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This paper describes SynFace, a supportive technology that aims at enhancing audio-based spoken communication in adverse
acoustic conditions by providing the missing visual information in the form of an animated talking head. Firstly, we describe the
system architecture, consisting of a 3D animated face model controlled from the speech input by a specifically optimised phonetic
recogniser. Secondly, we report on speech intelligibility experiments with focus on multilinguality and robustness to audio quality.
The system, already available for Swedish, English, and Flemish, was optimised for German and for Swedish wide-band speech
quality available in TV, radio, and Internet communication. Lastly, the paper covers experiments with nonverbal motions driven
from the speech signal. It is shown that turn-taking gestures can be used to affect the flow of human-human dialogues. We
have focused specifically on two categories of cues that may be extracted from the acoustic signal: prominence/emphasis and
interactional cues (turn-taking/back-channelling).
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1. Introduction

For a hearing impaired person, and for a normal hearing
person in adverse acoustic conditions, it is often necessary
to be able to lip-read as well as hear the person they are
talking with in order to communicate successfully. Apart
from the lip movements, nonverbal visual information is also
essential to keep a normal flow of conversation. Often, only
the audio signal is available, for example, during telephone
conversations or certain TV broadcasts. The idea behind
SynFace is to try to recreate the visible articulation of the
speaker, in the form of an animated talking head. The visual
signal is presented in synchrony with the acoustic speech
signal, which means that the user can benefit from the com-
bined synchronised audiovisual perception of the original
speech acoustics and the resynthesised visible articulation.
When compared to video telephony solutions, SynFace has
the distinct advantage that only the user on the receiving end
needs special equipment—the speaker at the other end can
use any telephone terminal and technology: fixed, mobilem,
or IP-telephony.

Several methods have been proposed to drive the lip
movements of an avatar from the acoustic speech signal
with varying synthesis models and acoustic-to-visual maps.
Tamura et al. [1] used hidden Markov models (HMMs) that
are trained on parameters that represent both auditory and
visual speech features. Similarly, Nakamura and Yamamoto
[2] propose to estimate the audio-visual joint probability
using HMMs. Wen et al. [3] extract the visual information
from the output of a formant analyser. Al Moubayed et al.
[4] map from the lattice output of a phonetic recogniser
to texture parameters using neural networks. Hofer et al.
[5] used trajectory hidden Markov models to predict visual
speech parameters from an observed sequence.

Most existing approaches to acoustic-to-visual speech
mapping can be categorised as either regression based or
classification based. Regression-based systems try to map
features of the incoming sounds into continuously varying
articulatory (or visual) parameters. Classification-based sys-
tems, such as SynFace, consider an intermediate phonetic
level, thus solving a classification problem, and generating
the final face parameters with a rule-based system. This
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Figure 1: One of the talking head models used in SynFace, to the
right running on a mobile device.

approach has proved to be more appropriate when the focus
is on a real-life application, where additional requirements
are to be met, for example, speaker independence, and low-
latency. Ohman and Salvi [6] compared two examples of
the two paradigms. A time-delayed neural network was used
to estimate the face parameter trajectories from spectral
features of speech, whereas an HMM phoneme recogniser
was used to extract the phonetic information needed to
drive the rule-based visual synthesis system. Although the
results are dependent on our implementation, we observed
that the first method could learn the general trend of the
parameter trajectories, but was not accurate enough to
provide useful visual information. The same is also observed
in Hofer et al. [5] and Massaro et al. [7]. (Although some
speech-reading support was obtained for isolated words
from a single speaker in Massaro’s paper, this result did
not generalise well to extemporaneous speech from different
speakers (which is indeed one of the goals of SynFace).) The
second method resulted in large errors in the trajectories
in case of misrecognition, but provided, in general, more
reliable results.

As for the actual talking head image synthesis, this
can be produced using a variety of techniques, typically
based on manipulation of video images [8, 9] parametrically
deformable models of the human face and/or speech organs
[10, 11] or as a combination thereof [12]. In our system we
employ a deformable 3D model (see Section 2) for reasons of
speed and simplicity.

This paper summarises the research that led to the
development of the SynFace system and discusses a number
of aspects involved in its development, along with novel
experiments in multilinguality, dependency on the quality of
the speech input, and extraction of nonverbal gestures from
the acoustic signal.

The SynFace architecture is described for the first time
as a whole in Section 2; Section 3 describes the additional
nonverbal gestures. Experiments in German and with wide-
band speech quality are described in Section 4. Finally,
Section 5 discusses and concludes the paper.

2. SynFace Architecture

The processing chain in SynFace is illustrated in Figure 2.
SynFace employs a specially developed real-time phoneme
recognition system, that delivers information regarding the
speech signal-to-a speech animation module that renders the
talking face on the computer screen using 3D graphics. The
total delay from speech input to animation is only about
200 milliseconds, which is low enough not to disturb the flow
of conversation, (e.g., [13]). However, in order for face and
voice to be perceived coherently, the acoustic signal also has
to be delayed by the same amount [14].

2.1. Synthesis. The talking head model depicted in Figures
1 and 2 includes face, tongue, and teeth, and is based on
static 3D-wireframe meshes that are deformed using direct
parametrisation by applying weighted transformations to
their vertices according to principles first introduced by
Parke [15]. These transformations are in turn described by
high-level articulatory parameters [16], such as jaw opening,
lip rounding and bilabial occlusion. The talking head model
is lightweight enough to allow it to run at interactive rates
on a mobile device [17]. A real-time articulatory control
model is responsible for driving the talking head’s lip, jaw
and tongue movements based on the phonetic input derived
by the speech recogniser (see below) as well as other facial
motion (nodding, eyebrow movements, gaze, etc.) further
described in Section 3.

The control model is based on the rule-based look-ahead
model proposed by Beskow [16], but modified for low-
latency operation. In this model, each phoneme is assigned
a target vector of articulatory control parameters. To allow
the targets to be influenced by coarticulation, the target
vector may be under-specified, that is, some parameter
values can be left undefined. If a target is left undefined,
the value is inferred from context using interpolation,
followed by smoothing of the resulting trajectory. As an
example, consider the lip rounding parameter in a V1CCCV2

utterance where V1 is an unrounded vowel, CCC represents
a consonant cluster and V2 is a rounded vowel. According
to the rules set, lip rounding would be unspecified for the
consonants, leaving these targets to be determined from the
vowel context by linear interpolation from the unrounded
V1, across the consonant cluster, to the rounded V2.

To allow for low-latency operation, the look-ahead model
has been modified by limiting the look-ahead time window
(presently a value of 100 milliseconds is used) which means
that no anticipatory coarticulation beyond this window will
occur.

For comparison, the control model has also been eval-
uated against several data-driven schemes [18]. In these
experiments, different models are implemented and trained
to reproduce the articulatory patterns of a real speaker,
based on a corpus of optical measurements. Two of the
models, (Cohen-Massaro and Ohman) are based on coar-
ticulation models from speech production theory and one
uses artificial neural networks (ANNs). The different models
were evaluated through a perceptual intelligibility experi-
ment, where the data-driven models were compared against
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Figure 2: Illustration of the signal flow in the SynFace system.

Table 1: Summary of intelligibility test of visual speech synthesis
control models, from Beskow [18].

Control model % keywords correct

Audio only 62.7

Cohen-Massaro 74.8

Ohman 75.3

ANN 72.8

Rule-based 81.1

the rule-based model as well as an audio-alone condition.
In order to only evaluate the control models, and not the
recognition, the phonetic input to all models was generated
using forced alignment Sjolander [19]. Also, since the intent
was a general comparison of the relative merits of the control
models, that is, not only for real time applications, no low-
latency constraints were applied in this evaluation. This
means that all models had access to all segments in each
utterance, but in practise the models differ in their use of
look-ahead information. The “Cohen-Massaro” model by
design always uses all segments; the “Ohman” model looks
ahead until the next upcoming vowel; while the ANN model,
which was specially conceived for low-latency operation,
used a constant look-ahead of 50 milliseconds.

Table 1 summarises the results; all models give sig-
nificantly increased speech intelligibility over the audio-
alone case, with the rule-based model yielding the highest
intelligibility score. While the data-driven models seem to
provide movements that are in some sense more naturalistic,
the intelligibility is the single most important aspect of the
animation in SynFace, which is why the rule-based model is
used in the system.

2.2. Phoneme Recognition. The constraints imposed on the
phoneme recogniser (PR) for this application are speaker
independence, task independence and low latency. However,
the demands on the PR performance are limited by the fact
that some phonemes map to the same visemes (targets) for
synthesis.

The phoneme recogniser used in SynFace, is based on
a hybrid of recurrent neural networks (RNNs) and hidden
Markov models (HMMs) [20]. Mel frequency cepstral
coefficients (MFCCs) are extracted on 10 milliseconds spaced
frames of speech samples. The neural networks are used

to estimate the posterior probabilities of each phonetic
class given a number of feature vectors in time [21]. The
networks are trained using Back Propagation through time
[22] with a cross-entropy error measure [23]. This ensures an
approximately linear relation between the output activities
of the RNN and the posterior probabilities of each phonetic
class, given the input observation. As in Strom [24], a
mixture of time delayed and recurrent connections is used.
All the delays are positive, ensuring that no future context is
used and thus reducing the total latency of the system at the
cost of slightly lower recognition accuracy.

The posterior probabilities estimated by the RNN are
fed into an HMM with the main purpose of smoothing
the results. The model defines a simple loop of phonemes,
where each phoneme is a left-to-right three-state HMM. A
slightly modified Viterbi decoder is used to allow low-latency
decoding. Differently from the RNN model, the decoder
makes use of some future context (look-ahead). The amount
of look-ahead is one of the parameters that can be controlled
in the algorithm.

During the Synface project (IST-2001-33327), the recog-
niser was trained and evaluated on the SpeechDat recordings
[25] for three languages: Swedish, English and Flemish.
In Salvi [20, 26], the effect of limiting the look-ahead in
the Viterbi decoder was studied. No improvements in the
results were observed for look-ahead lengths greater than
100 milliseconds. In the SynFace system, the look-ahead
length was further limited to 30 milliseconds, resulting in a
relative 4% drop in performance in terms of correct frames.

3. Nonverbal Gestures

While enhancing speech perception through visible artic-
ulation has been the main focus of SynFace, recent work
has been aimed at improving the overall communicative
experience through nonarticulatory facial movements. It
is well known that a large part of information transfer
in face-to-face interaction is nonverbal, and it has been
shown that speech intelligibility is also affected by nonverbal
actions such as head movements [27]. However, while there
is a clear correlation between the speech signal and the
articulatory movements of the speaker that can be exploited
for driving the face articulation, it is less clear how to
provide meaningful nonarticulatory movements based solely
on the acoustics. We have chosen to focus on two classes
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of nonverbal movements that have found to play important
roles in communication and that also may be driven by
acoustic features that can be reliably estimated from speech.
The first category is speech-related movements linked to
emphasis or prominence, the second category is gestures
related to interaction control in a dialogue situation. For the
time being, we have not focused on expressiveness of the
visual synthesis in terms of emotional content as in Cao et al.
[28].

Hadar et al. [29] found that increased head movement
activity co-occurs with speech, and Beskow et al. [30] found,
by analysing facial motion for words in focal and nonfocal
position, that prominence is manifested visually in all parts
of the face, and that the particular realisation chosen is
dependent on the context. In particular these results suggest
that there is not one way of signalling prominence visually
but it is likely that several cues are used interchangeably or
in combination. One issue that we are currently working on
is how to reliably extract prominence based on the audio
signal alone, with the goal of driving movements in the
talking head. In a recent experiment Al Moubayed et al.
[4] it was shown that adding small eyebrow movements
on syllables with large pitch movements, resulted in a
significant intelligibility improvement over the articulation-
only condition, but less so than a condition where manually
labelled prominence was used to drive the gestures.

When people are engaged in face-to-face conversation,
they take a great number of things into consideration in order
to manage the flow of the interaction. We call this interaction
control—the term is wider than turn-taking and does not
presuppose the existence of “turns.” Examples of features
that play a part in interaction control include auditory
cues such as pitch, intensity, pause and disfluency, hyper-
articulation; visual cues such as gaze, facial expressions,
gestures, and mouth movements (constituting the regulators
category above) and cues like pragmatic, semantic, and
syntactic completeness.

In order to investigate the effect of visual interaction
control cues in a speech driven virtual talking head, we
conducted an experiment with human-human interaction
over a voice connection supplemented by the SynFace talking
head at each end, where visual interaction control gestures
were automatically controlled from the audio stream. The
goal of the experiment was to find out to what degree subjects
were affected by the interaction control cues. In what follows
is a summary, for full details see Edlund and Beskow [31].

In the experiment, a bare minimum of gestures was
implemented that can be said to represent a stylised version
of the gaze behaviours observed by Kendon [32] and recent
gaze-tracking experiments [33].

(i) A turn-taking/keeping gesture, where the avatar
makes a slight turn of the head to the side in
combination with shifting the gaze away a little,
signalling a wish to take or keep the floor.

(ii) A turn-yielding/listening gesture, where the avatar
looks straight forward, at the subject, with slightly
raised eyebrows, signalling attention and willingness
to listen.

(iii) A feedback/agreement gesture, consisting of a small
nod. In the experiment described here, this gesture
is never used alone, but is added at the end of the
listening gesture to add to its responsiveness. In the
following, simply assume it is present in the turn
yielding/listening gesture.

The audio-signal from each participant was processed by
a voice activity detector (VAD). The VAD reports a change
to the SPEECH state each time it detected a certain number
of consecutive speech frames whilst in the SILENCE state,
and vice-versa. Based on these state transitions, gestures were
triggered in the respective SynFace avatar.

To be able to assess the degree to which subjects were
influenced by the gestures, the avatar on each side could
work in one of two modes: ACTIVE or PASSIVE. In the
ACTIVE mode, gestures were chosen as to encourage one
party to take and keep turns, while PASSIVE mode implied
the opposite—to discourage the user to speak. In order to
collect balanced data of the two participants behaviour, the
modes were shifted regularly (every 10 turns), but they were
always complementary—ACTIVE on one side and PASSIVE
on the other. The number 10 was chosen to be small enough
to make sure that both parties got exposed to both modes
several times during the test (10 minutes), but large enough
to allow subjects to accommodate to the situation.

The subjects were placed in separate rooms and equipped
with head-sets connected to a Voice-over-IP call. On each
side, the call is enhanced by the SynFace animated talking
head representing the other participant, providing real-
time lip-synchronised visual speech animation. The task was
to speak about any topic freely for around ten minutes.
There were 12 participants making up 6 pairs. None of the
participants had any previous knowledge of the experiment
setup.

The results were analysed by counting the percentage
of times that the turn changed when a speaker paused.
The percentage of all utterances followed by a turn change
is larger under the PASSIVE condition than under the
ACTIVE condition for each participant without exception.
The difference is significant (P < .01), which shows that
subjects were consistently affected by the interaction control
cues in the talking head. As postinterviews revealed that most
subjects never even noticed the gestures consciously, and no
subject connected them directly to interaction control, this
result shows that it is possible to unobtrusively influence
the interaction behaviour of two interlocutors in a given
direction—that is to make a person take the floor more or
less often—by way of facial gestures in an animated talking
head in the role of an avatar.

4. Evaluation Experiments

In the SynFace application, speech intelligibility enhance-
ment is the main function. Speech reading and audio-visual
speech intelligibility have been extensively studied by many
researchers, for natural speech as well as for visual speech
synthesis systems driven by text or phonetically transcribed
input. Massaro et al. [7], for example, evaluated visual-
only intelligibility of a speaker dependent speech driven
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system on isolated words. To date, however, we have not
seen any published results on speaker independent speech
driven facial animation systems, where the intelligibility
enhancement (i.e., audiovisual compared to audio-only
condition) has been investigated. Below, we report on two
experiments were audiovisual intelligibility of SynFace has
been evaluated for different configurations and languages.

The framework adopted in SynFace allows for evaluation
of the system at different points in the signal chain shown in
Figure 2. We can measure accuracy

(i) at the phonetic level, by measuring the phoneme
(viseme) accuracy of the speech recogniser,

(ii) at the face parameter level, by computing the distance
between the face parameters generated by the system
and the optimal trajectories, for example, trajectories
obtained from phonetically annotated speech,

(iii) at the intelligibility level, by performing listening
tests with hearing impaired subjects, or with normal
hearing subjects and a degraded acoustic signal.

The advantage of the first two methods is simplicity. The
computations can be performed automatically, if we assume
that a good reference is available (phonetically annotated
speech). The third method, however, is the most reliable
because it tests the effects of the system as a whole.

Evaluating the Phoneme Recogniser. Measuring the perfor-
mance at the phonetic level can be done in at least two ways:
By measuring the percentage of frames that are correctly
classified, or by computing the Levenshtein (edit) distance
Levenshtein [34] between the string of phonemes output
by the recogniser and the reference transcription. The first
method does not explicitly consider the stability of the
results in time and, therefore, may overestimate the perfor-
mance of a recogniser that produces many short insertions.
These insertions, however, do not necessarily result in a
degradation of the face parameter trajectories, because the
articulatory model, the face parameter generation is based
on, often acts as a low-pass filter. On the other hand, the
Levenshtein distance does not consider the time alignment of
the two sequences, and may result in misleading evaluation
in the case that two phonetic subsequences that are not co-
occurring in time are aligned by mistake. To make the latter
measure homogeneous with the correct frames %, we express
it in terms of accuracy, defined as (1 − l/n) × 100, where l is
Levenshtein (Edit) distance and n the length of the reference
transcription.

Intelligibility Tests. Evaluating the intelligibility is performed
by listening tests with a number of hearing impaired or
normal hearing subjects. Using normal hearing subject and
distorting the audio signal has been shown to be a viable
simulation of perception by hearing impaired [35, 36]. The
speech material is presented to the subjects in different
conditions. These may include audio alone, audio and natural
face, audio and synthetic face. In the last case, the synthetic
face may be driven by different methods (e.g., different
versions of the PR that we want to compare). It may also
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Figure 3: Delta SRT versus correct frames % for three different
recognisers (correlation r = −0.89) on a 5-subject listening test.

be driven by carefully obtained annotations of the speech
material, if the aim is to test the effects of the visual synthesis
models alone.

Two listening test methods have been used in the current
experiments. The first method is based on a set of carefully
designed short sentences containing a number of key-words.
The subject’s task is to repeat the sentences, and intelligibility
is measured in terms of correctly recognised key-words. In
case of normal hearing subjects, the acoustic signal may be
degraded by noise in order to simulate hearing impairment.
In the following, we will refer to this methodology as “key-
word” test.

The second methodology Hagerman and Kinnefors [37]
relies on the adaptive use of noise to assess the level of
intelligibility. Lists of 5 words are presented to the subjects
in varying noise conditions. The signal-to-noise ratio (SNR
dB) is adjusted during the test until the subject is able to
correctly report about 50% of the words. This level of noise is
referred to as the Speech Reception Threshold (SRT dB) and
indicates the amount of noise the subject is able to tolerate
before the intelligibility drops below 50%. Lower values of
SRT correspond to better performance (the intelligibility is
more robust to noise). We will refer to this methodology as
“SRT” test.

SRT Versus Correct Frames %. Figure 3 relates the change
of SRT level between audio-alone and SynFace conditions
(Delta SRT) to the correct frames % of the corresponding
phoneme recogniser. Although the data is based on a small
listening experiment (5 subjects), the high correlation shown
in the figure motivates the use of the correct frames % mea-
sure for developmental purposes. We believe, however, that
reliable evaluations should always include listening tests. In
the following, we report results on the recent developments
of SynFace using both listening tests and PR evaluation.
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Table 2: Number of connections in the RNN and correct frames %
of the SynFace RNN phonetic classifiers.

Language Connections Correct frames %

English 184,848 46.1

Flemish 186,853 51.0

German 541,430 61.0

Swedish 541,250 54.2

These include the newly developed German recogniser, wide-
versus narrow-band speech recognition experiments and
cross-language tests. All experiments are performed with the
real-time, low-latency implementation of the system, that
is, the phoneme recogniser uses 30 milliseconds look-ahead
length, and the total delay of the system in the intelligibility
tests is 200 milliseconds.

4.1. SynFace in German. To extend SynFace to German,
a new recogniser was trained on the SpeechDat German
recordings. These consist of around 200 hours of telephone
speech spoken by 4000 speakers. As for the previous
languages, the HTK-based RefRec recogniser Lindberg et al.
[38] was trained and used to derive phonetic transcriptions
of the corpus. Whereas the recogniser for Swedish, English
and Flemish, was trained exclusively on the phonetically
rich sentences, the full training set, also containing isolated
words, digits, and spellings, was used to train the German
models. Table 2 shows the results in terms of correct frames
% for the different languages. Note however that these results
are not directly comparable because they are obtained on
different test sets.

The same synthesis rules used for Swedish are applied
to the German system, simply by mapping the phoneme
(viseme) inventory of the two languages.

To evaluate the German version of the SynFace system,
a small “key-word” intelligibility test was performed. A set
of twenty short (4–6 words) sentences from the Göttinger
satsztest set [39], spoken by a male native German speaker,
were presented to a group of six normal hearing German
listeners. The audio presented to the subjects was degraded in
order to avoid ceiling effects, using a 3-channel noise excited
vocoder shannon et al. [40]. This type of signal degradation
has been used in the previous audio-visual intelligibility
experiments Siciliano et al. [41] and can be viewed as a
way of simulating the information reduction experienced by
cochlear implant patients. Clean speech was used to drive
SynFace. 10 sentences were presented with audio-only and
10 sentences were presented with SynFace support. Subjects
were presented with four training sentences before the test
started. The listeners were instructed to watch the screen and
write down what they perceived.

Figure 4 summarises the results for each subject. The
mean score (% correctly recognised key-words) for the audio
only condition was extremely low (2.5%). With SynFace
support, a mean score of 16.7% was obtained. While there
was a large intersubject variability, subjects consistently
showed to take advantage of the use of SynFace. An ANOVA
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SynFace (% correct word recognition).

analysis shows significant differences (P < .01) between the
audio-alone and SynFace conditions.

4.2. Narrow- Versus Wide-Band PR. In the Hearing at Home
project, SynFace is employed in a range of applications that
include speech signals that are streamed through different
media (Telephone, Internet, TV). The signal is often of a
higher quality compared to the land-line telephone settings.
This opens the possibility for improvements in the signal
processing part of the system.

In order to take advantage of the available audio band
in these applications, the SynFace recogniser was trained
on wide-band speech data from the SpeeCon corpus [42].
SpeeCon contains recordings in several languages and con-
ditions. Only recordings in office settings of Swedish were
chosen. The corpus contains word level transcriptions, and
annotations for speaker noise, background noise, and filled
pauses. As in the SpeechDat training, the silence at the
boundaries of every utterance was reduced, in order to
improve balance between the number of frames for the
silence class and for any other phonetic class. Differently
from the SpeechDat training, NALIGN Sjolander [19] was
used in order to create time aligned phonetic transcriptions
of the corpus based on the orthographic transcriptions.

The bank of filters, used to compute the MFCCs that are
input to the recogniser, was defined in a way that the filters
between 0 and 4 kHz coincide with the narrow-band filter-
bank definition. Additional filters are added for the upper
4 kHz frequencies offered by the wide-band signal.

Table 3 shows the results for the network trained on the
SpeeCon database. The results obtained on the SpeechDat
material are also given for comparison. Note, however, that
these results cannot be compared directly because the tests
were performed on different test sets.
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Table 3: Comparison between the SpeechDat telephone quality
(TF), SpeeCon narrow-band (NB) and SpeeCon wide-band (WB)
recognisers. Results are given in terms of correct frames % for
phonemes (ph) and visemes (vi), and accuracy.

Database SpeechDat SpeeCon

Data size (ca. hours) 200 40

Speakers (#) 5000 550

Speech quality TF NB WB

Sampling (kHz) 8 8 16

Correct frames (% ph) 54.2 65.2 68.7

Correct frames (% vi) 59.3 69.0 74.5

Accuracy (% ph) 56.5 62.2 63.2
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In order to have a more controlled comparison between
the narrow- and the wide-band networks for Swedish, a
network was trained on a downsampled (8 kHz) version of
the same SpeeCon database. The middle column of Table 3
shows the results for the networks trained and tested on
the narrow-band (downsampled) version of the SpeeCon
database. Results are shown in terms of % of correct frames
for phonemes, visemes, and phoneme accuracy.

Finally, a small-scale “SRT” intelligibility experiment,
was performed in order to confirm the improvement in
performance that we see in the wide-band case. The con-
ditions include audio alone and SynFace driven by different
versions of the recogniser. The tests were carried out using
five normal hearing subjects. The stimuli consisted of lists
of 5 words randomly selected from a set of 50 words. A
training session was performed before the real test to control
the learning effect. Figure 5 shows the SRT levels obtained
in the different conditions, where each line corresponds
to a subject. An ANOVA analysis and successive multiple
comparison analysis confirm that there is a significant
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Table 4: correct frames % for different languages (columns)
recognised by different models (rows). The languages are: German
(de), English (en), Flemish (fl) and Swedish (sv). Numbers in
parentheses are the % of correct frames for perfect recognition,
given the mismatch in phonetic inventory across languages.

de sv fl en

de 61.0 (100) 30.3 (82.6) 27.1 (73.5) 26.2 (71.6)

sv 31.5 (86.2) 54.2 (100) 26.3 (72.1) 23.5 (74.2)

fl 34.2 (85.7) 31.6 (77.9) 51.0 (100) 26.9 (69.8)

en 24.5 (74.6) 23.7 (72.3) 21.5 (66.8) 46.1 (100)

decrease (improvement) of SRT (P < .001) for the wide-
band recogniser over the narrow-band trained network and
the audio-alone condition.

4.3. Multilinguality. SynFace is currently available in
Swedish, German, Flemish and English. In order to
investigate the possibility of using the current recognition
models on new languages, we performed cross-language
evaluation tests.

Each language has its unique phonetic inventory. In
order to map between the inventory of the recognition
model and that of the target language, we considered three
different paradigms illustrated in Figure 6. In the first case
(Figure 6(a)) we relay on perfect matching of the phonemes.
This is a very strict evaluation criterion because it does not
take into account the acoustic and visual similarities between
phonemes in different languages that do not share the same
phonetic code.

Table 4 presents the correct frames % when only match-
ing phonetic symbols are considered. The numbers in
parentheses show the highest possible performance, given
the fact that some of the phonemes in the test set do not
exist in the recognition model. As expected, the accuracy
of recognition drops drastically when we use cross-language
models. This could be considered as a lower bound to
performance.
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Figure 7: correct frames % for the three mappers when the target
language is Swedish. The dashed line represents the results obtained
with the Swedish phoneme recogniser (language matching case).

The second mapping criterion depicted in Figure 6(b),
considers as correct the association between model and
target phonemes that was most frequently adopted by the
recognition models on that particular target language. If
we consider all possible maps between the set of model
phonemes and the set of target phonemes, this corresponds
to an upper bound of the results. Compared to the results
in Table 4, this evaluation method gives about 10% increased
correct frames in average. In this case, there is no guarantee
that the chosen mapping bares phonetic significance.

The previous mappings were introduced to allow for
simple cross-language evaluation of the phonetic recognisers.
Figure 6(c) shows a mapping method that is more realistic
in terms of system performance. In this case we do not
map between two discrete sets of phonemes, but, rather,
between the posterior probabilities of the first set and the
second set. This way, we can, in principle, obtain better
results than the above upper bound, and possibly even better
results than for the original language. In the experiments the
probability mapping was performed by a one-layer neural
network that implements linear regression. Figure 7 shows
the results when the target language is Swedish, and the
phoneme recognition (PR) models were trained on German,
English and Flemish. Only 30 minutes of an independent
training set were used to train the linear regression mapper.
The performance of this mapper is above the best match
results, and comes close to the Swedish PR results (dashed
line in the figure) for the German PR models.

5. Conclusions

The purpose of SynFace is to enhance spoken communi-
cation for the hearing impaired, rather than solving the
acoustic-to-visual speech mapping per se. The methods

employed here are, therefore, tailored to achieving this goal
in the most effective way. Beskow [18] showed that, whereas
data-driven visual synthesis resulted in more realistic lip
movements, the rule-based system enhanced the intelligi-
bility. Similarly, mapping from the acoustic speech directly
into visual parameters is an appealing research problem.
However, when the ambition is to develop a tool that can be
applied in real-life conditions, it is necessary to constrain the
problem. The system discussed in this paper

(i) works in real time and with low latency, allowing real-
istic conditions for a natural spoken communication,

(ii) is light-weight and can be run on standard commer-
cially available hardware,

(iii) is speaker independent, allowing the user to commu-
nicate with any person,

(iv) is being developed for different languages (currently,
Swedish, English, Flemish, and German are avail-
able),

(v) is optimised for different acoustic conditions, ranging
from telephone speech quality to wide-band speech
available in, for example, Internet communications
and radio/TV broadcasting,

(vi) is being extensively evaluated in realistic settings,
with hearing impaired subjects or by simulating
hearing impairment.

Even though speech intelligibility is the focus of the
SynFace system, extra-linguistic aspects of speech commu-
nication have also been described in the paper. Modelling
nonverbal gestures proved to be a viable way of enhancing
the turn-taking mechanism in telephone communication.

Future work will be aimed at increasing the generality
of the methods, for example, by studying ways to achieve
language independence or by simplifying the process of
optimising the system to a new language, based on the
preliminary results shown in this paper. Reliably extracting
extra-linguistic information, as well as synthesis and evalu-
ation of nonverbal gestures will also be the focus of future
work.
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