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Robust automatic language identification (LID) is a task of identifying the language from a short utterance spoken by an unknown
speaker. One of the mainstream approaches named parallel phone recognition language modeling (PPRLM) has achieved a very
good performance. The log-likelihood radio (LLR) algorithm has been proposed recently to normalize posteriori probabilities
which are the outputs of back-end classifiers in PPRLM systems. Support vector machine (SVM) with radial basis function (RBF)
kernel is adopted as the back-end classifier. But for the conventional SVM classifier, the output is not probability. We use a pair-
wise posterior probability estimation (PPPE) algorithm to calibrate the output of each classifier. The proposed approaches are
evaluated on the 2005 National Institute of Standards and Technology (NIST). Language recognition evaluation databases and
experiments show that the systems described in this paper produce comparable results to the existing arts.
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1. INTRODUCTION

Automatic spoken language identification without using
deep knowledge of those languages is a challenging task.
The variability of one spoken utterance can be incurred
by its content, speakers, and environment. Normally, the
training corpus and test corpus consist of unconstrained
utterances from different speakers. Therefore, the core issue
is how to extract the language differences regardless of
content, speaker, and environment information [1, 2]. The
clues that human use to identify languages are studied in
[3, 4]. The sources of information used to discriminate
one language from the others include phonetics, phonology,
morphology, syntax, and prosody. At present, The most
successful approach to LID uses phone recognizers of several
languages in parallel. The analysis in [4] indicates that
performance can be considerably improved in proportion to
the number of front-end phone recognizers. Recently, a set
of phone recognizers are used to transcribe the input speech
into phoneme lattices [5, 6] which are later scored by n-gram
language models.

Each spoken utterance is converted into a score vector
with its components representing the statistics of the acoustic
units. Vector space modeling approach [7] has been success-
fully applied to spoken language identification. Results in
an anchor GMM system [8] show that it is able to achieve

robust speaker independent language identification through
compensation for intralanguage and interspeaker variability.
However, the identity of a target language is not sufficiently
described by the score vectors that are generated by the
following language models in conventional PPRLM systems.
To compensate these insufficiencies, it is a natural extension
that multiple groups with similar speakers in one language
are used to build the multiple target phonotactic language
models. For example, the training data set for language
modeling can be divided by genders. In our proposed
framework, hierarchical clustering (HC) algorithm [9] and
K-means clustering algorithm are used together to extract
more information from the available training data. Here,
generalized likelihood ratio (GLR) distance defined in [10]
is chosen as the pair-wise distances between two clusters.

In PPRLM framework, back-end discriminative SVM
classifiers are adopted to identify the spoken language. The
SVM classifier has demonstrated superior performance over
generative language modeling framework in [7, 11, 12]. SVM
as a discriminative tool maps input cepstral feature vector
into high-dimensional space and then separates classes with
maximum margin hyperplane. In addition to its discrimi-
native nature, its training criteria also balance the reduction
of errors on the training data and the generalization on the
unseen data. This makes it perform well on small dataset and
suited for handling high-dimensional problem. In this paper,
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a back-end radial basis function (RBF) kernel [13] SVM
classifier is used to discriminate target languages based on the
probability distribution in the discriminative vector space of
language characterization scores. The choice of radial basis
function kernel is based on its nonlinear mapping function
and requirement of relatively small amount of parameters
to tune. Furthermore, the linear kernel is a special case of
RBF and the sigmoid kernel behaves like radial basis function
for certain parameters [14]. Note that the training data of
this back-end SVM classifier comes from development data
rather than from the data used for training n-gram language
models, and cross-validation is employed to select kernel
parameters and prevent over-fitting. For testing, once the
discriminative language characterization score vectors of a
test utterance are generated, the back-end SVM classifier can
estimate the posterior probability of each target language
that is used to calibrate final outputs. As mentioned above,
pair-wise posterior probability estimation (PPPE) algorithm
is used to calibrate the output of each classifier. In fact, the
multiclass classification problem refers to assigning each of
the observations into one of k classes. As two-class problems
are much easier to solve, many authors propose to use two-
class classifiers for multiclass classification. PPPE algorithm
is a popular multiclass classification method that combines
all comparisons for each pair of classes. Furthermore, it
focuses on techniques that provide a multiclass probability
estimate by combining all pair-wise comparisons [15, 16].

The remainder of this paper is organized as follows.
The proposed PPRLM LID frameworks is stretched in
Section 2. In Section 3, the proposed three basic classifiers are
described. Besides, a score calibration method and a prob-
ability estimation algorithm are detailed in this section. In
Section 4, a speech corpus used for this study is introduced.
Experiments and results of the proposed method are given in
Section 5. Finally, some conclusions are given in Section 6.

2. THE PPRLM LID FRAMEWORK

This section mainly introduces our PPRLM LID framework
based on language characterization score vectors. The par-
allel phone recognizer with language modeling system is
composed of four parts [17, 18]: feature extractor, language-
dependent phone recognizers, score generators, and back-
end classifier. The general system architecture for language
identification task is given in Figure 1, where PRi and
SGi are language-dependent phone recognizers and score
generators for language i. Usually, two types of scores can
be generated for using as the back-end features: acoustic
scores and phonotactic scores. Acoustic scores (likelihood)
are generated by a one pass forward-backward decoder.
Phonotactic scores are generated by the following language
models in score generators. Finally, the score vector that
is composed of acoustic and phonotactic scores is sent to
back-end classifier for identifying. The back-end system
consists of three parts (applied in the listed order): a set
of classifiers (equal to the number of target languages),
probability estimation, and finally a log-likelihood ratio
(LLR) normalization.

In feature extraction, speech data is parameterized
every 25 milliseconds with 15 milliseconds overlap between
contiguous frames. For each frame, a feature vector with
39 dimensions is calculated as follows: 13 Mel Frequency
Perceptual Linear Predictive (MFPLP) [19, 20] coefficients,
13 delta cepstral coefficients, and 13 double delta cepstral
coefficients. All the feature vectors are processed by cepstral
mean subtraction (CMS) method.

A Mandarin score generator is shown in Figure 2. In the
framework, training set of each target language is divided
into multiple groups that are used to build correspond-
ing language models. The language model subgroups are
modeling based on the multiple training subsets. Thus, the
dimension of score vector is increased. The total number of
language models is Ntotal = L×N , where L is the number of
target languages and N is the number of target subgroups.
So, taking no count of the acoustic scores, the dimension
of discriminative language characterization score vectors
(DLCSVs) in the PPRLM system isNDLCSV = L×N×P, where
P is denoted as the number of phone recognizers in parallel.
Considering the amount of training data for language model
building, N is limited to a small number. The main object
of these measures is to derive the discriminative high-level
feature vectors in LID tasks, while restraining the disturbance
caused by the variability of speakers or channels in realistic
systems. Thus, a discriminative classifier can be built in this
score vector space to identify the target language.

3. THE BACK-END CLASSIFIER

The approach for classifying discriminative language charac-
terization score vectors in LID system is demonstrated in this
section. Three classifiers: Gaussian models (GMs), support
vector machine (SVM), and feed-forward neural network
(NN) are proposed to compartmentalize these high-level
features, which are generated by n-gram language model
scoring and parallel phone decoding. The architecture of
different classifier is given in Figure 3, where Ci is the
classifier i. Each of them estimates the posterior probability
of target language, which is used to normalize final outputs
with LLR method.

3.1. Gaussianmixturemodel

A Gaussian mixture model (GMM) is constructed by
multiple K Gaussian components:

P(�x | λ) =
K∑

k=1

ωkbk(�x | �μk,Σk),
K∑

k=1

ωk = 1, (1)

where �x is D-dimensional feature vector, λ: {ωk,�μk,Σk}
are the parameters of the GMM, and ωk is weight of
an individual Gaussian component. bk(·) is the individual
Gaussian component defined in formula (2):

bk(·) = 1

(2π)D/2|Σk|1/2
exp

{
1
2

(
�x − �μk

)τ
Σ−1
k

(
�x − �μk

)}
.

(2)
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Figure 3: Types of the back-end classifiers.

The back-end procedure takes discriminative language
characterization scores from all available classifiers and maps
them to final target language post probabilities. Diagonal
covariance Gaussian models that are used as the back-
end classifiers are trained from the development data [21].
However, these models are hard to describe distribution
of high-dimensional features. Usually, linear discriminant
analysis (LDA) has been used for this task. As a last step in
the back-end procedure, the score vectors are converted to
log-likelihood ratios.

3.2. Feed-forward neural network

For feed-forward multilayer neural network training, many
algorithms are based on the gradient descent algorithms,
such as back propagation (BP). However, These algorithms
usually have a poor convergence rate, because the gradient
descent methods is using a linear function to approximate
an object function. Conjugate gradient (CG), as a second
derivative optimal method, has a better convergence rate
than BP.

In this paper, the feed-forward neural network with one
hidden layer is used to learn the relations in DLCSV space.
The classifier is built on both training set and development
set with CG optimization [22]. Sigmoid function is chosen

as the output function in the NN classifier. Suppose �S =
[S1, S2, . . . , SL]t is observation output vector by NN classifier.
Moreover, Sk is subject to the constraint in 3, which can
be taken as posterior probability. Thus, LLR normalization
method detailed in the following section can also be used:

L∑

k=1

Sk = 1, 0 ≤ Sk ≤ 1. (3)

3.3. RBF support vectormachine

An SVM is a two-class classifier constructed from the sum of
a kernel function K(·, ·):

f (x) =
n∑

i=1

αitiK
(
x, xi

)
+ d,

subject to αi > 0,
n∑

i=1

αiti = 0,
(4)

where n is the number of support vectors, ti is the ideal
outputs, and αi is the weight for the support vectors xi. A
back-end radial basis function (RBF) [13] kernel is used
to discriminate target languages. RBF kernel is defined as
follows:

K
(
xi, xj

) = exp
(− γ

∥∥xi − xj
∥∥2)

, γ > 0, (5)

where γ is the kernel parameter estimated from the training
data.
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3.4. Score calibration

The topic of calibrating confidence scores in the field of
multiple-hypothesis language recognition has been studied
in [23], and a detailed analysis of the information flow and
the amount of information delivered to users through a
language recognition system has been performed. The pos-
terior probability of each of the M hypotheses is estimated
and a maximum-a-posteriori (MAP) decision is made. In
[21], log-likelihood ratio (LLR) normalization that has been
proved to be useful is adopted as a simple back-end process.

In the normalization, suppose �S = [S1, S2, . . . , SL]t is the
vector of L relative log-likelihoods from L target languages
for a particular message, then the posterior probabilities for
original hypotheses can be denoted as

Pi = πieSi

(
∑L

j=1πjeSj )
, i = 1, 2, . . . ,L, (6)

where [π1, . . . ,πL] denotes the prior. Considering a flat prior,
new log-likelihood ratio normalized score S′i is denoted as

S′i = Si − log

(
1

M − 1

∑

j /= i

eSj
)
. (7)

However, the output scores of back-end RBF SVM are
not log-likelihood values; thus, linear discriminant analysis
(LDA) and diagonal covariance Gaussian models are used
to calculate the log-likelihoods for each target language
[24], and improvement has been achieved in detection
performance [21].

In this paper, we proposed an alternative approach [14]
to estimating the posterior probabilities. Given L classes of
data, the goal is to estimate pi = p(y = i | x), i = 1, . . . ,L.
In a pair-wise framework, firstly, pair-wise class probabilities
are estimated as

ri j ≈
p(y = i | y = i or j, x) ≈ 1

(1 + eA f̂ +B)
, (8)

where A and B are estimated by minimizing the negative
log-likelihood function using known training data and their

decision values f̂ . Then, the posterior probability pi can be
obtained by optimizing the following:

min
1
2

L∑

i=1

∑

j /= i

(
r ji p j − ri j pi

)2
,

subject to
L∑

i=1

pi = 1, pi > 0.

(9)

Therefore, the estimated posterior probabilities are appli-
cable to performance evaluation. The probability tools
of LIBSVM [13] are used in our approach. Experiments
in Section 5 show that this multiclass pair-wise posterior
probability estimation algorithm is superior to commonly-
used log-likelihood ratio normalization method.

4. SPEECH CORPUS

In phone recognizer framework, the Oregon Graduate Insti-
tute Multi-Language Telephone Speech (OGI-TS) Corpus
[25] is used. It contains 90 speech messages in each of
the following 11 languages: English, Farsi, French, German,
Hindi, Japanese, Korean, Mandarin, Spanish, Tamil, and
Vietnamese. Each message is spoken by a unique speaker and
comprises responses to 10 prompts. Besides, phonetically
transcribed training data is available for six of the OGI
Languages (English, German, Hindi, Japanese, Mandarin,
and Spanish). Otherwise, the labeled Hong Kong University
of Science and Technology (HKUST) Mandarin Telephone
Speech Part 1 [26] is used to accurately train an acoustic
model for another Mandarin phone recognizer. A telephone
speech database in common use for back-end language
modeling is the Linguistic Data Consortium’s CallFriend
corpus. The corpus comprises two-speaker, unprompted,
and conversational speech messages between friends. Hun-
dred North-American long-distance telephone conversations
are recorded in each of twelve languages (the same as 11
languages as OGI-TS plus Arabic). There are three sets in this
corpus including training, development, and test set, each set
consists of 20 two-sided conversations from each language,
approximately 30-minute long.

In this paper, experiments are performed on the 2005
NIST LRE [27] 30 s test set. Comparing to the last evaluation,
the account of test utterances is rapidly increased. Martin
has summarized the numbers of utterances in each language
from the primary evaluation data used in this task [28].
Note that in addition to the seven target languages, NIST
also collected some conversations in German that are used as
evaluation test utterances, though the trials involving these
are not considered part of the primary evaluation condition.
Moreover, development data which can be used to tune
the parameters of back-end classifiers is obtained from the
2003 NIST LRE evaluation sets. Thus, the data comprises 80
development segments, for each of the 7 target languages as
given in [28]. All of the training, development and evaluation
data is in standard 8-bit 8 kHz mu-law fromat from digital
telephone channel.

5. EXPERIMENTS AND RESULTS

The performance of a detection system is characterized by its
miss and false alarm probabilities. The primary evaluation
metric is based upon 2005 NIST language recognition
evaluation [27]. The task of this evaluation is to detect the
presence of a hypothesized target language, given a segment
of conversational speech over the telephone. Submitted
scores are given in the form of equal error rates (EER). EER is
the point where miss probability and false alarm probability
are equal. Experiments of the proposed application are
explained in the following sections.

5.1. Performance of proposed systems

A Mandarin phone recognizer is built from HKUST Tele-
phone data in a PRLM system. There are 68 mono-phones
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Table 1: PRLM systems results on 2005 NIST 30-second tasks.

PRLM system 1 2 3 4 5

DLCSV12
√ √

DLCSV24
√ √ √

NN
√

LDA + GM
√

SVM + PPPE
√

LLR
√ √ √ √

EER(%) 17.8 15.4 13.7 13.6 12.8

Table 2: PPRLM systems results on 2005 NIST 30-second tasks.

PPRLM system 1 2 3 4 5

DLCSV72
√ √ √

DLCSV144
√ √

NN
√

LDA + GM
√ √

SVM + PPPE
√ √

LLR
√ √ √ √ √

EER(%) 7.2 6.3 6.4 5.9 5.7

and a three-state left-to-right hidden Markov model (HMM)
is used for each tri-phone in each language. Thus, the
acoustic model can be described in more detail. But,
PPRLM system is mainly composed of six phone recognizers.
Acoustic model for each phone recognizer is initialized on
OGI-TS corpus and retrained on CallFriend training set
corpus. Since the amount of labeled data is limited, mono-
phone is chosen as the acoustic modeling unit. The outputs
of all recognizers are phone sequences that are used to build
the following 3-gram phone language models. Phonotactic
scores are only composed of DLCSV for classifying.

The equal error rate performances of ten systems with
the phone recognizer algorithm are given in Tables 1 and
2. In the main frameworks, the discriminative language
characterization score vectors and the following different
back-end classifiers are checked with marks. Firstly, the
baseline systems are denoted as DLCSV12 and DLCSV72 for
no speaker clustering in the phone recognizer framework.
Then, the 12-dimensional scores of PRLM-DLCSV12 can
be used to identify the target language without any back-
end classifiers. Besides, the high-dimensional scores can be
generated by multiple language models with subgroups.
Considering the amount of training data for language
modeling, the target number of subgroups is set to 2 (female
and male). Thus, the dimension of the DLCSV is 24 in
the PRLM framework and 144 in the PPRLM framework.
Secondly, when using SVM to be the back-end classifier,
the PPPE algorithm is proposed to calibrate output scores.
Besides, diagonal-covariance Gaussian model (GM) classifier
is also evaluated for comparison. In the mean time, a
feed-forward neural network (NN) is used as the back-end
classifier for another competent system [22]. Finally, LLR
method is adopted to normalize the posteriori probabilities
generated by each type of classifiers.

Table 3: The computational cost of back-end classifiers.

Systems Real time (RT)

PPRLM system 1 0.743

PPRLM system 2 0.728

PPRLM system 3 0.716

PPRLM system 5 0.739

The experiment results of phone recognizing systems
show that discriminative score vector modeling method
improves system performance in most cases. As mentioned
above, the main reason is that multiple discriminative clas-
sifiers based on hierarchically clustered speaker groups are
employed to map the speech utterance into discriminative
language characterization score vector space, which not
only represents enhanced language information but also
compensates for intralanguage and interspeaker variability.
Moreover, by using back-end classifiers, this speaker group
specific variability can be compensated sufficiently and make
system less speaker dependent. Furthermore, as shown in
Tables 1 and 2, the proposed SVM classifier with the PPPE
method adopted in the improved systems is comparable to
the other classifier. Because the output scores of back-end
classifiers are not real log-likelihood values, this alternative
language score calibration method performs better.

5.2. Computational cost

Compared with conventional systems, computational cost
of the proposed algorithm is not visibly improved. The
main reasons can be explained as follows. Firstly, the
improved back-end SVM classification with the PPPE algo-
rithm requires a low computational cost. Secondly, the
increment of computational cost is focused on generating
the discriminative language characterization score vectors.
Thus, in the PPRLM system, the time cost of language model
scoring is much lower than phone recognizing. Table 3 shows
the computational cost of the most PPRLM systems in this
paper. The evaluations are carried out on a machine with
3.4G Hz Intel Pentium CPU and 1 G Byte memory.

6. CONCLUSIONS

In this paper, we have presented our basic PPRLM system
and three classifiers for processing the high-level score
features. The progressive use of groups’ training data for
building 3-gram language models is exploited to map spoken
utterance into discriminative language characterization score
vector space efficiently. The proposed method enhances
language information and compensates the disturbances
caused by intralanguage and interspeaker variability. After
comparing the results of the different back-end classify-
ing algorithms, discriminative SVM classifier with pair-
wise posterior probability achieves the most performance
improvement. Furthermore, log-likelihood normalization
method is adopted to further improve the performance of
language identification task.
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