting in an equal number of microphone signals
(stem recordings). These signals are then mixed and played
back through a multichannel audio system. Our objective is
to design a system based on available microphone signals,
that is able to recreate all of these target microphone signals
from a smaller set (or even only one, which can be the sum
of all microphone signals) of reference microphone signals at
the receiving end. The result would be a significant reduction
in transmission requirements, while enabling remote mixing
at the receiving end. In our previous work [19], we were
interested to completely synthesize the target signals using
the reference signals, without any additional information.
Here we propose using some additional information for each
microphone for achieving good-quality resynthesis (above
3.0 perceptual grade compared to the original), with the
constraint that this additional information requires minimal
datarates for transmission. By examining the acoustical
characteristics of the various stem recordings, the distinction
of microphones is made into reverberant and spot micro-
phones.

Spot microphones are microphones that are placed close
to the sound source. Because the source of sound is not a

point source but rather distributed such as in an orchestra,
the recordings of these microphones depend largely on the
instruments that are near the microphone and not so much
on the hall acoustics. Resynthesizing the signals captured
by these microphones, therefore, involves enhancing certain
instruments and diminishing others, which in most cases
overlap in the time and frequency domains. Reverberant
microphones are the microphones placed far from the sound
source, that mainly capture the reverberation information
of the venue. In our earlier work [19], we showed that the
reverberant recordings can be resynthesized from a reference
recording using specially designed LTI filters. Here we focus
on the spot microphone signals. Our objective is to design a
system that recreates these signals from a smaller subset of the
microphone recordings, with minimal error. We note that the
methods proposed in this paper are based on our previous
work in multichannel audio synthesis [20] and resynthesis
[19].

In order to achieve audio compression, especially in low
bitrate applications which is the case in this paper, it is
generally accepted to introduce an amount of distortion to
the coded signals. Here, the distortion corresponds to an
amount of crosstalk that is introduced during encoding.
We consider that in many applications, a small amount of
crosstalk is more acceptable than a considerable degradation
in quality. As we showed in later sections, the amount of
crosstalk introduced by our methods is small, while the
quality remains good for low bitrate applications. In order
to better explain the nature of the introduced crosstalk,
a simple example is given. If a microphone was placed,
for example, near the chorus of an orchestra, then the
main objective of the microphone placement is to capture
a recording of the music where the chorus sounds as the
most prevailing part with respect to the remaining parts of
the orchestra. If this microphone signal is substituted by a
different (i.e., resynthesized) one, which again contains the
same performance and the chorus is the prevailing part of
the new signal, this is considered as a signal that retains the
“objective” of the initial microphone signal. Crosstalk refers
to the case when in the resynthesized signal, apart from the
chorus, other parts of the orchestra might be now more
audible than in the initial signal. Subjectively, this will have
the effect that the new signal sounds as if it was captured
by a microphone that was placed farther from the chorus
compared with the microphone placement of the original
recording. However, given that the amount of crosstalk is
small, the chorus will remain the most prominent part in the
recording and the resynthesized signal will still sound as if it
was made with a microphone placed close to the chorus. The
crosstalk is introduced since in our model all spot signals are
resynthesized based on a single reference recording.

3. SPOT SIGNALS MODELING

The proposed methodology, which is based on a multiband
source/filter representation of the multiple microphone
signals, consists of the following steps. Each microphone
signal is segmented into a series of short-time overlapping
frames using a sliding window. For each frame, the audio
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signal is considered approximately stationary, and the spec-
tral envelope is modeled as a vector of linear predictive
(LP) coefficients, using autocorrelation analysis [21]. The
resulting vector contains the coefficients of an all-pole filter
that approximates the spectral envelope of the audio signal
at the particular frame. The modeling error is the result
of inverse filtering the audio frame with the estimated LP
filter. Below, a brief review of the mathematical background
for the source/filter model is given, which will be useful
for explaining our approach later in this section. For this
purpose, we view the source/filter model from a spectral
estimation perspective. Thus we start by considering a single
audio frame and its spectrum is modeled by a vector of few
coefficients, for reducing the information flow of the audio
signal. Linear predictive analysis is employed, resulting in an
all-pole filter, practically with much less coefficients than the
samples of the audio frame. Under the source/filter model,
the signal s(n) at time n is related to the p previous signal
samples by the following autoregressive (AR) equation

)4

s(n) = Z a(i)s(n — i) + e(n), (1)

i=1

where e(n) is the modeling error, and p is the AR filter order.
In the frequency domain, this relation can be written as

2

Py(w) = P.(w), (2)

‘ 1
A(w)
where Ps(w) and P.(w) denote the power spectrum of signals

s(n) and e(n), respectively. A(w) denotes the frequency
response of the AR filter, that is,

P
Alw) =1- > a(i)e /', 3)

i=1

The (p+1)th-dimensional vectora = [1, —a(1l), —a(2),...,
—a(p)]" is the low-dimensional representation of the signal
spectral properties. If s(n) is an AR process, the noise e(n)
is white, thus a completely characterizes the signal spectral
properties. In the general case, the error signal (or residual
signal) will not have white noise statistics and thus cannot be
ignored. In this general case, the all-pole model that results
from the LP analysis gives only an approximation of the
signal spectrum, and more specifically the spectral envelope.
For the particular case of audio signals, the spectrum
contains only the frequency components that correspond
to the fundamental frequencies of the recorded instruments
and all their harmonics. (For simplicity, at this point we
consider only harmonic sounds. The proposed model is
tested for complex music signals in Section 5.) The AR filter
for an audio frame will capture its spectral envelope. The
error signal is the result of the audio frame filtered with the
inverse of its spectral envelope. Thus we conclude that the
error signal will contain the same harmonics as the audio
frame, but their amplitudes will now have significantly flatter
shape in the frequency spectrum.

Consider now two microphone signals of the same
music performance, which have been placed close to two

different groups of instruments of the orchestra. Each of
these microphones mainly captures that particular group of
instruments but also captures all the other instruments of
the orchestra. For simplification, consider that the orchestra
consists of only two instruments, that is, a violin and a
trumpet. Microphone 1 is placed close to the violin and
microphone 2 close to the trumpet. It is true in most
practical situations, that microphone 1 will also capture
the trumpet, in much lower amplitude than the violin and
vice versa for microphone 2. In that case, the signal s
from microphone 1 and the signal s, from microphone 2
will contain the fundamentals and corresponding harmonics
of both instruments, but they will differ in their spectral
amplitudes. Consider a particular frame for these 2 signals,
which corresponds to the exact same music part (i.e., some
time alignment procedure will be necessary to align the
two microphone signals). Each of the two audio frames is
modeled by the source/filter model:

)4
si(n) = > a(i)si(n — i) + ey (n),
i=1

; @)
s2(n) = > ay(i)sa(n — i) + ex(n).

i=1

From the previous discussion it follows that the two residual
signals e; and e, will contain the same harmonic frequency
components. If the envelope modeling was perfect, then it
follows that they would also be equal (differences in total gain
are of no interest for this application), since they would have
flat magnitude with exactly the same frequency components.
In that case, it would be possible to resynthesize each of the
two audio frames using only the AR filter that corresponds
to that audio frame and the residual signal of the other
microphone. The final signal is resynthesized from the audio
frames using the overlap-add procedure. If, similarly, the
source/filter model was used for all the spot microphone
signals of a single performance, it would be possible to
completely resynthesize these signals using their AR vector
sequences (one vector for each audio frame) and the residual
error of only one microphone signal. This would result in a
great reduction of the datarate of the multiple microphone
signals.

3.1. Multiresolution analysis

The AR model is very useful in speech synthesis and
transformations but not as efficient for audio signals. In
this section, we are interested to derive an AR-based model
which can be successfully applied to audio signals based
on multiresolution analysis. It is of interest to investigate
the reasons why the AR model is not sufficient for audio
as opposed to speech signals. The explanation is based
on the nature of audio signals which differ from speech
signals in two ways: (a) audio signals cover the frequency
range 0—20 kHz, while speech signals are mostly concentrated
below 10kHz and (b) audio signals are richer in their
frequency content than speech signals since typically they
contain a collection of harmonic signals (i.e., instruments
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and singing), while speech typically refers to only one har-
monic source (one voice only). At the same time, for the
application examined in this paper, it must be taken into
consideration that the AR filter is not an exact representation
of the spectral envelope of the audio frame, and the residual
signals for the two microphone signals will not be equal. All
these issues are addressed in our manuscript by the use of the
multiresolution AR model. The spectrum of the audio signals
is divided into frequency bands, and LP analysis is applied
in each band separately (subband signals are downsampled).
A small AR filter order for each band can result in much
better estimation of the spectral envelope than a high-order
filter for the full frequency band. The multiband source/filter
model achieves a flatter frequency response for the residual
signals. Then one of them can be used for resynthesizing
the other microphone signals, in the manner explained in
the previous paragraph. In fact, it has been theoretically
shown that the prediction error (residual) signal obtained
using linear prediction in subbands is flatter in the frequency
domain than the prediction error obtained using fullband
linear prediction (for the same AR filter order) [22]. This is
equivalent to the fact that subband LP is superior to fullband
LP. In the example of Figure 1, the power spectral density
(PSD) of a particular audio frame is shown, in the frequency
region 0-700 Hz (the plot is limited within this range for
improved frequency resolution). The audio frame used in
this figure is extracted from the audio signals used later in
our simulations. The solid line corresponds to the original
PSD of the audio signal, while the dashed line corresponds
to the AR spectrum using subband analysis (10th order AR
filter, 4 subbands used). The dashed-dotted line corresponds
to the fullband AR spectrum for the same filter order. It
is clear from the figure that subband LP is far superior to
the fullband LP, which translates into a flatter frequency
spectrum for the prediction error signal of the subband LP.
The combined AR subband PSD can be obtained from the
subband analysis by upsampling and filtering the subband
correlations, as explained in [22]. It is of interest to note
that for equal LP order, the fullband and subband LP result
in exactly the same number of LP vectors for a particular
recording; this is due to the multiresolution analysis and
to the critical subsampling for each band (combined with
different frame rate for each subband). Thus in terms of
bitrate, same prediction order for the fullband and the
subband LP can be considered equivalent. This is more
clearly explained in Section 5, when specific examples for the
number of bands and frame rate per band are discussed.

3.2. Crosstalkissue

In practice, the prediction error signals cannot be made
exactly flat (and thus equal), thus the resynthesized signals
will not sound exactly the same as the originally recorded
signals. Additionally, if the reference signal is the sum of the
various spot signals (which is necessary when the various
microphone signals do not contain common information),
frequency components will appear in the downmix that
should not be included in the residual of all spot signals.
These issues will result in the introduction of crosstalk in
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FIGUure 1: Original power spectral density (PSD) of a particular
audio frame (solid line) compared with the spectral envelope
obtained through subband linear prediction (10th order, 4 sub-
bands, dashed line) and fullband linear prediction (10th order,
dashed-dotted line).

the spot recordings that was discussed in Section 2. We claim
that the use of the multiband source/filter model results in
audio signals of good quality which retain the “objective”
of the initial recordings (i.e., the main music part of the
recording remains prominent), with only a small amount
of crosstalk. In other words, the “main” instrument that is
captured still remains the prominent part of the microphone
signal, while other parts of the orchestra might be more
audible in the resynthesized signal than in the original
microphone signal (crosstalk). Returning to the example
of the two microphones and the two instruments, if the
residual of microphone 1 is used in order to resynthesize
the signal of microphone 2, then in the result the violin will
most likely be more audible than in the original microphone
2 signal. This happens because some information of the
first microphone signal remains in the error signal, since
the spectral envelope modeling is not perfect. However, the
trumpet will still be the prominent of the two instruments in
the resynthesized signal for microphone 2, since we used the
original spectral information of that microphone signal. It is
also of interest to note the fact that the amount of crosstalk
and the final audio quality of the multiband source/filter
model depends on the following parameters: (1) the duration
of the audio frames for each band, (2) the AR order for each
band, (3) the percentage of frame overlapping, (4) the total
number of bands, and (5) the filterbank used. By changing
these parameters we can achieve various datarates with the
corresponding varying audio quality. However, a particular
choice for all these parameters can be found experimentally
to achieve the best possible modeling performance (example
values are given in Section 5 for the particular waveforms we
used for testing the method).
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F1GURE 2: Diagram of the proposed encoding approach. Each of the microphone signals of the multimicrophone recording is processed by
an analysis filterbank. Each of the subband signals is modeled using the source/filter model, and for each microphone signal, only the AR
parameters are encoded. Recording 1 corresponds to the reference signal, which is encoded as a single audio channel; the residual of the
reference signal will be used to resynthesize the remaining microphone signals at the receiving end.

3.3. Model overview

Based on the analysis of the previous paragraphs, at this point
a brief overview is given of the overall encoding/decoding
scheme. At the coding side, we are interested to encode the
various microphone signals (Recordings 1-N in Figure 2),
of a given multimicrophone recording. For example, in this
paper (Section 5), parts of a 16 microphone recording of a
particular concert hall performance are used. Each of the 16
microphone signals is to be processed independently under
the proposed scheme. One of the microphone signals is cho-
sen to be the reference recording (Recording 1 in Figure 2).
This signal is encoded as a single audio channel, that is,using
a perceptual audio coder. The remaining 15 microphone
signals are processed using an analysis filterbank, followed
by linear prediction in each of the subbands. Only the AR
parameters for each band are encoded (corresponding to
the spectral envelopes of the short-time spectra), while the
residual signals are discarded. At the decoder, the inverse
procedure is followed. The reference signal is obtained
using the decoder of the perceptual audio coder. From
the reference signal, the residual is extracted, which is
to be used to resynthesize the subband signals of the 15
remaining microphone signals along with the corresponding
AR decoded parameters. This procedure is followed by the
synthesis filterbank, which produces the final resynthesized
microphone signals of the multimicrophone recording.

As mentioned in Section 1, given that the remaining
microphone signals require minimal rates for encoding (in
the order of 5kbps), our approach is to encode the various
microphone signals before those are mixed; thus mixing can
take place at the receiving end. We note that the residual
of the reference signal will be used to resynthesize all
the remaining microphone signals, so the reference signal
must be carefully chosen. For the example of concert hall
performances, empirically, it is best if this signal corresponds
to a microphone location that is in some distance from
the orchestra so that it contains the instruments with
equal weight. At the same time, it is important that this
microphone is not placed in a large distance from the
orchestra, so that it does not capture a large degree of the
hall reverberation. In that case, the resynthesized signals will

sound more reverberant than the original recordings, since
the short-time spectral whitening we perform cannot capture
a long-term effect such as reverberation. The choice of the
reference signal is an open question, and it is a problem that
depends on the properties of the particular recording to be
encoded. We remind the reader the fact that the reference
signal can be a sum of all microphone signals, and the
practical implications of this latter approach are examined
in Section 5.

In Section 5, it is verified experimentally that our claims
hold for other cases of harmonic signals, such as speech
signals. It should be noted that some specific types of
microphone signals, such as percussive instruments and
signals from microphones far from the source, present
different challenges that were considered in our previous
work [19]. The method proposed in this paper focuses on
the large class of audio signals that can be modeled using a
short-time analysis approach with emphasis on their spectral
envelope (as opposed to the residual signal).

4. SPOT SIGNALS CODING

The next step in the proposed algorithm is to quantize the
spectral envelopes for each of the microphone signals. This
is done separately for each of the frequency bands in which
we divide the microphone signals. The quantization scheme
of [18] is followed here, which was developed for vector
quantization of speech line spectral frequencies (LSFs). The
AR coefficients of each microphone signal are transformed
to LSFs, since LSFs are more resistant to quantization
errors. Next, the LSF sequence that is obtained from each
microphone signal is modeled with the use of a Gaussian
mixture model (GMM)

g(x) = > piN(xsp, Z0), (5)
i=1

where N(x; y, X) is the normal multivariate distribution with
mean vector y and covariance matrix X, m is the number of
clusters, and p; is the prior probability that the observation
x has been generated by cluster i. The LSF vector order is
denoted as p (i.e., pth order linear prediction). GMMs are
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suitable for this problem since they have been shown to
model successfully the statistics of spectral vectors of both
speech [18, 23] and audio signals [19]. The Karhunen Loeve
transform (KLT) is adopted for the LSFs decorrelation. KLT
is especially fit for GMM-modeled parameters since it is
the optimal transform for Gaussian signals in a minimum-
distortion sense. Using GMMs, each LSF vector is assigned
to one of the Gaussian classes using some classification
measure, thus is considered as approximately Gaussian and
can be best decorrelated using the KLT.

Using the GMM modeling of the spectral parameters, it
holds for the covariance matrix of each class that it can be
diagonalized using the eigenvalue decomposition as

T = QAQ], (6)

where i = 1,...,m and A; = diag(A;1,Ai2,...,4ip). In other
words, A; is the diagonal matrix containing the eigenvalues,
and Q; is the matrix containing the corresponding set of
orthogonal eigenvectors of X;, for the ith Gaussian class of
the model. Then KLT substitutes each spectral vector for
time segment k, zi, with another vector of decorrelated
components wi

wi = Q (z — ). (7)

Similarly, the inverse KLT procedure (IKLT) reconstructs zx
from wy using the inverse relation

z = Qiwi +u;. (8)

A nonuniform quantizer is achieved by a combination
of a compressor, a uniform quantizer, and an expander.
The decorrelated vectors are processed using a logarithmic
compression function, quantized by a uniform quantizer,
and expanded using the inverse of the compression function.
The companding method of [24] was used, since this
function resulted in robust quantization in our experiments.
A bit allocation scheme for the uniform quantizer is needed
in order to allocate the total available bits (denoted by by
and specified by the user) for quantizing the source, among
the various clusters of the GMM. Let b; be the bits for
quantizing cluster i, and g; the quantity

1/p

p
qi = [m,j] ’
j=1

where p is the dimensionality of the LSF vector.

i=1,...,m, 9)

4.1. Fixed rate coding

In the fixed rate bit allocation scheme, the length of the
codewords is fixed and can be easily found to satisty the
constraint 2%t = > 20i Subject to this constraint, the
optimal bit allocation which minimizes the total average
mean square distortion is given by [18]

bi = byt — Ing [Z (quj)p/(p+2):|
j=1

P
p+2

(10)
+

log, (piqi), i=1,...,m.

4.2. Variable rate coding

In the variable rate bit allocation scheme, some of the total
bits (denoted b,) are used for the cluster identification. Thus
the variable rate constraint becomes b; = byt — b, where
b = log,m. In a variable rate quantizer, the average rate of
the quantizer is fixed, which translates into the constraint
by = i1 pibi. Subject to the above constraints, the optimal
bit allocation which minimizes the total average mean square
distortion is given by [18]

bi = b, +§[log2qi - ijlogij}, i=1,...,m (11)
j=1

After the evaluation of the cluster allocated bits, the bit
allocation among the cluster dimensions is given by

, A
bij = %+%log2[ q’i]], i=1,...,m j=1,...,p,
(12)

where b;; is the allocated bits to the jth component of
the ith cluster and A;; is the jth eigenvalue of cluster i. In
our implementation we rounded b;; in the nearest integer
number for more accurate bit allocation.

To summarize, the procedure for coding the LSF vectors
of each frequency band is as follows.

4.2.1.  Cluster quantization

The quantization of an LSF vector with the parameters of ith
cluster (Figure 3) consists of the following stages:

(i) the LSF vector z; is mean-subtracted, using the mean
u; of the cluster i;

(ii) the resultant vector is decorrelated using the matrix
Qf;

(iii) the vector’s components are passed through a
nonuniform quantizer (compressor, uniform quan-
tizer, expander);

(iv) the correlated version of the quantized vector is
reconstructed using the matrix Q;; and

(v) finally, the cluster mean g, is added to obtain the
quantized value of z, by the ith cluster, 2.

4.2.2. Overall quantization

A specific LSF vector z is quantized with the use of every
cluster of the GMM as described. In order to choose the
GMM cluster that best models a particular LSF vector, the
relative distortion value is computed for the vector, and the
one with the minimum distortion is chosen (Figure 4). Here
the log spectral distortion (LSD) is employed as a measure of
distance as in [18]

LSD (i) = (éf[101og10<§ig{;)>]2df> 1/2’ .

where F; is the sampling rate, S(f), 8 f) are, respectively,
the LPC power spectra corresponding to the original vector
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F1GURE 3: Overall quantization scheme, for each frequency band. Each LSF vector is mean normalized and decorrelated, using parameters of
the GMM class that the vector was classified to. Decorrelation is followed by nonuniform quantization of the vector components, and this

procedure is inverted to obtain the quantized LSF vector.
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FIGURE 4: “Minimum LSD” vector classification scheme. For each
LSF vector, the LSD is measured before transmission for each GMM
class, and the vector is classified to the cluster associated with the
minimal quantization LSD.

z; and the quantized vector 2,(;), for each cluster i =
1,...,m. The bitwise representation of zj, corresponding to
the cluster of minimum LSD, is transmitted. At the receiver,
the quantized LSF vector is converted into its corresponding
LPC value which is used to resynthesize the audio signal of
the kth frame.

5. RESULTS

For our experiments, we use microphone signals obtained
from a US orchestra hall by placing 16 microphones at
various locations throughout the hall. (Provided by Professor
Kyriakakis of the University of Southern California.) Our
objective is to indicate that the model and the coding method
we propose result in a good-quality recording with low
datarate requirements. For this purpose, we use two of these
microphone signals, where one of the microphones mainly
captures the male voices of the chorus of the orchestra,
while the other one mainly captures the female voices.
These recordings are very easy to distinguish acoustically.
In Section 5.2, some additional sound signals are used for
examining the scenario when the reference signal might be
a sum of the various spot recordings. The efficiency of the
proposed algorithm is tested via objective and subjective
tests.

5.1. Modeling performance

In this section, we show that the use of the proposed method
results in a modeled signal that is objectively and subjectively
very close to the original recording. For this purpose, we
use the two microphone recordings of the male and female
voices of the chorus, as mentioned. The objective is to
resynthesize one of these recordings using its corresponding
low-dimensional model coefficients along with the residual
of the other recording.

From initial listening tests, it has been clear that using a
number of bands around 8 for our model produced high-
quality resynthesis without loss of the objective of the initial
recording. For example, we have been able to resynthesize
the male voices recording based on the residual from the
female voices. On the other hand, without the use of a
filterbank, the resulting quality of the resynthesized signal
greatly deteriorated with an introduction of a large degree of
crosstalk to the recording. In order to show this objectively,
we measured the distance between the residual signals of the
two recordings, using the normalized mutual information
as a distance measure. The intuitive claim, as explained in
Section 3, is that decreasing the distance of the two residuals
will increase the quality of the resynthesized recording.
Our listening tests indicated that increasing the number
of subbands in our model, and consequently improving
the model accuracy, resulted in much better quality of the
resynthesized signals. While several measures were tested, the
normalized mutual information proved to be very consistent
in this sense.

The use of mutual information I(X; Y) as a distance mea-
sure between random variables X and Y is very common in
pattern comparison. By definition, the mutual information
of two random variables X and Y with joint probability
density function (pdf) p(x,y) and marginal pdfs p(x) and
p(y) is the relative entropy between the joint distribution
and the product distribution, that is,

p(x,y)
;Y) = ,¥) log ——2—.
10600 = 2 2 ptelog gty Y
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It is easy to prove that
I(X;Y)=HX)-HX |Y)=H(Y)-H(Y [ X), (15)

where H(X) is the entropy of X and H(X | Y) is the con-
ditional entropy. The mutual information is always positive.
Since our interest is in comparing two vectors X and Y (Y
being the desired response), it is useful to use a modified
definition for the mutual information, the normalized
mutual information (NMI) Iy(X;Y) which can be defined
as (see also [25, page 47])

1(X;Y)
H(Y)’

IN(XGY) = (16)
for which it can be shown that 0 < Iy < 1. The NMI
obtains its minimum value when X and Y are statistically
independent and its maximum value when X = Y. The NMI
does not constitute a metric since it lacks symmetry, however
it is invariant to amplitude differences [26], which is very
important when comparing audio waveforms.

In Figure 5 we plot the NMI between the power spectra
of the two residual signals with reference to the number
of different subbands used, for different orders of the
Daubechies wavelet filters, which were used for our tree-
structured filterbank [27]. As a result, our filterbank has
the perfect reconstruction property, which is essential for
an analysis/synthesis system, and also octave frequency-
band division. For our implementation, the parameters that
produced the best perceptual quality (32nd order LP filter for
a 1024 sample frame, corresponding to about 23 milliseconds
for 44.1kHz sampling rate) were used for the full-band
analysis. For the subband analysis, we used an 8th order filter
for each band, with a constant frame rate of 256 samples
for each band (thus varying frame in millisecond, given that
the wavelet filterbank is followed by critical subsampling).
The amount of overlapping for best quality was found
to be 75% for all cases. These parameters were chosen
for best perceptual quality while keeping the total number
of transmitted coefficients for the resynthesized recording
the same for both the fullband and the subband cases.
(These parameters are used throughout Section 5, while the
number of subbands varies in the experiments.) For the
particular choice of parameters mentioned, the total number
of coefficients used for the resynthesis is eight times less
than the total number of audio samples. The coefficients that
we intend to code for each microphone signal are the line
spectral frequencies (LSFs) given their favorable quantization
properties.

The NMI values in Figure 5 are median values of the
segmental NMI between the power spectra of the two
residual signals using an analysis window of 6 milliseconds.
The residual signals are obtained using an overlap-add
procedure so that they can be compared using the same
analysis window. Our claim, that using a subband analysis
with a small LP order for each band will produce much
better modeling results than using a high LP order for
the full frequency band, is justified by the results shown.
For the full band analysis, we obtain an NMI value of
0.0956 while for an 8-band filterbank the median NMI is

0.6
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Ficure 5: Normalized mutual information between the residual
signals from the reference and target recordings as a function of
the number of bands of the filterbank, for various Daubechies (db)
filters.

0.5720 (40th order wavelet filters). In Figure 5 we plot the
median NMI for different orders of the Daubechies filters.
We can see that increasing the filter order results in slightly
better results. Intuitively this was expected; an increase in
the filter order results in better separation of the different
bands, which is important since we model each subband
signal independently of the others. In a similar experiment,
we compared the residual signals in the time domain and
found that the median NMI doubles when using the 8-
band system when compared to the full-band case. The
results for both the frequency and time domains are similar
regardless of the analysis window length for obtaining the
NMI segmental values. When increasing the window size, the
NMI drops, which is expected since more data are compared.
The decrease is similar for the various numbers of bands we
tested.

In order to test the performance of our method in terms
of crosstalk , we also employed subjective (listening) tests, in
which a total of 17 listeners participated (individually, using
good-quality headphones—Sennheiser HD 650). We used
the two concert hall recordings from the same performance
as mentioned earlier (one capturing the male voices and one
capturing the female voices of the chorus). We chose three
parts of the performance (about 10 seconds each, referred
to as Signals 1-3 here) where both parts of the chorus are
active so that the two different microphone signals can be
easily distinguished. For each signal we designed an ABX test,
where A and B correspond to the male and female chorus
recording (in random order), while each listener was asked
to classify X as being closer to A or B regarding as to whether
the male or female voices prevail in the recording.

For this test, as well as all the listening tests employed
for the results of this manuscript (both ABX and DCR tests
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TABLE 1: Results from the ABX listening tests, for measuring the
crosstalk introduced by the proposed model.

ABX-1 ABX-2 ABX-3 ABX-4
Results correct 86% 63% 10% 8%

explained in the following paragraphs), the sound level of
all waveforms was normalized so that they sound as having
equal level (or else the loudness level could have affected the
results). This normalization was achieved by dividing each
signal with its maximum absolute value, and in practice this
procedure proved to be sufficient for all signals to sound
as having the same sound level; the reader is referred to
the authors’ website mentioned in Section 5.2 for listening
to the audio waveforms that were used in the listening
tests. For both the ABX and DCR tests, a simple computer-
based graphical user interface (GUI) was designed for the
convenience of the listeners. The GUI consisted of a series
of three buttons for the ABX test (two buttons for the
DCR test), each button triad (or dyad for the DCR test)
corresponding to the same part of a music recording. By
clicking to a button in the screen using the mouse, the listener
could listen to the corresponding audio file. As is common in
these tests, the listener was encouraged to listen to audio clips
as many times as desired and in any order preferred.

We tested 4 different types of filterbanks (3 wavelet-
based and 1 MDCT-based), namely, 8-band with filters db40
(ABX-1 test) and db4 (ABX-2), 2-band with db40 (ABX-
3) and 32-level MDCT-based with KBD window (ABX-4).
For each of these 4 tests, we used all three of the chosen
signals, thus a total of 12 ABX tests was conducted per
listener. The results are given in Table 1. We can conclude
that the objective results, as well as the various claims made
in the previous sections regarding the model, are verified by
the listening tests. It is clear that the 8-level wavelet-based
filterbank (ABX-1) produces good results when aliasing is
limited (i.e., db40 case), although there is certainly room
for improvement and further enhancements to our model
are currently examined. On the other hand, when aliasing
is high (ABX-2) or when the number of bands (and thus
the modeling accuracy) drops (ABX-3), the performance
of the proposed method greatly deteriorates, not only in
the sense of enhancing the male voices, but also regarding
the final quality (which most listeners noticed during the
experiments). Crosstalk is increased (but quality remains
good) in the case of the MDCT-based filterbank as well
(ABX-4). In other words, we noticed that octave filterbanks
produce results far superior when compared to equally
spaced filterbanks, which could be attributed to the fact
that the LP algorithm is especially error-prone in lower-
frequency bands. At this point we note that in our informal
tests the Laplacian pyramid, which is a different type of
octave-spaced filterbank [28], produced results comparable
to the wavelet case. This filterbank was used only for verifying
the importance of octave-spacing in the filterbank and it is
not a viable alternative to wavelets for our method since it
is not critically subsampled. The choice of filterbank and
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FIGURE 6: Results from the 5-grade scale DCR-based listening

tests that give a performance indication regarding the resulting

quality of the proposed model. Graphical representations of the

95% confidence interval are shown (the x’s mark the mean value
and the vertical solid lines indicate the confidence limits).

whether octave-spaced filterbanks are indeed better from
equal-spaced for our model is a subject of our ongoing
research.

We also conducted degradation category rating-based
(DCR) listening tests for evaluating the quality of the
resynthesized signals using a 5-grade scale in reference to
the original recording (5 corresponding to being of same
quality, and 1 to the lowest quality, when compared with the
original male chorus recording). This test is often performed
for speech coding [29]. The 17 subjects (the same who
participated at the ABX test), listened to the three sound clips
(Signals 1-3), where the resynthesized signals were obtained
using the best modeling parameters (8-level db40 wavelet-
based). The results are depicted in Figure 6, where graphical
representations of the 95% confidence interval are shown
(the x’s mark the mean value and the vertical solid lines
indicate the confidence limits). These results show clearly
that the resynthesized signals are of good quality and the
model does not seem to introduce any serious artifacts.

5.2. Donwmix subjective tests

In this section, the focus is on testing whether resynthesis
of the various spot signals from a downmix sum signal is a
viable scenario. This is important in cases when spot signals
do not contain common content, which is often the case in
studio recordings. As in the previous section, we are again
interested to test the amount of crosstalk that is introduced,
and whether there are implications regarding the quality of
the resynthesized signals. It is expected that it will be more
difficult to resynthesize good-quality spot signals from the
sum signal compared to the reference signal that was used
in the previous section since the sum signal will contain
frequency components which were not at all present in some
spot signals. Also, crosstalk will be more audible in separate
track recordings.
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The following recordings were used, each containing a
separate instrument recording:

(i) bass singer,
(ii) soprano,
(iii) trumpet,
(iv) harpsichord,
(v) violin,
(vi) rock singer,
(vii) rock guitar,
(viii) male speech, and
(ix) female speech.

Signals (i)—(v) are excerpts from the EBU SQAM (Sound
Quality Assessment Material) test disc and were obtain-
ed from (http://sound.media.mit.edu/mpeg4/audio/sqam/).
These are stereo recordings, and only one of the 2 channels
was used in our experiments. Signals (vi)—(vii) are a courtesy
of rock band “Orange Moon.” Signals (viii)—(ix) were
obtained from the VOICES corpus (http://www.cslu.ogi.edu/
corpora/voices/), available by OGIs CSLU [30]. All signals
are 16-bit 44.1 kHz signals, except from the speech signals
which are 22 kHz signals. The modeling parameters used for
the experiments of this section correspond to the parameters
of ABX-1 test of the previous section, which gave the best
objective and subjective results, with the exception of LP
order per band which was 16 (instead of 8). In the speech
files, though, due to the use of different sampling rate, only 4
subbands were used (instead of 8).

The listening tests employed are ABX and DCR tests.
14 volunteers participated in these tests, and sound was
presented using good-quality headphones. Each sound file
used was a sum of two original recordings, and more
specifically the following signals were created:

(1) bass plus soprano,

(2) guitar plus rock singer,
(3) harpsichord plus violin,
(4) female plus male speech,
(5) trumpet plus violin,

(6) violin plus guitar, and
(7) violin plus harpsichord.

These seven signals correspond one-to-one to the Tests
(1)=(7) in the ABX resuls, and to Signals (1)—(7) in the DCR
results.

The instrument that is referred first in the above list
is the instrument that we wanted to resynthesize from the
sum signal. In the ABX test, each listener was presented
with the original two instrument recordings that were used
to obtain the sum signal as signals A and B (in random
order), as well as the resynthesized signal (Signal X),
and was asked to associate X with A or B depending on
which instrument prevails in the recording. In the DCR
tests, each listener was asked to grade the resynthesized
signal compared to the original recording that we wanted
to obtain (regardless to whether the listener recognized
that this was indeed successful in the ABX test). The
audio files that were used in these tests can be found in
(http://www.ics.forth.gr/~mouchtar/originals/tests.html),
which includes the classical music recording of the previous
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FIGURE 7: Results from the 5-grade scale DCR-based listening
tests for the downmix case, including the indication of the 95%
confidence interval.

section. These sound files include the separate recordings as
well as the sum signal.

The results of the ABX test are given in Table 2. The
ABX results clearly show that the amount of crosstalk is
small, when considering which instrument prevails in the
resynthesized recording, which is a very encouraging result.
The total ABX score for all files is 97%. Figure 7 shows the
DCR results for the seven test signals. Each listener was asked
to grade the resynthesized signal with respect to the original
signal we want to model. From the results of the figure we
can make the following conclusions.

(i) While singing voices were graded best among the
various test signals, speech received one of the lowest
grades.

(ii) As expected, when attempting to resynthesize the
violin using a sum with the harpsichord, the DCR
result is very low. On the other hand, when attempting
to obtain the harpsichord from the same sum signal,
the DCR result is much better. This is due to the fact
that percussive sounds cannot be adequately modeled
by their spectral envelope, and significant information
remains in the residual. Thus it is a difficult task to
diminish the percussive signal when resynthesizing
another spot signal, but the opposite is not as hard.

(iii) The same conclusion holds for the vocals and the
guitar signals, but to a lesser degree, given that in our
tests the guitar has a percussive nature but not to the
same degree as the harpsichord.

Given the SQAM waveforms, we also derived some test
audio files for illustrating some interesting aspects of the
proposed modeling approach. One subject of interest is to
show that the residual signal of the reference channel is
needed for good-quality synthesis, as opposed to using a
synthetic error signal such as white noise or a randomly
chosen segment from the actual error signal of the target
signal. As is true for speech signals as well, white noise cannot
be used as an error signal for synthesizing high-quality
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TABLE 2: Results from the ABX listening tests, for measuring the crosstalk introduced by the proposed model using the sum reference signal.

ABX-1 ABX-2 ABX-3

ABX-4 ABX-5 ABX-6 ABX-7

Results correct 93% 93% 100%

100% 93% 100% 100%

audio signals. In fact, in speech processing the problem of
producing the best model error signal for achieving best
audio quality has been an important issue both in text-
to-speech synthesis (TTS) and speech coding alike. This
problem is even more important in music applications as
the one examined in the text, where quality is of extreme
importance. It is thus necessary to note the fact that using
white noise as model error, even with the correct energy
scaling for each time frame, will not produce high-quality
synthesis in our application, nor in speech synthesis and
coding. The same is true for more carefully designed syn-
thetic error signals (e.g., for speech an impulse train can
be generated based on the estimated pitch, although this
in practice is not possible for polyphonic music). The rea-
son is that the whitening process is not perfect and important
information remains in the error signal. This information
cannot be approximated by white noise or any other
synthetic signal but can be approximated by a similar error
signal (obtained from the reference signal). The general
practice in the speech processing domain is to use the error
from actually recorded speech signals (e.g., phonemes, as
in concatenative speech synthesis). Similarly in our case,
the error signal is not synthesized but it is obtained from
actually recorded signals (the reference recording), and this
is possible only for the case that we examine here, that
is, for various spot signals of a multichannel recording,
which have similar content. If the various spot signals were
not correlated, the proposed method would fail (unless a
downmix signal was derived as a reference signal), since the
model error signals must be very similar in order to use one
error signal for synthesizing all spot signals.

The other issue that we wish to illustrate at this point
using the SQAM waveforms is that the creation of a downmix
signal is necessary for the case when the reference and
target signals become uncorrelated. For simplification, let us
consider one reference and one spot signal. The proposed
method assumes that the two microphone signals have
similar content, in the sense that the microphones capture
the same instruments with different weights (e.g., one
microphone captures mostly the male voices of the chorus
but the female voices are also present in the recording,
and vice versa for the other microphone). In principle, the
whitening process of removing the AR spectrum (improved
by multiresolution analysis) will result in two error signals
with the same content. This, as explained in the manuscript,
is due to the fact that the two error signals will contain the
same frequencies (harmonics) with equal amplitude (due to
whitening). This concept is central in the proposed method.
When the reference and target signals are not correlated,
or are weakly correlated, the proposed method will result
in poor quality (the two error signals will contain different
harmonics even in the ideal case of perfect whitening).

In order to show examples of the resulting audio quality
that is obtained in the above described cases, we have derived
the audio waveforms that can be found in our previously
mentioned website, in subdirectory named “Incorrect Error
Synthesis Examples” In these test audio files, we have
included an experiment where we use the violin and trumpet
recordings from the SQAM dataset. Our objective is to
resynthesize the trumpet signal using only its multiband
AR spectrum and (i) white noise scaled using the correctly
extracted variance (i.e., obtained from the corresponding
subband and time frame of the trumpet error signal), (ii)
from a randomly selected frame of the trumpet signal
(different one for each subband), again scaled with the
“correct” variance of each frame, and (iii) using the error
signal from the violin recording. The above experiments were
derived so that we can verify our claims regarding the fact
(a) that random noise or an irrelevant error signal cannot
produce high-audio quality (experiments (i) and (ii)) and
(b) that the downmix process is necessary for introducing
correlation between the reference and target signals. The
listener can easily verify these claims by comparing the
resynthesis result from the downmix signal which can
be found in the aforementioned link (“Trumpet-violin”
subdirectory).

As a general conclusion, resynthesis from a sum signal is
a more challenging task than from a signal which originally
contains common information with all spot signals (as is
the case in USCs classical music recordings). However, as
we also note later in Section 5.3, the DCR results obtained
do not necessarily indicate the quality of the resynthesized
signals alone. The fact that in the resynthesized signals
there is an amount of crosstalk which is not present in
the original recording affects the DCR tests, although the
actual audio quality of the signal might not be distorted.
This can be seen if we compare the results of this section
with the results of Section 5.1. As opposed to Section 5.1,
in this section, the actual separate recordings were available
and were used for testing. Consequently, the ABX results
obtained for the sum scenario were much better since it is
easier to identify the target recording than in Section 5.1. On
the other hand, since now the original recordings contain
separate instruments, in the DCR test the effect of crosstalk
is much more evident and is considered more important by
the listeners than in Section 5.1. In other words, the DCR
results in this section are more related with the crosstalk issue
rather than the resulting quality. We invite the reader to judge
on the performance of the proposed model by visiting our
aforementioned website.

5.3. Coding results

Regarding the coding scheme proposed, our initial listening
tests indicated that the final quantized version is acoustically
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close in quality compared to the recorded signal, for bitrates
as low as 5kbps. Again, it is mentioned that the objective
in this paper is to obtain subjective results above 3.0 grade,
which can be considered a good performance for low bitrate
coding applications. First, we give some objective results
using the LSD measure. The audio data used for the LSD
results correspond to about 1 minute of the male and female
chorus classical music recordings that have been used in
Section 5.1. Classical music signals 1-3 that were used in the
listening tests of Section 5.1 (and are used for the listening
tests of this section as well) are part of this 1 minute testing
dataset. The sampling rate for the audio data is 44.1 kHz; we
divide the frequency range into 8 octave subbands using 40th
order Daubechies wavelet filters. The model parameters are
those that gave the best quality in the modeling (objective
and subjective) results of the previous section, that is, 8th
order LP, 256 samples frame with 75% overlapping.

Before proceeding to the description of the results, we
give some details regarding the GMM training procedure.
A training audio dataset of about 136000 LSF vectors
(approximately 3 minutes of audio) was used to estimate
the parameters of a 16-class GMM. The training database
consists of recordings of the same performance as the data
we encode (but a different part of the recording than the
one used for testing). In practice, it may not be possible
to obtain a training set that corresponds to the same data
that are coded. In these cases, it is possible to use a training
database which contains a large number of music recordings,
which translates into a large degree of variability in the LSF
parameters. It is also possible to use only a subset of the large
database which is closer in content to the content that will be
coded.

For obtaining this LSF vector training dataset, we applied
to the audio data the same wavelet-based filterbank that is
used for the modeling/encoding procedure (8-bands, critical
subsampling, same window length in samples for each band).
In this manner, we collected all the subband vectors into one
set of 136000 LSF vectors; with this set we trained a single
GMM that was used for decorrelating all subband vectors
during the coding procedure. While this approach was
followed in this paper, it is important to note that a problem
arises regarding the lack of training vectors in the lower
subbands. More specifically, under these model parameters,
the number of vectors in the kth band is double the number
of vectors in the (k — 1)th and so forth. Consequently, the
training dataset contains more vectors from—and is thus
more accurate for—the higher-frequency bands than the
lower-frequency bands. In turn, during coding, the lower
bands demand more bits/frame for achieving the same LSD
with the higher-frequency bands. On the other hand, this
does not significantly increase the total bitrate since the
critical subsampling results in far less data in the lower bands.
Nevertheless, we attempted to resolve this issue by using the
same frame rate in millisecond (varying in samples) for each
band during training, which results in the same number of
training vectors per band. We trained a model using the
vectors from all bands as one training set. We also trained
a different model, by creating 8 training sets (different GMM
for each band), given that in this case there are enough

TaBLE 3: The log spectral distortion for various bit rates (variable
rate coding scheme). For the 5kbps case, the actual number of
bits/frame used for each band can be found on Table 4.

Bits/frame  kbps LSD(dB) 2—4 dB (%) >4 dB (%)
Var 5 1.2599 16.13 0.0998
Var 10 0.6380 3.87 0.0000
22 15 0.7583 0.35 0.0186
29 20 0.4108 0.06 0.0046
36 25 0.2190 0.01 0.0000
44 30 0.1094 0.00 0.0000
51 35 0.0592 0.00 0.0000
58 40 0.0329 0.00 0.0000

TABLE 4: An example of the total bits that were assigned in each
band for variable rate coding, corresponding to the 5 kbps case of
Table 3, and the associated LSD.

Band Nr.  Bits/frame  LSD (dB) 2-4dB (%) >4 dB (%)
1 23 1.1433 10.81 0.30
2 18 1.3001 11.41 0.60
3 19 1.1490 5.82 0.75
4 17 1.2779 8.19 0.52
5 19 0.8181 0.71 0.04
6 16 1.0564 2.17 0.43
7 8 1.6561 18.20 0.00
8 1.6781 21.47 0.02

vectors in all subbands for training a different GMM per
band. Both of these latter approaches produced much higher
LSD than our initial approach, mostly in the lower-frequency
bands. This can be possibly attributed to the fact that the
training and testing conditions are different (in our case
the analysis/synthesis frame rate for each band). In turn,
this results in a mismatch between the training and testing
vectors, which is evident in terms of LSD.

Using the aforementioned parameter values, and with
varying choice of bitrate, we obtain the values of Table 3
(variable rate coding). Fixed rate results are not given here
due to space limitations, and since it is well known that
variable rate coding is more efficient than fixed rate in terms
of LSD. In these tables, the LSD value given is the average
LSD over all bands. The percentage of the LSD values that
are within the 2—4 dB interval and for those that are greater
than 4 dB is also given. These values correspond to the total
number of quantized vectors and are not averages of the
subband percentages (i.e., all subband vectors are considered
as one set for deriving the percentage values). In Table 3, the
bits/frame used are the same for all subbands except in the
first two cases (for 5 and 10kbps). For the 5 and 10kbps
cases, a different number of bits/frame is used for each band
(for the 5kbps case the number of bits/frame is given in
Table 4). In these latter cases, the number of allocated bits per
band is skewed towards the lower-frequency bands, which is
a more efficient approach given the lack of training data for
the lower bands as mentioned. This explains the fact that in
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Table 3, the LSD for the 10kbps is lower than the 15kbps
respective results, which might seem contradictory at first.

We should note that the LSD values given in all the tables
of this section offer an objective performance measure which
is not trivial to correlate with the acoustic tests that follow
later in this section. This is in contrast to speech coding,
where it is generally accepted that an average LSD value of
1 dB (combined with less than 2% of LSD values in the region
2-4dB) will result in speech of high perceptual quality. In
our case, there are two issues that prohibit at this point such
a generalization. These are (i) the fact that LSF coding for
audio signals has not been used in the past for good-quality
audio coding, and consequently extensive tests are required
and (ii) the use of filterbanks, which raises the issue that
for the same average (over all subbands) LSD value, we can
achieve a wide range of LSD values per band. The latter
remains an open question for our future research, that is,
to determine how the LSD per band measure that we use
correlates with subjective quality. From our tests, it has been
clear that the listeners have different tolerance in the coding
error for each subband, which is related to psychoacoustic
principles. In our future research, we intend to examine
whether a minimum LSD value per band can be derived,
similarly to the aforementioned principles in speech coding
research.

In order to test the performance of the coding procedure,
we conducted DCR-based listening tests, using the aforemen-
tioned (in Section 5.1) 5-grade scaling procedure. Twenty-
two volunteers listened to three sound clips (originally
recorded versus coded classical music Signals 1-3 similarly
to Section 5.1). In this case, the coded signals were obtained
using the best modeling parameters (8-level db40 wavelet-
based), while coded using the variable rate coding scheme
with 16 GMM classes. Regarding the bits/frame used for
each band, we encoded the audio signals using the following
bitrates: (i) 5 kbps with varying bits/frame for each band, (ii)
10 kbps with varying bits/frame for each band, (iii) 15kbps
using 22 bits/frame for each band, and (iv) 20kbps with
29 bits/frame for each band. The choice of these four bitrate
values, for each of the three sound clips mentioned, resulted
in a total of 12 DCR tests. The signals 1-3 that were used in
the listening tests are part of the 1-minute audio signals that
were used to derive the LSD values in this paper.

The results of the DCR tests are depicted in Figure 8,
where the 95% confidence interval are shown (the vertical
lines indicate the confidence limits). In general, we can
deduce from the results of the figure that the quality of
the coded audio signals is good and the overall proposed
algorithm offers very encouraging performance. Regarding
the individual results for each of the 4 different bitrates used
for coding, we can see that the 10 and 20 kbps rates result in
good-quality coding for all three signals. The 5 kbps rate can
be verified to be the minimum rate that can be used so that
the coded signals can be considered of acceptable quality (no
significant degradation). For Signal-3 especially, the quality
of the 5kbps coded signal is perceived to be lower than
the other three coded signals, but still remains acceptable.
It is of interest to note that all listeners in our test did
not have previous experience in such tests. Thus, although

Not perceived

Perceived but |
not annoying

Slightly annoying |

Annoying |

Very annoying

1 2 3

Signal
-x- —5kbps -9o- —15kbps
-©- —10kbps -8- —20kbps

FIGURE 8: Results from the 5-grade scale DCR-based listening
for the proposed overall coding scheme (modeling followed by
quantization).

instructed to do otherwise, they seemed to have taken into
consideration the fact that the original and coded signals did
not sound exactly the same (due to the introduced crosstalk
during the modeling procedure). While the crosstalk is
important perceptually, it is not related to the quality of the
coding procedure, thus the DCR results of both Figures 6
and 8 (as well as of Figure 7 as explained in Section 5.2)
indicate a lower signal quality than the one actually achieved.
It is also of interest to note that the majority of the listeners
found it very hard to distinguish between the various sound
clips (corresponding to the various bitrates for coding and
the original recordings), which is also an indication that the
coding algorithm performed very well even in the very low
bitrate cases.

At this point, it is of interest to mention that for the
results described in this paper, the residual signal is derived
from a PCM coded recording, using 16 bits/sample and
a 44.1kHz sampling rate. In practice, as mentioned, the
coding scheme we propose is based on coding a single audio
channel (from which the residual is derived) and using side
information in the order of 5kbps for each of the remaining
microphone recordings. The single audio channel can be
encoded using any monophonic coding scheme, such as
perceptual audio coders. In informal listening tests, we used
the residual of an MP3 coded signal with 64 kbps rate, for
resynthesizing Signals 1-3 using 5 kbps bitrate. The resulting
perceptual quality was similar to the quality of the signals
used in the listening tests of Figure 8.

6. CONCLUSIONS

We proposed a multiresolution source/filter model for
immersive audio applications, which can lead to good quality
(above 3.0 perceptual grade compared to the original) low
bitrate coding. More specifically, we showed that it is possible
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to encode the multiple microphone signals of a multichannel
audio recording into a single audio channel, and additional
information in the order of 5kbps for each microphone
signal. The approach followed is focused towards encoding
the microphone signals before those are mixed into the
final multichannel mix and is thus suitable for immersive
applications such as remote mixing and distributed musi-
cians’ collaboration. Our objective and subjective results
demonstrate that our algorithm offers a viable approach for
very low bitrate audio coding, with audio quality that is
acceptable for many practical applications.
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