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Rhythmic information plays an important role in Music Information Retrieval. Example applications include automatically
annotating large databases by genre, meter, ballroom dance style or tempo, fully automated D.J.-ing, and audio segmentation
for further retrieval tasks such as automatic chord labeling. In this article, we therefore provide an introductory overview over
basic and current principles of tempo detection. Subsequently, we show how to improve on these by inclusion of ballroom dance
style recognition. We introduce a feature set of 82 rhythmic features for rhythm analysis on real audio. With this set, data-driven
identification of the meter and ballroom dance style, employing support vector machines, is carried out in a first step. Next, this
information is used to more robustly detect tempo. We evaluate the suggested method on a large public database containing 1.8 k
titles of standard and Latin ballroom dance music. Following extensive test runs, a clear boost in performance can be reported.
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1. INTRODUCTION

Music Information Retrieval (MIR) has been a growing field
of research over the last decade. The increasing popularity
of portable music players and music distribution over the
internet has made worldwide, instantaneous access to rapidly
growing music archives possible. Such archives must be
well structured and sorted in order to be user friendly. For
example, many users face the problem of having heard a song
they would like to buy but not knowing its bibliographic
data, that is, title and artist, which is necessary to find the
song in conventional (online) music stores. According to
Downie in [1], almost three fourths of all MIR queries are of
bibliographic nature. The querying person gives information
he or she knows about the song, most likely genre, meter,
tempo, lyrics, or acoustic properties, for example, tonality
and demands information about title and/or artist. In order
to have machines assist in building a song database queryable
by features such as tempo, meter, or genre, intelligent Infor-
mation Retrieval algorithms are necessary to automatically
extract such high-level features from raw music data. Many
works exist that describe or give overviews over basic MIR
methods, for example, [2-8]. Besides tonal features, the
temporal features play an important role. Tempo, meter, and
beat locations form the basis for segmenting music and thus

for further feature extraction such as chord change detection
or higher level metrical analysis, for example, as performed
in [9]. Because of its importance, we will primarily focus on
robust tempo detection within this article.

Currently existing state-of-the-art tempo detection algo-
rithms are—generally speaking—based on methods of
periodicity detection. That is, they use techniques such
as autocorrelation, resonant filter banks, or onset time
statistics to detect the tempo. A good comparison and
overview is given in [10]. However, very little work exists
that combines various low-level detection methods, such
as tempo induction, meter recognition, and beat tracking
into a system that is able to use features from all these
subtasks to perform robust high-level classification tasks, for
example, ballroom dance style or genre recognition, and in
turn use the classification results to improve the low-level
detection results. Only few, such as [11, 12], present data-
driven genre and meter recognition. Other methods, such as
[13, 14], use rhythmic features only for specific tasks, like
audio identification, and do not use rhythmic features in a
multistep process to improve results themselves.

A novel approach that aims at robust, data-driven
rhythm analysis primarily targeted at database applications
is presented in this article. A compact set of low-level
rhythmic features is described, which is highly suitable for
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discrimination between duple and triple meter as well as
ballroom dance style classification. Based on the results of
data-driven dance style and meter recognition, the quarter-
note tempo can be detected very reliably reducing errors,
where half or twice of the true tempo is detected. Beat
tracking at the beat level for songs with an approximately
constant tempo can be performed more reliably once the
tempo is known—however, it will not be discussed in
this article. A beat tracking method, that can be used
in conjunction with the new data-driven rhythm analysis
approach, is presented in [15]. Although the primary aim
of the presented approach is to robustly detect the quarter-
note tempo, the complete procedure is referred to as
rhythm analysis, because meter and ballroom dance style
are also detected and used in the final tempo detection
pass.

The article is structured as follows. In Section 2, an
introduction to tempo detection, meter recognition, and
genre classification is given along with an overview over
selected related work. Section 3 describes the novel approach
to improved data-driven tempo detection through prior
meter and ballroom dance style classification. The results
are presented in Section 4 and compared to results obtained
at the ISMIR 2004 tempo induction contest before the
conclusion and outlook in Section 5.

2. RELATED WORK

Tempo induction, beat tracking, and meter detection meth-
ods can roughly be divided into two major groups. The first
group consists of those that attempt to explicitly find onsets
in the first step (or use onsets obtained from a symbolic
notation, e.g., MIDI), and then deduct information about
tempo, beat positions, and possibly meter by analyzing the
interonset intervals (IOIs) [9, 16-21]. The second group
contains those that extract information about the tempo and
metrical structure prior to onset detection. Correlation or
resonator methods are mostly used for this task. If onset
positions are required, onset detection can then be assisted by
information from the tempo detection stage [2, 4-6, 8, 22].

The more robust methods, especially, for database appli-
cations, are those from the second group. However, we will
first explain the concept of onset detection used in the
methods of the first group, as we believe it is a very intuitive
way to approach the problem of beat tracking and tempo
detection.

Before we start explaining the tempo induction methods,
we take a look at some music terminology regarding meter.
The metrical structure of a musical piece is composed of
multiple hierarchical levels [23], where the tempo of each
higher level is an integer multiple of the tempo on the lowest
level. The latter is called tatum level. The level at which
we tap along when listening to a song is the pulse or beat
level. Sometimes this tempo is referred to as the quarter-note
tempo. The bar or measure level corresponds to the bar in
notated music, and the period of its tempo gives the length
of a measure. The relation between measure and beat level
is often referred to as time signature or more generally the
meter.
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FIGURE 1: Waveform and envelope (dashed line) of 4 seconds from
“OMD—Maid of Orleans.”

To get familiar with the concept of onset detection, on
which the first group of algorithms is based, let us assume
that a beat basically corresponds to a sudden increase in the
signal (energy) envelope. This is a very simplified assump-
tion, which is valid only for music containing percussion and
strong beats. There are basically two methods for computing
an audio signal envelope (depicted in Figure 1) suitable for
onset detection of a signal x[#n].

(1) Full-wave rectification and lowpass filtering of x
followed by down sampling to approximately 100 Hz.

(2) Dividing the signal into small windows having a
length around 20 milliseconds with approximately
50% overlap and then calculating the RMS energy
of each window by averaging x[n]* over all n in
the window. This can be followed by an additional
lowpass filter for smoothing purposes.

The first order differential of the resulting (energy) envelope
is then computed (Figure2). A local maximum in the
differential of the envelope corresponds to a strong rise in
the envelope itself. By picking peaks in the differential that
are above a certain threshold (e.g., the mean value or a given
percentage of the maximum of the differential over a certain
time window) some onsets can be located. The magnitude,
or strength, of the onset is related to the height of the peak.
In [5], Scheirer states that the amplitude envelope does
not contain all rhythmic information. Multiple nonlinear
frequency bands must be analyzed separately and the results
are to be combined at the end. To improve the simple onset
detection introduced in the last paragraph, the signal can be
split into six nonlinear bands using a bandpass filter bank.
Onsets are still assumed to correspond to an increase in the
amplitude envelope, not of the full-spectrum signal, but now
of each bandpass signal. Therefore, for each bandpass signal
the same onset detection procedure as described above can
be performed. This results in onset data for each band. The
data of the six bands must be combined. This is done by
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Ficure 2: Differential of envelope of 4 seconds from “Maid of
Orleans.”

adding the onsets of all bands and combining onsets that
are sufficiently close together. Such a multiple band approach
gives better results for music, where no strong beats, such as
base drums in electronic dance music, are present. A more
advanced discussion of onset detection in multiple frequency
bands is presented in [24].

All methods presented up to this point are based on
detecting a sudden increase in signal energy. In recent years,
phase based [25] or combined energy/phase approaches
[26] introduced by Bello et al. have been shown to give
better results than energy-only approaches. Basically, onset
detection incorporating phase and energy, that is, operating
in the complex domain, bases on the assumption that there is
both a notable phase deviation and an energy increase when
an onset occurs. Yet, to preserve the general and introductory
nature of this overview and focus more on tempo detection,
we will not go into details on these techniques.

For tempo detection from onset data mainly a histogram
technique is used in the literature [2, 18]. The basic idea
is the following: duration and weight of all possible IOIs
are computed. Similar IOIs are grouped in clusters and the
clusters are arranged in a histogram. From the weights and
the centers of the clusters the tempo of several metrical levels
can be determined. Dixon in [2] uses a simple rule-based
method. Seppinen in [18] uses a more advanced method. He
extracts only the tatum pulse level (fastest occurring tempo)
directly from the IOI histogram, by picking the cluster with
the center corresponding to the smallest IOI. Features in
a window around each tatum pulse are extracted. Using
Bayesian pattern recognition, the tatum pulses are classified
with respect to their perceived accentuation. Thus, the beat
level is detected by assuming that beats are more accented
than offbeat pulses. Although Seppédnen’s work stops at the
tatum level, the score level could be detected in the same
way, assuming that beats at the beginning of a score are more
accented than beats within.

We will now take a look at the second group of algorithms
that attempt to find the tempo without explicitly detecting

onsets. Still it is assumed that rhythmic events such as beats,
percussion, or note onsets correspond to a change in signal
amplitude in a few nonlinear bands. Again we start with
either the envelopes or the differentials of the envelopes of
the six frequency bands but omit the step of peak picking. To
keep this overview general the term “detection function” [26]
will be used in the ongoing, referring to either the envelope,
its differential or any other function related to perceivable
change in the signal.

The beat level tempo, which is what we are interested
in at this point, can be viewed as a periodicity in the
envelope function. A commonly used method to detect
periodicities in a function is autocorrelation [8, 27]. The
periodic autocorrelation is computed over a small window
(10 seconds) of the envelope function. The index of the
highest peak in the autocorrelation function (ACF) indicates
the strongest periodicity. However, as findings in [28]
suggest, the strongest periodicity in the signal may not
always be the dominant periodicity perceived. The findings
suggest an interval of preferred tapping linked to a supposed
resonance between our perceptual and motor system. Still,
as a first guess, which will work fairly well on music with
strong beats in the preferred tapping range, the highest peak
can be assumed to indicate the beat level tempo. We also
have to combine the results from all bands. The simplest
way is to add up the ACF of all bands and pick the highest
peak in the summary ACF (SACF). Determining the tempo
for each band and choosing the tempo that was detected in
the majority of bands as the final tempo is an alternative
method. Dixon describes a tempo induction method based
on autocorrelation in [2]. Uhle et al. use autocorrelation for
meter detection in [8].

An alternative to autocorrelation is a resonant filter
bank consisting of resonators tuned to different frequencies
(periodicities), first introduced for beat tracking by Scheirer
in [5]. The detection function is fed to all resonators and
the total output energy of each resonator is computed. In
analogy to the highest autocorrelation peak, the resonator
with the highest output energy matches the songs periodicity
best and thus the beat level tempo is assumed to be its
resonance frequency. As explained in the last paragraph, this
assumption does not fully match our perception of rhythm.
This is one reason why it is so difficult, even for most of state-
of-the-art systems, to reliably detect the tempo on the beat
level. Octave errors, that is, where double/triple or half/third
the beat level tempo is detected, are very common according
to [10]. Even human listeners in some cases do not agree on
a common tapping level.

All the methods introduced so far require the extraction
of a detection function. Publications exist discussing how
such a detection function can be computed, considering
signal processing theory [26] and applying psychoacoustic
knowledge [24]. In order to bypass the issue of selecting
a good detection function, a different periodicity detection
approach as was introduced for tempo and meter analysis by
Foote and Uchihashi [4] can be used. This approach is based
on finding self-similarities among audio features. First, the
audio data is split into small (20-40 milliseconds) overlap-
ping windows. Feature vectors containing, for example, FFT
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FIGURE 4: Periodic ACF of band envelope differentials from 10 seconds of “Maid of Orleans.”

coefficients or MFCC [29] are extracted from these windows
and a distance matrix D is computed by comparing every
vector with all the remaining vectors via a distance measure
or cross-correlation.

Using (1), a so called beat spectrum [4] B can be
computed from the distance matrix D. This beat spectrum
is comparable to the ACF or the output of the resonant filter
bank in the previously discussed methods;

K
B(IOI) = > Dgxeior (1)
k=1

While still the choice of the feature set might have
an influence on the performance, this method has an
advantage over computing the ACF of a detection function.
In computing the correlation or distance of every feature
vector to every other feature vector all possible relations
between all features in all feature vectors are accounted for.
Detection functions for separate frequency bands can only
account for (temporal) relations within each band. If the
detection function is a sum over all bands, for example,
relations between the frequency bands are accounted for, but
only in a very limited way. This case would correspond to
reducing the feature vector to one dimension by summing its
elements before computing the distance matrix.

However, computing distance matrices is a very time
consuming task and might thus not be applicable to live

applications, for example, that demand real-time algorithms.
For most mainstream music, it can be assumed that the
sensation of tempo corresponds to a loudness periodicity,
as can be represented by a single detection function or a set
of detection functions for a few subbands. Therefore, even
though in our opinion the distance matrix method seems to
be the theoretically most advanced method, it is not used in
the rhythm analysis method presented in the following.

In the remaining part of this overview section we will
give a very short overview over selected meter detection and
ballroom dance style and genre recognition methods.

Various work exists on the subject of genre recognition,
for example, [30, 31]. The basic approach is to extract a
large number of features representing acoustic properties for
each piece of music to be classified. Using a classifier trained
on annotated training data, the feature vectors extracted
from the songs are assigned a genre. Reference [30] extracts
features related to timbral texture, rhythmic content and
pitch content. The rhythmic features are extracted from the
result of autocorrelation of subband envelopes. As classifiers
Gaussian mixture models (GMMs) and K-nearest-neighbour
(K-NN) are investigated, a discrimination rate of 61% for 10
musical genres is reported. Reference [31] investigates the use
of a large open feature sets and automatic feature selection
combined with support vector machines as classifiers. A
success rate of 92.2% is reported for discrimination between
6 genres.
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The subject of ballroom dance style recognition is
relatively new. Gouyon et al. have published a data-driven
approach to ballroom dance style recognition in [12]. They
test various features extracted from IOI histograms using
1-NN classification. The best result is achieved with 15
MECC like descriptors computed from the IOI histogram.
90.1% accuracy is achieved with these descriptors plus the
ground truth tempo by 1-NN classifiers. Without ground
truth tempo, that is, only the 15 descriptors, 79.6% accuracy
is reported.

Meter detection requires tempo information from var-
ious metrical levels. Klapuri et al. introduce an extensive
method to analyze audio on the tatum, pulse, and measure
level [6]. For each level, the period is estimated based on
periodicity analysis using a comb filter bank. A probabilistic
model encompasses the dependencies between the metrical
levels. The method is able to deal with changing metrical
structures throughout the song. It proves robust for phase
and tempo on the beat level, but still has some difficulties
on the measure level. The method is well suited for, in
depth, metrical analysis of a wide range of musical genres.
For a limited set of meters, for example, as in ballroom
dance music the complexity can be reduced—at the gain
of accuracy—to binary decisions between duple or triple
periods on the measure level. Gouyon et al. assume a given
segmentation of the song on the beat level and then focus
on a robust discrimination between duple and triple meter
[11] on the measure level. For each beat segment, a set of
low-level descriptors is computed from the audio. Periodic
similarities of each descriptor across beats are analyzed by
autocorrelation. From the output of the autocorrelation,
a decisional criterion M is computed for each descriptor,
which is used as a feature in meter classification.

3. RHYTHM ANALYSIS

A data-driven rhythm analysis approach is now introduced,
capable of extracting rhythmic features, robustly identifying
duple and triple meter, quarter-note tempo and ballroom
dance style basing on 82 rhythmic features, which are
described in the following sections.

Robustly identifying the quarter-note or beat level tempo
is a challenging task, since octave errors, that is, where double
or half of the true tempo is detected, are very common.
Therefore, a new tempo detection approach, based on
integrated ballroom dance style recognition, is investigated.

The tatum tempo [8, 18], that is, the fastest tempo,
presents the basis for extracting rhythmic features. A
resonator-based approach, inspired by [5], is used for detect-
ing this tatum tempo and extracting features containing
information about the distribution of resonances throughout
the song.

The features are used to decide whether the song is in
duple or triple meter. Confining the metrical decision to a
binary one was introduced in [11]. For dance music, the
discrimination between duple and triple meter has the most
practical significance. Identifying various time signatures,
such as 2/4, 4/4, and 6/8 is a more complicated task and of less
practical relevance for ballroom dance music. The rhythmic

features are further used to classify songs into 9 ballroom
dance style classes. These results will be used to assist the
tempo detection algorithm by providing information about
tempo distributions collected from the training data for
the corresponding class. For evaluation 10-fold stratified
cross-validation is used. This is described in more detail in
Section 3.5.

3.1. Comb filter tempo analysis

The approach for tatum tempo analysis discussed in this
article is based on Scheirer’s multiple resonator approach
[5] using comb filters as resonators. His approach has been
adapted and improved successfully in other work for tempo
and meter detection [6, 10, 32]. The main concept is to filter
the envelopes or detection functions (see Section 2) of six
nonlinear frequency bands through a bank of resonators.
The resonance frequency of the resonator with the highest
output energy is chosen as tempo. The comb filters used here
are a slight variation of Scheirer’s filters. In the following
paragraphs, there will be a brief theoretical discussion of IIR
comb filters and a description of the chosen filter parameters.

In the ongoing, the symbol 6 will be used to denote a
tempo. The tempo is specified as a frequency having the unit
BPM (beats per minute). If an index IOl is appended to the
symbol 6, it is indicated that the tempo is given as IOI period
in frames.

A comb filter adds a signal itself to a delayed version
of the signal. Every comb filter is characterized by two
parameters: the delay (or period, which is the inverse of the
filters resonance frequency) 7 and the gain a.

For tempo detection IIR comb filters are used as
described in the discrete time domain by (2),

yitl = A —a)-ult] +a-y[t — 7). (2)

The filter has a transfer function in the z-domain given by
(3),
-«
H(z) = 7 )
The frequency response H(z) for two exemplary values of «
is depicted in Figure 6.

To achieve optimal tempo detection performance, an
optimal value for a must be determined. Scheirer’s [5]
method of constant half-energy time by using variable gain «
depending on 7 has not proven well in our test runs. Instead,
we use a fixed value for . When choosing this value, we have
to consider small temporary tempo drifts occurring in most
music performances. So the theoretically optimal gain a— 1
cannot be used. We conducted test runs with multiple values
for « in the range from 0.2 to 0.99. Best results were obtained
with « = 0.7.

3.2. Feature extraction

The comb filters introduced in the previous section are
used to extract the necessary features for ballroom-dance
style recognition, meter recognition, and tempo detection.
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FIGURE 6: Frequency responses of IIR comb filters with gain of a =
0.8 and a = 0.4.

The key concept is to set up comb filter banks over a
much broader range than used by [5] in order to include
higher metrical layers. The resulting features describe the
distribution of resonances among several metrical layers,
which provides qualitative information about the metrical
structure.

To effectively reduce the number of comb filters required,
we exploit the fact that in music performances several
metrical layers are present (see Section 2). In a first step the
tempo on the lowest level, the tatum tempo, is detected. It is
now assumed that all possibly existing higher metrical levels
can only have tempi that are integer multiples of the tatum
tempo. This is true for a wide variety of musical styles.

3.2.1.  Preprocessing

The input data is down sampled to f; = 11.025kHz and
converted into monophonic by stereo-channel addition in

order to reduce computation time. The input audio of
length L; seconds is split into Nfames = 100-L; frames of
Nsplock = 256 samples with an overlap of 0.57, resulting in
a final envelope frame rate of 100 fps (frames per second).
A Hamming window w, is applied to each frame and a fast
Fourier transform (FFT) of the frame is computed, resulting
in 128 FFT coefficients.

By using N, overlapping triangular filters, equidistant
on the mel-frequency scale, the 128 FFT coefficients are
reduced to Ny envelope samples of Ny, nonlinear bands.
These triangular filters are the same as used in speech
recognition for the computation of MFCC [29].

Such a small set of frequency bands, still covering the
whole human auditory frequency range, contains the com-
plete rhythmic structure of the musical excerpt, according to
experiments conducted in [5].

The envelope samples x,; of each mel-frequency band »
are converted to a logarithmic representation according to
the following equation:

Xyilog = 10.0-log(x,,; + 1.0). (4)
The envelopes x, of the mel-frequency bands are then
lowpass filtered by convolution with a half-wave raised cosine
filter with a length of 15 envelope samples, equal to 150
milliseconds. The impulse response of the filter is given in
(5). This filter preserves fast attacks, but filters noise and
rapid modulation, most as in the human auditory system,

iy (D) =cos(%)+1, i€ (1315, (5)
Of each lowpass filtered mel-frequency band envelope v a
weighted differential d, is taken according to (6). For a
sample x,; at position i a moving average is calculated over
one window of 10 samples to the left of sample x,,; (left mean
X,;1) and a second window of 20 samples to the right of
sample x,,; (right mean X,;,),

dv(i) = (xv,i - fv,i,l) X, (6)

This method is based on the fact that a human listener
perceives note onsets as more intense if they occur after a
longer time of lower sound level and thus are not affected
by temporal post-masking caused by previous sounds [33].
The weighting with the right mean X, ;, incorporates the fact
that note duration and total note energy play an important
role in determining the perceived note accentuation [18].

3.2.2. Tatum features

For detecting the tatum tempo 07, an IIR comb filter bank
is used consisting of 57 filters, with gain a = 0.7 and delays
ranging from Tpmin = 18 t0 Tmax = 74 envelope samples. This
filter bank is able to detect tatum tempos in the range from 81
to 333 pulses per minute. The range might need adjustments
when very slow music is processed, that is, music with no
tempo faster than 81 pulses per minute.

The weighted differential d, of each mel-frequency band
envelope v is fed as input u, to each filter h,; having a delay
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F1GURE 8: Plots of T” for “Moon River (Waltz, triple meter)” (a) and “Hit the Road Jack (Jive, duple meter)” (b).

of 7. The filter output for band v, frame n and filter h, ; is
referred to as yﬁ,m). The total energy output T’ (7 — Tpin + 1)

over all bands is computed for each filter h, ; with (7),

Ninel Nframes

T (r=Tmn+1) = > >y (7)

v=0 n=0

The result of this step is the not flattened tatum vector T
with 57 elements T'(T — Tmin + 1), where 7 is in the range
from 18 to 74. Examples of T” for three songs are plotted in
Figures 7 and 8.

From T’ three additional features are extracted that
reveal the quality of the peaks.

(1) Tratio is computed by dividing the highest value by the
lowest.

(ii) Tqope is the fraction of the first value over the last
value.

(iii) Tpeakdist is computed as mean of the maximum and
minimum value normalized by the global mean.

These features correspond to how clearly visible the peaks
of the vector T’ are, and how flat T is (see Figures 7
and 8). Since the employed comb filters tend to higher
resonances at higher tempos for songs with little rhythmic
content (Figure 7), the vector is adjusted, that is, flattened, by
considering the difference between the average of the first 6
values and the average of the last 6 values. From the resulting

flattened tatum vector T the two most dominant peaks are
picked as follows. Firstly, all local minima and maxima are
detected, then for each maximum its apparent height D is
computed by taking the average of the maximum minus its
left and right minimum. The indices of the two maxima with
the greatest apparent height D are considered possible tatum
candidates (611,101 and 07, 101). For each candidate 071,201 @
confidence Cry2 101 is computed as follows:

Cri2 = D1y + T(Or12,001). (8)

The candidate 6715101 for which the confidence Cry/ is
maximal is called the final tatum tempo 6r in the ongoing.
Conversion from the I0I period 6701 of the final tatum
tempo to the final tatum tempo in BPM (67) is performed
by the following equation:

6000

Or = .
Or 101

)

The 63 tatum features consisting of 07, 071, 012, Tratio»
Tsiope> Tpeakdist» and the tatum vector T with 57 elements
constitute the first part of the rhythmic feature set. A
major difference to some existing work is the use of the
complete tatum vector in the feature set. Reference [30] uses
rhythmic features for genre classification. However, from a
beat histogram, which is loosely comparable to the tatum
vector (both contain information about the periodicities),
only a small set of features is extracted, only considering the
two highest peaks and the sum of the histogram.
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3.2.3.  Meter features

The tatum features only contain information from a very
small tempo range, hence, they are not sufficient when one
is interested in the complete metrical structure and other
tempi than the tatum tempo. Thus, features that contain
information about tempo distributions over a broader range
are required. These are referred to as meter features, although
they do not contain explicit information about the meter.

A so called meter vector m is introduced. This vector
shows the distribution of resonances among 19 metrical
levels, starting at, and including the tatum level.

Each of the 19 elements m; of vector m is a normalized
score value of the tempo Or-i, indicating how well the
tempo Or-i resonates with the song. To compute m;, first
an unnormalized score value m; is computed by setting up
a comb filter bank for each value of i € [1;19]. Each filter
bank consists of 2i + 1 filters with delays from (Or01-i — i)
to (Orjo1-i+1). As in Section 3.2.2 the total energy output of
each filter in the bank is computed and the maximum value is
assigned to m;. The delay 7 of the filter with the highest total
energy output is saved as adjusted tempo 0;501r belonging to
m;. The vector consisting of the 19 elements m; is the not
flattened meter vector m’. Exemplary plots of m’ are given in
Figures 9 and 10;
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as exists for the tatum vector (see Section 3.2.2) also exists
for m’ (see Figure 9), the vector m’ is flattened in the same
way as the tatum vector by taking into account the difference
mio—m). The resulting vector is the flattened meter vector m,
referred to simply as meter vector. For accurate meter vector
computation a minimal input length L; = T -19 = 145 is
required, since the higher metrical levels correspond to very
slow tempi and thus large comb filter delays.

The 19 elements of the meter vector m, without further
processing or reduction, constitute the second part of the
rhythmic feature set. We would like to note at this point, that
no explicit value for the meter (i.e., duple or triple) is part of
the meter features. In the ongoing the reader will learn how
the meter is detected in a data-driven manner using support
vector machines (SVMs).

3.3. Feature selection

A total of 82 features has been described in the previous two
sections, including all 19 meter vector elements m; and the 63
tatum features, namely 07, 011, 072, Tratio> Tslopes Tpeakdist P1us
all 57 elements of tatum vector T (see Table 1). These features
will be referred to as feature set FSg in the ongoing. Basing on
our experience in [31, 32], SVMs with a polynomial Kernel
function of degree 1 are used for the following classification
tasks. The SVMs are trained using a sequential minimum
optimization (SMO) method as described in [34].

In order to find relevant features for meter and ballroom
dance style classification, the BRD dataset is analyzed
for each of these two cases by performing a closed-loop
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TaBLE 1: Overview over all 82 rhythmic features. Feature set FSg.

tatum vector T (57 el.)
tatum candidates 6y, 67, [BPM]
final tatum tempo 6 [BPM]

Tatum features

Thatio» Tslope) Tpeakdist

Meter features Meter vector m (19 el.)

TABLE 2: Mean y, standard deviation ¢, minimum and maximum
tempo in BPM for each class, and complete set BRD.

Tempo [BPM] U o min max
All 128.5 38.7 68 208
Cha Cha 122.0 6.5 92 136
Foxtrot 114.8 2.1 104 116
Jive 165.9 11.5 124 176
Quickstep 200.7 6.7 153 208
Rumba 97.7 8.3 76 141
Samba 100.7 8.8 68 202
Tango 127.4 3.2 112 136
Viennese Waltz 177.1 2.3 168 186
Slow Waltz 86.2 1.7 72 94

hill-climbing feature selection employing the target classi-
fier’s error rate as optimization criterion, namely, sequential
forward floating search (SVM-SFES) [31].

The feature selection reveals the following feature subset
FSy to yield the best results for meter classification: Tratio»
meter vector m elements 4, 6, 8, 16, and the tatum vector T.

For ballroom dance style classification the feature selec-
tion reveals the following feature subset FSp to yield the
best results: meter M (see Section 3.5), Tratio> Tslope> T peakdists
meter vector m elements 4-6, 8, 11, 12, 14, 15, 19, and the
tatum vector T excluding elements 21 and 29.

3.4. Songdatabase

A set of 1855 pieces of typical ballroom and Latin dance
music obtained from [35] is used for evaluation. A more
detailed list of the 1855 songs can be found at [36]. The
set covers the standard dances Waltz, Viennese Waltz, Tango,
Quick Step, and Foxtrot, and the Latin dances Rumba,
Cha Cha, Samba, and Jive giving a total of 9 classes. The
songs have a wide range of tempi ranging from 68 BPM to
208 BPM. 30 seconds of each song are available, which were
converted from a real audio like format to 44.1 kHz PCM,
so the preprocessing from Section 3.2.1 can be applied. In
total length however, this set corresponds to 5 days of music.
The distribution among dance styles is depicted in Table 3.
This set is abbreviated BRD in the ongoing. Ground truth
statistics about the tempo distribution for the whole set and
in each dance style class are given in Table 2.

For the BRD dataset, the ground truth of tempo and
dance style is known from [35]. The ground truth regarding
duple or triple metrical grouping is also implicitly known
from the given source because it can be deduced from the
dance style. All Waltzes have triple meter, all other dances

have duple meter. Tempo ground truths are not manually
double checked as performed in [10], therefore errors among
the ground truths might be present. Results with manually
checked ground truths might improve slightly. This is further
discussed near the end of Section 4.

3.5. Data-driven meter and ballroom
dance style recognition

From the abstract features in set FSy (see Section 3.3) meter
and quarter-note tempo have to be extracted. While data-
driven meter recognition by SVM yields excellent results,
data-driven tempo detection is a complicated task because
tempo is a continuous variable. An SVM regression method
was investigated, but has not proven successful. The method
was not able to correctly identify tempi within a tolerance
of only a few percent relative BPM deviation. A hybrid
approach is used therefore the data is divided into a small
number of classes representing tempo ranges. The ranges
are allowed to overlap slightly. As the database described in
Section 3.4 already has one of nine ballroom dance styles
assigned to each instance, the dance styles are chosen as the
tempo classes, since music of the same dance style generally is
limited to a specific tempo range. This is confirmed by other
work, which uses tempo ranges to assign a ballroom dance
style [2, 37].

In three consecutive steps (see Figure 11) meter, ballroom
dance style, and quarter-note tempo are determined for the
whole dataset in a 10-fold stratified cross validation (SCV) as
described in the following.

(1) The feature set FSy is extracted for all instances in
the dataset. The 1855 instances are split into training
and test splits for 10 stratified folds. An SVM model
for meter classification is built on each training split
using the feature subset FSy. The model is used to
assign a meter M (duple or triple) to the instances in
each test split. Doing this for all 10 folds, the meter
M can be determined for the whole dataset by SVM
classification.

(2) The meter M, from the previous step, is used as
a feature in feature set FSp (see Section 3.3) for
ballroom dance style classification. The same 10-fold
procedure as was used for meter classification in step
1 is performed in order to assign a ballroom dance
style to all instances in the BRD dataset.

(3) With the results of both meter and ballroom dance
style classification, it is now possible to quite robustly
detect the quarter-note tempo. The following section
describes the novel tempo detection procedure in
detail.

3.6. From ballroom dance style to tempo

For the training data of each of the 10 folds introduced in
the previous section, the means y,/r and variances aqz/T of
the distributions of quarter-note tempi (ground truths) and
tatum tempi Or are computed for each of the 9 ballroom

dance styles. No ground truth for the tatum tempo is
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TABLE 3: Results obtained on dataset BRD for meter M, quarter-note tempo 0,, and ballroom dance style (BDS).

Accuracy [%] ChaCha Foxtrot Jive Quickst. Rumba Samba Tango V. Waltz Waltz MEAN
Instances no. 211 245 138 242 217 188 185 136 293

Meter 99.1 97.6 97.8 99.6 90.8 98.9 98.4 97.8 94.2 96.9
Tempo 97.2 93.9 97.1 96.3 90.3 93.6 94.1 92.6 81.8 92.4
Tempo octave 94.8 93.5 90.6 87.6 81.6 86.2 93.5 91.2 81.8 88.5
BDS precision 93.0 94.7 90.4 87.9 78.2 89.8 88.0 94.0 88.3 89.1
BDS recall 87.7 95.5 88.4 90.1 77.9 84.0 91.4 91.9 93.2 89.1
BDS F, 90.2 95.1 89.4 89.0 78.1 86.8 89.7 92.9 90.7 89.1

available, so the automatically extracted tatum tempo (see
Section 3.2.2) from step (1) in Section 3.5. is used. Results
might improve further if ground truth tatum information
were available, since correct tatum detection is crucial for
correct results.

For the test data in each fold the tempo is detected with
the following procedure. Using the two tatum candidates 07,
and 07, extracted in step (1) in Section 3.5, the final tatum
for the instances in the test split in each fold now is chosen
based upon the statistics estimated from the training data.
The Gaussian function G(071,,) (11) is used instead of the
confidence Cry/; (see Section 3.2.2). Parameters y and ¢? are
set to the values of yr and o7 for the corresponding ballroom
dance style (assigned in step (2) in the previous subsection),

G(0) = exp ( - M)

202

(11)

Now the candidate 011/, for which the function G(67;,,) is
maximal is chosen as the final tatum tempo 6r«. Based upon
this new tatum, a new flattened meter vector m* is computed
for all instances as described in Section 3.2.3.

The new meter vector m* is used for detection of the
quarter-note tempo. Each element m; is multiplied by a
Gaussian weighting factor G(6;). The parameters 4 and o in
(11) are now set to the values y, and aqz of the corresponding
ballroom dance style. 6; indicates the tempo the meter vector
element m;" belongs to (see Section 3.2.3).

Next, the index imax, for which the expression m;" - G(0;) is
maximized, is identified. The tempo 0;,, belonging to index
imax is the detected quarter-note (beat level) tempo 0.

4. RESULTS

Results for tempo detection with and without prior ballroom
dance style recognition are compared in Table 4. The tempo
thereby is detected as described in Section 3.6, except that
without dance style only one predefined Gaussian for
the tempo distribution is applied, instead of using the
distributions determined for each dance style.

By the results in Table 4, it can be clearly seen that the
number of instances, where the correct tempo octave is
identified, increases by almost 20% absolute, when incorpo-
rating the ballroom dance style recognized in step (2). When
assuming an optimal ballroom dance style recognition, that
is, when ground truth ballroom data is used instead of the
recognition results, the tempo octave is identified correctly in

Preprocessing of audio input
(mel-bands, envelopes, downsampling)

Feature extraction
(using comb filter banks)

I_¢

Meter classification
duple or triple (by SVM)

lJ

L) BDS classification
9 classes (by SVM)

BDS tempo & tatum
statistics

Tempo detection

Beat level
tempo (BPM)

FIGURE 11: Steps for data-driven tempo detection basing on meter
and ballroom dance style recognition.

TaBLE 4: Comparison of tempo detection without (w/o BDS), with
incorporated ballroom dance style recognition (w BDS) and using
ground truth ballroom classes to simulate optimal BDS recognition
(gt BDS).

Accuracy [%] w/o BDS w BDS gt BDS
Tempo 88.8 92.4 93.1
Octave 70.0 88.5 93.0

almost all cases, where the tempo is identified correctly. With
the new data-driven approach to tempo detection, accuracies
for the quarter-note tempo are improved by approximately
5% absolute for Waltz and over 10% for Viennese Waltz,
compared to previous work on the same dataset [15]. On
88% of all instances the correct tempo octave was identified,
which is remarkble, considering the wide range of tempi of
the dataset.
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TaBLE 5: Results on set BRDy, for tempo detection without (w/o
BDS), with incorporated ballroom dance style recognition (w BDS)
and using ground truth ballroom classes (gt BDSs).

Accuracy [%] w/o BDS w BDS gt BDS
Tempo (acc. 1) 88.8 93.0 92.8
Octave (acc. 2) 69.8 86.9 92.4

Detailed final results, after applying all the steps from
Section 3.5 through Section 3.6, are depicted in Table 3. The
tolerance for tempo detection hereby is 3.5% relative BPM
deviation to maintain consistency with previous publications
[32]. We would like to note that ballroom dance style
recognition has been performed completely without using
the quarter-note tempo as a feature.

In [2], Dixon et al. use a rule-based approach for dance
style classification basing on simple tempo ranges. However,
results on a large dataset are not reported. In [12], Gouyon et
al. test a data-driven approach on a subset of the BRD dataset.
They evaluate multiple feature sets and different classifiers.
Using ground truth of tempo and meter from [35] with a
K-nearest neighbour classifier, they report an accuracy of
82.3%. Using the same ground truths and SVM instead of k-
NN, we achieve 84.6% of correctly classified instances. With a
set of 15 MFCC-like features, comparable to our 82 rhythmic
features, Gouyon et al. achieve accuracies of 79.6%. Using
SVM on the rhythmic features introduced in this article, the
ballroom dance style recognition results improve by almost
10% absolute to 89.1%.

Meter detection results improve by approximately 2%
over those reported by Gouyon et al. in [11]. However,
different datasets and classifiers are used, so results cannot be
properly compared. Comparing meter detection results with
those reported by Klapuri et al. [6] is not feasible because in
our article meter detection is restricted to a simple binary
decision due to the main focus being on tempo detection
incorporating ballroom dance style recognition. Klapuri et
al. describe more in detail, multilevel tempo and meter
analysis system.

At ISMIR 2004 a tempo induction contest was held
comparing state-of-the-art tempo induction algorithms. The
results are reported in [10]. To show the reader how our
data-driven tempo induction approach compares to the
algorithms of the contest participants, we have conducted a
test run on the publicly available ballroom dance set used
in the contest (referred to as set BRDys in the ongoing,
obtainable at [38]). This set approximately is a subset of
the BRD dataset. The tempo ground truth of this set was
manually double checked. Two accuracies are evaluated in
[10], namely accuracy 1 which corresponds to tempo correct
in this article, and accuracy 2, which corresponds to the
percentage of correctly identified tempo octaves. Table 5
shows the results obtained on this dataset. The winner of
the ISMIR contest is an algorithm by Klapuri et al. which
achieves 91.0% accuracy 1 and 63.2% accuracy 2 on the
BRDy4 set. Scheirer’s algorithm, on which our comb filter
tatum detection stage is loosely based, was also evaluated in
the contest. It achieves 75.1% accuracy 1 and 51.9% accuracy
2 on the same dataset. The novel approach presented in this

article outperforms Scheirer’s algorithm by 17.9% absolute
and Klapuri’s algorithm by 2.0% absolute regarding accuracy
1 and 35.0% and 23.7% absolute, respectively regarding
accuracy 2. These results are the best reported so far. Still, it
is to note that tests were only performed on ballroom dance
data. In future work, other datasets such as the song set from
[10] or the MTV set from [32] must be assigned ground truth
tempo range classes, in order to evaluate performance with
other data than ballroom songs. Yet already, good results on
ballroom dance music are practically useable, for example,
for virtual dance assistants [15].

5. CONCLUSION AND OUTLOOK

Within this article, an overview over basic and current
approaches for rhythm analysis on real audio was given.
Further, a method to improve over today’s robustness by
combining tempo detection, rhythmic feature extraction,
meter recognition, and ballroom dance style recognition in
a data-driven manner was presented. As opposed to other
work, ballroom dance style classification is carried out first,
and significantly boosts performance of tempo detection. 82
rhythmic features were described and their high usefulness
for all of these tasks was demonstrated.

Further applications for these features, ranging from
general genre recognition to song identification [13], or
measuring rhythmic similarity [39], must be investigated.
Preliminary test runs for discrimination between 6 genres
(Documentary, Chill, Classic, Jazz, Pop-Rock, and Elec-
tronic) on the same dataset, and with same test-conditions
as used in [31] indicate accuracies of up to 70% using only
the 83 rhythmic features.

It will further be investigated if adding other features,
such as those described by [8, 12], or [13] can further
improve results for all the presented rhythm analysis steps.
Moreover, the data-driven tempo detection approach will be
extended to nonballroom music, for example, popular and
rock music.

Overall, automatic tempo detection on real audio—also
outside of electronic dance music—has matured to a degree,
where it is ready for multiple intelligent Music Information
Retrieval applications in everyday life.
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