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We describe a method for the synthesis of visual speech movements using a hybrid unit selection/model-based approach. Speech
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of how lips move is built and is used in the animation of visual speech movements from speech audio input. The mapping from
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during synthesis. By combining properties of model-based synthesis (e.g., HMMs, neural nets) with unit selection we improve the
quality of our speech synthesis.
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1. Introduction

Synthetic talking heads are becoming increasingly popular
across a wide range of applications: from entertainment (e.g.,
Computer Games/TV/Films) through to natural user inter-
faces and speech therapy. This application of computer ani-
mation and speech technology is complicated by the expert
nature of any potential viewer. Face-to-face interactions are
the natural means of every-day communication and thus it is
very difficult to fool even a naı̈ve subject that synthetic speech
movements are real. This is particularly the case as the static
realism of our models get closer to photorealistic. Whilst
a viewer may accept a cartoon-like character readily, they
are often more sceptical of realistic avatars. To explain this
phenomena Mori [1] posited the “uncanny valley”, the idea
that the closer a simulcra comes to human-realistic, the more
slight discrepancies with observed reality disturb a viewer.
Nevertheless, as the technology for capturing human likeness
becomes more widely available, the application of lifelike
synthetic characters to the above mentioned applications
has become attractive to our narcissistic desires. Recent
films, such as the “The Curious Case of Benjamin Button”,
demonstrate what can be attained in terms of mapping-
captured facial performance onto a synthetic character.

However, the construction of purely synthetic performance
is a far more challenging task and one which has yet to be
fully accomplished.

The problem of visual speech synthesis can be thought
of as the translation of a sequence of abstract phonetic
commands into continuous movements of the visible vocal
articulators (e.g., lips, jaw, tongue). It is often considered
that audible phonemes overspecify the task for animation,
that is, an audio phoneme can discriminate based upon
nonvisible actions (e.g., voicing in pat versus bat), and thus
visible-phonemes/visemes (a term coined by Fisher [2]) are
often used as basis units for synthesis. The simplest attempts
at synthesis often take static viseme units and interpolate
between them in some manner to produce animation [3–
6]. It should be noted that visemes in this context are
often considered to be instantaneous static targets, whereas
phonemes refer to a sequence of audio or vocal tract
parameters. It is a limitation of this kind of approach
that the kinematics of articulatory movement are often not
included explicitly. In particular the context specificity of
visemes must be modelled to correctly synthesise speech, that
is, coarticulation. Viseme-interpolation techniques typically
model coarticulation using a spline-based model (with
reference to Löfqvist’s earlier work on coarticulation [7])
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to blend the specified targets over time [6]. However, it
is difficult to derive the parameters for such models from
real articulatory data and it is not even known what shape
the basis functions should take as they cannot be directly
observed. Given these limitations current systems typically
build models from the kinematics of the vocal tract which
can be directly observed. In [8] motion-captured markers
(Optotrak) are recorded for natural speech for a single
speaker; these are then used to train the parameters for an
adapted version of the authors’ earlier coarticulation model
[6]. In [5] tracked markers of isolated French vowels and
VCV syllables are used to train the parameters from Öhman’s
numerical model of coarticulation [9]. In [3] video of a
speaker is used to train the distribution of visual parameters
for each viseme, with synthesis performed by generating a
trajectory that passes through the relevant distributions. In
[10] viseme transition functions for diphones and triphones
are trained using motion capture data, combinations of
which can be used to synthesise novel utterances.

One of the most common techniques in audio speech
synthesis is the selection and concatenation of stored pho-
netic units (e.g., Festival [11], MBROLA [12]). By combining
short sequences of real speech, improvements in quality
over parametric models of the vocal tract can be achieved.
Analogously for visual synthesis short sections of captured
speech movements can be blended together to produce
animation. An example of this is Video-Rewrite [13] where
short sections of video are blended together to produce
what are termed video-realistic animations of speech. In
[14, 15] motion-captured marker data is concatenated to
similar effect, albeit without the advantage of photorealistic
texture. Cao et al. [16] use similarity in the audio parameters
between stored units and the target utterance as a selection
criterion, along with terms which minimize the number of
units and cost of joining selected units. By indexing into
real data unit-selection methods benefit from the intrinsic
realism of the data itself. However, coarticulation is still
manifest in how the units are blended together. It is not
adequate to store a single unit for each phoneme; many
examples must be stored across the various phonetic contexts
and selected between during synthesis. In fact the best
examples of concatenative synthesis select between speech
units at different scales (e.g., phonemes, syllables, words)
to reduce the amount of blending and thus maximise the
realism of the final animation (this is effectively being done
in [16]). As the size of the underlying unit basis increases,
the size of the required database exponentially increases; this
leads to a trade-off between database size and animation
quality.

The approaches described thus far do not use the
audio of the target utterance to guide the generation of
a synthetic speech trajectory. It is necessarily true that
articulatory movements are embedded within the audio
itself, albeit perhaps sparsely, and this should be taken
advantage of during synthesis. The final group of visual
synthesis techniques take advantage of the audio data to
map into the space of visual speech movements. These
audio-visual inversion models are typically based upon
Hidden Markov Models (HMMs) [17, 18], neural networks

[19], or other lookup models [20]. Brand [18] constructed
an HMM-based animation system to map from audio
parameters (LPC/Rasta-PLP) to marker data which can be
used to animate a facial model. The HMM is initially
trained to recognise the audio data, and for animation
the output for each state is replaced by the corresponding
distribution of visual parameters. Thus, a path through the
hidden states of the HMM implies a trajectory through the
articulatory space of a speaker. Zhang and Renals [17] use
a trajectory formulation of HMM synthesis to synthesise
Electro-Magnetic Articulography (EMA) trajectories from
the MOCHA-TIMIT corpus. Trajectory HMMs incorporate
temporal information in the model formulation which
means that they generate continuous trajectories and not
a discrete sequence of states. Problematically for all HMM
synthesis a model trained on audio data and another trained
on the accompanying visual data would produce two very
different network topologies. The approach of Brand makes
the assumption that the two are at least similar, and this is
unfortunately not the case. Constructing a global mapping
in this way can produce a babbling level of synthesis but
does not accurately preserve the motion evident in the
original training data. This can be improved by using HMMs
representing smaller phonetic groupings (e.g., triphones),
and using a lattice of these smaller units to both recognise
the audio and animate the facial model. This is similar to the
way that HMM speech recognition systems work; although
in recognition we are making a binary decision, that is, is
this the correct triphone or not, whereas for animation we
wish to recover a trajectory (sequence of states) that the
vocal tract must pass through to produce the audio—a more
difficult task. Also, because HMMs model speech according
to the statistical mass of the training data, the fine-scale
structure of the individual trajectories can be lost in such
a mapping.

In order to capture speech articulatory movements
several methods have been used; these include photogra-
phy/video [3, 13, 21], marker-based motion capture [8, 10,
14, 15], and surface-capture techniques [22–25]. Video has
the advantage of realism, but because the view is fixed,
the parameters of such models do not fully capture the
variability in human faces (e.g., in the absence of depth, lip
protrusion is lost). Marker-based motion capture systems
allow the capture of a small number of markers (usually less
than 100) on the face and provide full 3D data. However,
marker-based systems are limited by the locations in which
markers can be placed; in particular the inner lip boundary
cannot be tracked which is problematic for speech synthesis.
Furthermore, systems such as Vicon and Optotrak require
the placement of physical markers and sometimes wires on
the face which do not aid the subject in speaking in a
natural manner. Surface capture technologies, usually based
upon stereophotogrammetry, produce sequences of dense
scans of a subject’s face. These are generally of a much
higher resolution than possible with marker-based mocap
(i.e., in the order of thousands of vertices), but frames are
generally captured without matching geometry over time.
This unregistered data requires a second stage of alignment
before it can be used as an analytical tool.
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It can be seen that concatenative and model-based
techniques have complementary features. In concatenative
synthesis the fidelity of the original data is maintained; yet
there is no global model of how lips move and a decision
must be made on how to select and blend units. Model-
based synthesis provides a global structure to constrain the
movement of the articulators and traverses through this
structure according to the audio of the target utterance;
however, by matching the input audio to the statistical mass
of training data the detailed articulatory movements can
be lost. In this paper we use a hybrid approach which
attempts to take the advantages of both models and combine
them into a single combined system. The most similar
approach to that described can be found in [26] where
an HMM model is used together with a concatenation
approach for speech synthesis of both audio and visual
parameters. However, Govokhina et al. use a HMM to select
units for concatenation, whereas we select units to train a
state-based model for synthesis (i.e., effectively the opposite
order). The data used comes from a high-resolution surface
capture system combined with marker capture to aid the
registration of face movements over time. This paper is
structured in the following manner: Section 2 describes our
dynamic face capture and the makeup of our speech corpus;
Section 3 describes the parameterisation of this data and
the recovery of an underlying speech behaviour manifold;
Section 4 describes our approach to the synthesis of speech
lip movements; Section 5 describes the rendering/display of
synthetic speech animation on a photorealistic model; finally,
Section 6 discusses a perceptual evaluation study into the
quality of our synthesis approach.

2. Data Capture

Many different forms of data have been used as the basis of
visual speech synthesis: from photographs of visemes [21],
frontal video of a speaker [3, 13], marker-based motion-
capture data [16], and surface scans of a subject during
articulation [23]. The research described in this paper
is based on data recorded using the 4D capture system
developed by 3dMD [27] for high-resolution capture of
facial movement; see Figure 1(a). This system works on the
principal of stereophotogrammetry, where pairs of cameras
are used to determine the location of points on a surface.
The system consists of two stereo pairs (left/right) which
use a projected infra-red pattern to aid stereo registration.
Two further cameras capture colour texture information
simultaneously with the surface geometry. All cameras
have a resolution of 1.2 Megapixels and operate at 60 Hz,
and the output 3D models have in the order of 20 000
vertices (full face ear-to-ear capture). Each frame of data
is reconstructed independently; this means that there is
no initial temporal registration of the data. Audio data is
also captured simultaneously with the 3D geometry and
texture.

To register the geometry over time markers are applied
to the face of the subject. These take the form of blue
painted dots on the skin and blue lipstick to track the
contours of the lips; see Figure 1(b). Between the markers

Table 1: Selected sentences from the corpus.

Herb’s birthday occurs frequently on Thanksgiving

She took it with her wherever she went

Alice’s ability to work without supervision is noteworthy

Boy you are stirrin’ early a sleepy voice said

Employee layoffs coincided with companies reorganisation

The armchair traveller preserves his illusions

Don’t ask me to carry an oily rag like that

Why buy oil when you always use mine

The sound of Jennifer’s bugle scared the antelope

Don’t look for group valuables in a bank vault

Continental drift is a geological theory

alignment is performed by calculating the geodesic distance
(i.e., across the surface of the skin) from a vertex in the
first frame to its surrounding markers; in subsequent frames
the location on the surface with the same relative position
to surrounding markers is taken as the matching point. In
this manner a dense-registered surface reconstruction of the
face can be captured for a subject. Due to the combination
of the contour markers on the lips and the surface capture
technology used we get a highly detailed model of the lips;
in particular this is a great improvement over traditional
motion-capture technology which is limited by the locations
that markers can be attached to the face. We also get details
of the movement of the skin surrounding the lips and in
the cheeks which are commonly missed in synthesis systems.
In the rest of this paper the data used is the registered
3D geometry; the texture images are only used to track
the markers for registration. For the purposes of speech
synthesis we isolate the data for the lower face (i.e., jaw,
cheeks, lips) so that our system only drives the movement
of the articulators. During data capture the subject is asked
to keep their head still to prevent them leaving the capture
volume which is relatively restrictive. However, no physical
constraint is applied and it is found that the subject’s head
will drift slightly during recording (a maximum 2 minutes
of continuous data capture is performed) which is removed
using the Iterative Closest Point (ICP [28]) rigid alignment
algorithm.

The captured corpus consists of 8 minutes of registered
3D geometry and simultaneous audio captured of a male
native British English speaker. Sentences were selected from
the TIMIT corpus [29] to provide a good sampling across
all phonemes, there are 103 sentences in all (see Table 1,
e.g., sentences), and the sampling of phonemes can be
seen in Table 2. This does not represent a high sampling
of phonemes in terms of context, as this was seen as too
great a data capture effort to be feasible with the current
equipment and time required to process the data. However,
when considered as a reduced set of visemes, as opposed
to phonemes, we have a relatively large set of exemplar
animations in a high quality to facilitate the synthesis
technique described in the following sections. The audio
data is manually transcribed to allow both the audio and
geometry data to be cut into Phone segments.
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(a) (b)

Figure 1: Capture of facial movements: (a) the face capture system; (b) frames and tracked geometry from a sequence in the captured
dataset.

Table 2: Frequency of English phonemes in the captured data.

Consonants

p 72 b 79 m 99 ch 31

jh 34 s 313 z 109 sh 41

zh 20 f 69 v 58 th 28

dh 81 k 133 g 39 t 241

d 187 r 136 w 68 n 254

ng 28 hh 29 l 170 y 62

Vowels

aa 24 ae 85 ah 48 ao 49

aw 23 ay 57 ax 299 ea 26

eh 73 ey 65 ia 22 ih 198

iy 126 oh 62 ow 47 oy 24

ua 23 uh 30

3. Data Parameterisation

The 3D registered data from the speech corpus is
parameterised in a manner which facilitates the struc-
turing of a state-based model. The dataset consists of
a sequence of frames, F, where the ith frame Fi =
{ �xyz0, �xyz1, . . . , �xyzi, . . . , �xyzn} and �xyz is a 3D vertex.
Principal Component Analysis (PCA) is applied directly to
F to filter out low variance modes. By applying PCA we get

a set of basis vectors, �X . The EM method for computing
principal components [30] is used here due to the size of
the data matrix, F, which holds 28, 833 frames ×12, 784 xyz
coordinates. The first 100 basis vectors are computed, with
the first 30 holding over 99% of the recovered variance. The
percentage of the total variance accounted for will be lower,
but the scree-graph shows that the important features of F
are compressed in only a few dominant components (i.e.,
∼95% in the first 10 components and ∼99% in the first 30

components indicating a flattening of the scree-graph, see
the blue line in Figure 2(a)). F can be projected onto the

basis �X to produce the parameterisation FX . So each frame

Fi can be projected onto �X , Fi × �X → FX
i . Broadly, the 1st

component of �X can be categorised as jaw opening, the 2nd
is lip rounding/protrusion, and lower variance components
are not as easily contextualised in terms of observed lip-shape
qualities but generally describe protrusion, asymmetries, and
the bulging of the cheeks.

The first derivative for each frame can be estimated as
FX
i
′ = FX

i − FX
i−1 (the parametric displacement of the lips in

1/60th of a second). Each pair {FX
i ,FX

i
′} describes a distinct

point in the physical space of lip movement. Another level
of PCA could be applied directly upon this data; however
as the first derivative is at a different scale, the parameters
need to be normalized such that FX

i does not dominate over
FX
i
′
. Thus a matrix M = {(1/σ2)(FX

i − μ), (1/σ
′2)(FX

i
′ − μ′)}

is constructed where the FX
i and FX

i
′

are scaled to have unit
variance.

The matrix M is now processed in a manner similar to
Multidimensional Scaling (MDS) [31]; that is, a symmetric
distance matrix Δ is formed where each element Δi j is the
Euclidean distance between Mi and Mj (the ith and jth

elements of M), that is, Δi j =
√

(Mi −Mj)
2. The matrix

Δ is then decomposed using another iteration of PCA

forming a basis �Y ; so for each of the initial frames Fi we
have a corresponding projected coordinate FY

i . The first 3

dimensions of �Y account for over 93% of the recovered
variance in Δ.

The described parameterisation is used to reduce the
dimensionality from 38, 352 (number of vertices×3) dimen-
sions down to 10 dimensions, which account for ∼99%
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Figure 2: Parameterisation of speech lip movements: (a) residual variances for the first 30 dimensions of �X (blue) and �Y (red); (b) the

speech manifold evident in the first 3 dimensions of �Y : colour indicates density of the projection (blue least dense → red most dense),
dashed line indicates the plane of symmetry between opening/closing of the lips, and vectors S and V indicate maximum change in lip shape
and velocity, respectively.

of the variance in Δ (as shown in the scree plot, see
the red line in Figure 2(a)). The manifold evident in this
reduced space also demonstrates several properties that are
of interest for the visualisation of articulatory movements.
The first 3 dimensions of the recovered speech manifold
are shown in Figure 2(b). The major properties of this
manifold are an ordering of frames according to change
in both lip shape (the non linear vector S) and velocity
(the nonlinear vector V). The manifold is also symmetric
about a plane which divides lip-opening states from lip-
closing states, and as a consequence of this speech trajectories
are realised as elliptical paths on the manifold (i.e., open-
close-open cycles). This structured representation is useful
for the visualisation of speech movements, and a more
detailed discussion of the properties of the recovered speech
manifold can be found in [22]. As this parameterisation
maintains the relationship between lip shapes and their
derivatives, it is ideal for structuring a state-based model
of speech movements. For the purposes of speech synthesis
we use the reduced space, Y , to cluster the data, where
each individual cluster represents a state of motion in the
system. Clustering is performed in this manner to avoid
the dimensionality problem which would make clustering
of the raw data computationally expensive and error prone.
Furthermore, by clustering according to both position and
velocity, we implicitly prestructure our state-based model
of speech articulation discussed in the next section. Details
of the state clustering and model construction are given in
Section 4.

4. Synthesis of Speech LipMovements

Synthesis of speech lip movements in our system is charac-
terised by a hybrid approach that combines unit selection
with a model-based approach for traversing the space of the
selected phonemes. This can be seen as a traversal of a sub-
space on the manifold of lip motion described in the previous
section. By cutting down the possible paths, according to

the input audio, we reduce the ambiguity of the mapping
from audio to visual speech movements and produce more
realistic synthetic motions. The input to our system is a
combination of both a phonetic transcription and the audio
for the target utterance. Some systems attempt to avoid
the necessity for a phonetic transcription by using a model
that is effectively both recognising the phonetic content and
synthesising the visual component simultaneously, or which
forego any phonetic structure and attempt to directly map
from audio parameters to the space of visual movements
[18, 20]. In our experience, recognition and synthesis are
very different problems and improved results can be attained
by separating the recognition and transcription component,
which can be dealt with either using a specialised recognition
module or manually depending upon the requirements of the
target application.

In overview, see Figure 3, our system proceeds through
the following steps.

(1) Input audio is decomposed into Mel Frequency
Cepstral Coefficients [32] (MFCCs), and a phonetic
transcription of the content.

(2) A unit selection algorithm is used to determine the
closest stored unit to each segment in the target
utterance.

(3) Selected units are used to train a state-based model
for each phone-phone transition.

(4) An optimal path through the trained model, that
is, across the learned manifold from Section 3, is
determined using a Viterbi type algorithm.

(5) The recovered sequence of states, which map onto
a sequence of distributions of lip shapes/velocities,
is used to generate a smooth output trajectory for
animation.

Synthesis begins by taking the phonetic transcription
and the audio for the target utterance (decomposed into
12th order MFCCs at the same frame rate as the geometry,
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Figure 3: Schematic of the synthesis process: stored phoneme
exemplars along with the input audio features are used to select
optimal units to train a state-based manifold traversal model.

60 Hz) and selecting for each segment the most similar
stored phone. A phone for our purposes consists of the
sequence from the centre of the preceding phone to the
centre of the following phone, similar to a triphone but
only classified according to the central phone (i.e., not
according to context). The distance between a segment of
the target utterance and a stored phone is calculated using
Dynamic Time Warping (DTW). This algorithm calculates
the minimum aligned distance between two time-series using
using the following recursive equation:

di, j =
√(

xi − yj
)2

,

Di, j = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Di−1, j + di, j

Di, j−1 + di, j

Di−1, j−1 + 2di, j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(1)

Here di, j is the local Euclidean distance between a frame
of the input data xi and a frame from a stored exemplar
yj , and Di, j is the global distance accumulated between the
sequences x ∈ [1, i] and y ∈ [1, j]. The smallest global
matching distance between the segment from the target
utterance and an exemplar from the stored dataset indicates
the best available unit. Note that because the algorithm
finds the best alignment between the two sequences, small
inaccuracies in the input transcription will not reduce the
quality of the final animation. This is in contrast to other
concatenative synthesis systems (e.g., [13, 15]) where the
accuracy of the transcription is key to producing good
results. Our system aligns to the audio itself rather than to
a, potentially inaccurate, transcription.

Usually in unit selection synthesis models, the motions
are blended directly to produce a continuous animation
trajectory. This is problematic as the boundaries of the units
may not align well, leading to jumps in the animation.
However, if the units are selected to allow good transitions,
then they may not be optimal for the target utterance.

Furthermore, some phonemes have a stronger effect upon
the output motion than others, and it would be advantageous
to use the evidence available in the target audio to determine
the final trajectory. In our system, we select the best units
given the target audio, as described above, and use a model-
based approach built from these units to determine a global
trajectory for the target utterance.

A state-based model is built to fit the input audio to
the global structure of speech lip movements stored in our
dataset. States are clusters forming a discretisation of the
speech manifold described in Section 3. We use the bisecting
K-means algorithm to cluster the parameterised data into
states. The model we use consists of N = 200 states, each
of which corresponds to a single distribution of lip shapes
and velocities. The number of states is chosen as a trade-
off between dynamic fidelity (i.e., a higher number of states
gives a more accurate representation of speech movements),
database size (i.e., the number of states must be much less
than the number of samples in the dataset), and processing
time (i.e., more states take longer to produce a global
alignment). An N × N binary transition matrix, T , is also
constructed with each element Ti, j containing 0 to indicate
connected states and ∞ to indicate unconnected states. A
connection in Ti, j means that a frame from the captured
dataset classified in state i is followed by a frame classified in
state j. Given that states are clustered on both position and
velocity, the transition matrix is an implicit constraint upon
the second derivative (acceleration) of speech lip movements.
Note that this model is entirely built on the space of visual
movements; that is, this is the opposite to models such as
[18] where the state-based model is initially trained on the
audio data. Each of our states will correspond to a range
of possible audio parameters. In fact, the range of possible
audio parameters that correspond to a single dynamic state
can be widely distributed across the space of all speech audio.
This is problematic for a probabilistic HMM approach that
models these distributions using Gaussian Mixture Models
(GMMs) and has an underlying assumption that they are
relatively well clustered. Instead, we consider each example
within a state to be independent rather than a part of a
probabilistic distribution and use the best available evidence
of being in a state to traverse the model and generate a
synthetic trajectory. The choice of using a binary transition
matrix (i.e., not probabilistic as in a HMM) also means that
transitions which occur infrequently in the original data are
equally as likely to be traversed during synthesis as those
which are common. In this way we increase the importance
of infrequent sequences, maximising the use of the captured
data. The structure of the state model is constructed as a
preprocessing step using the entire dataset.

To generate a trajectory from the state-based model we
use a dynamic programming approach similar to Viterbi,
albeit to calculate a path using a minimum aligned dis-
tance criteria and not maximum probability. The algorithm
proceeds by calculating a state distance matrix Sd of size
L × N (i.e., number of frames in the target utterance ×
number of states). Each element Sdi, j contains the minimum
Euclidean cepstral distance between the ith frame of input
data to all the contextually relevant frames in state j. Here
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a frame from state j is considered only if it is from one of
the previously selected units which bracket frame i (i.e., the
selected left-right phonetic context of the frame). Because
of this the distance between a frame of audio data and a
state will change according to its phonetic context in the
target utterance. This optimises the mapping from audio to
visual parameters according to the selected units. If we have
a sequence of P phonemes, this is similar to training P − 1
models, one for each phoneme-phoneme transition in the
sequence, during synthesis (i.e., not as a preprocessing step).

Each element of Sd, Sdi, j , is a minimum distance value
between a window surrounding the ith frame of audio
data from the target utterance and each of the contextually
relevant examples in state Sj . We use a window size of 5
frames to perform this distance calculation, multiplied by a
Gaussian windowing function, γ(n) = (1/

√
2π)exp(−n2/2), to

emphasise the importance of the central frame. The distance
function, dist, between an input window of audio data, u, at
time i, and a state in the context of its left and right selected
units, Slrj , is defined in (2) where each v is a window of audio
frames, centred at time k, from either the left or right selected
units at this point in the sequence (i.e., where v ∈ Slrj ).
The x and y are individual frame samples from each of the
windows, u and v, respectively,

ui =
{
γ(−2)xi−2, . . . , γ(0)xi, . . . , γ(2)xi+2

}
,

vk =
{
γ(−2)yk−2, . . . , γ(0)yk, . . . , γ(2)yk+2

}
,

Sdi j = dist
(
ui, Slrj

)
= min

{√
(ui − vk)2

}
, ∀vk ∈ Slrj .

(2)

To calculate the optimal trajectory across the speech
manifold, we perform a simple recursive algorithm to
accumulate distance according to the allowable transitions
in T . The accumulated distance matrix, SD, is calculated
according to the recursion in the following equation:

SDi, j = min
{
SDi−1,k + Tk, j + Sdi, j

}
, k ∈ [1,N]. (3)

This recursion is virtually identical to the Viterbi algo-
rithm (when using log probabilities), the difference being
that Viterbi is probabilistic whereas here we are simply accu-
mulating distances and only use a binary transition matrix.
Equation (3) is a simple distance accumulation operation
with the transition matrix ensuring that transitions between
states can only occur if that transition was seen in the original
dataset. The minimum distance to a state at frame L identifies
the optimal alignment. By maintaining back-pointers the
sequence of states can be traced back through SD.

One problem with the proposed method is that by
only selecting the best units for training the state-based
model, there is a possibility that the model cannot transition
between two neighbouring selected units. This could occur,
for example, if the context for the selected units means that
the boundaries are very far apart. Constraints on the size
of database we can capture means that it is impossible to
store exemplars for all phonemes in all contexts. Thus a back-
off solution for this problem is used. The point at which
the model has failed to transition is simple to find, given

that SD will contain ∞ for all columns past this point. We
can add examples from the dataset, in order of similarity to
the target audio which will weaken the initial constraint on
which parts of the speech manifold can be traversed. This
is done by selecting the next most similar unit for the left
and right context at this point in the sequence and adding
the frames from these examples to each of the Slr context
states. So the Slr are initially trained on the two most similar
phones for the context, then four, then six, and so forth until
the algorithm can pass through the segment. In practice,
this is an infrequent problem and this solution does not add
greatly to the complexity of the algorithm (given that we have
already calculated a ranking of similarity between each input
segment and all relevant stored examples).

The output at this stage of synthesis is a sequence of
states, where each state is characterised by a distribution
of visual parameters. Given that for each state we have a
distribution of positions and velocities for the lips, we use
Brand’s [18] approach for deriving a continuous trajectory.
Each state has a mean position μi and velocity μ′i as well
as a full-rank covariance matrix Ci relating positions and
velocities. For a sequence of states, S = {S1, . . . , Si, . . . , SL},
and frame parameters Z = {z1, . . . , zi, . . . , zL}T (where zi is
a vector containing both the position and velocity at time i)
this can be formulated as a maximum likelihood problem:

Z∗ = arg max
Z

log
∏

i

N
(
z̃i;CS(i)

)
. (4)

In (4) N (z;C) is the Gaussian probability of z̃ according
to the state covariance matrix C where z̃ is mean centered.
The optimal trajectory, Z∗, of this formulation can be found
by solving a block-banded system of linear equations. The
output is a continuous trajectory of parameters, which yields
a smooth animation of lower facial movement of the same
form seen in our database (see Figure 6 for examples of the
output 3D meshes from synthesis). Processing time for the
sentences from our dataset, including both model building
and synthesis, was in the range 30–50 seconds, depending
upon the length of the target utterance. Figure 4 shows
several examples of synthesised trajectories next to the real
data for utterances in the dataset (the sentences were held out
of the training set for synthesis). Section 5 discusses how this
is turned into a photoreal animation of a speaker for display.

5. Animation

Each frame of output from the synthesis procedure outlined
in the previous section is a 3D surface scan of the same form
tracked in the original data (i.e., geometry of the lower face).
This means that we only have surface detail for the region of
the face bounded by the tracked markers. Because markers
cannot be placed in regions of shadow or where occlusions
may occur, we do not have geometry for the region between
the neckline and the jaw. Also, as the colour texture from
the dynamic scanner contains markers, it is impractical to
use for display. For these reasons we need to supplement the
data originally captured to produce a photorealistic rendered
animation. Note that the synthesis results from the previous
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Figure 4: Comparison of synthesised trajectories using our
approach (blue) and real data (red) for the first dimension of the

PCA model �X .

section are used to animate the lower face, and the following
model is used only to integrate this into a full face model.

In the animation results, jaw rotation is modelled using a
3D morph-target model. Scans from a static surface scanner
are used to model a 1D jaw rotation parameter; that is, in-
between shapes are taken as an alpha-blend between two
extrema (shown in Figure 5). Generally this is inadequate, in
[33, 34] the 6 degrees-of-freedom of the jaw are examined in
detail, but for our purposes where only speech movements
of relatively low amplitude are being synthesised a single
degree-of-freedom has been found to be adequate (i.e., the
join between the synthesis results and the jaw model is not
noticeable). It is important to note that the original captured
data includes the actual motion of the jaw, and this 1D model
is only intended to fill in the region beneath the jawline
to prevent a discontinuity in the rendered results. The jaw
model is fitted to the synthesis results by performing a 1D
line search to find the position at which the jawline of the
synthetic lower face geometry fits that of the jaw model. The
function, f (α), which defines the goodness of fit of the jaw
model given a particular interpolation parameter, α, is shown
in the following equation:

f (α) =
∑

i

si −
(
α · t0

i + (1− α) · t1
i

)
, α ∈ [0, 1]. (5)

In this equation the si are the jawline vertices for a frame
of the synthesised lower face geometry, and the t0

i and t1
i are

the matching vertices of the jaw model for the two extrema

Figure 5: Jaw rotation morph targets.

Figure 6: Rendered frames and generated 3D meshes (in red boxes)
for the utterance “Morphophonemic rules may be thought of as
joining certain points in a system”.

(closed and open, resp.). Newton’s method with derivatives
calculated by finite differences is used to find the minima
of (5), which is adequate as there is only a single minima
within the range α ∈ [0, 1]. For the purposes of fitting the
jaw model it is important that the jaw extrema are chosen
such that they bracket the range of speech movements during
normal speech.

The results shown in this paper are produced by warping
a single image using the synthetic mouth data and the fitted
jaw model. This is done using a layered model where the
image is progressively warped at each level to produce each
output frame. The optimal projection of the jaw model
into the image plane is calculated along with the nonrigid
alignment with facial features in the photograph; using this
information the image can be warped to fit the required jaw
rotation. The synthetic mouth data is simply overlayed on
top of the jaw animation using a second image warping oper-
ation. This is similar to the work of [35], albeit our model is
purely 3D. Because the image itself is not parameterised, as in
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Table 3: The mean and variance of responses for the naturalness evaluation study; the three cases are real data playback (μreal, σ2
real), synthetic

trajectories using the technique described in this paper (μsynth, σ2
synth), and synthetic trajectories using viseme interpolation (μinterp, σ2

interp).

Subject μreal σ2
real μsynth σ2

synth μinterp σ2
interp

Subject 1 3.45 1.11 2.95 1.37 2.63 1.95

Subject 2 4.00 0.85 3.22 1.13 2.14 0.69

Subject 3 3.55 0.74 2.90 1.51 1.73 0.87

Subject 4 3.84 0.62 3.11 0.85 3.07 0.44

Subject 5 3.32 0.79 2.73 0.39 2.27 0.68

Subject 6 3.68 1.17 3.55 0.92 2.64 0.81

Subject 7 4.36 0.43 3.90 0.65 3.13 0.59

Overall 3.74 0.89 3.19 1.09 2.52 1.05

active appearance models [36], we maintain the quality of the
image itself after animation (i.e., we do not get the blurring
associated with such models). Furthermore, because a true
3D model underlies the synthesis; the same technique could
be potentially used on video sequences with extreme changes
in head pose, which is generally problematic for purely 2D
methods (such as [3, 13]). Frames from a synthetic sequence
for the sentence “Morphophonemic rules may be thought of as
joining certain points in a system” are shown in Figure 6.

The major problems in the animation of our model are
the missing features, in particular the lack of any tongue
model. Ideally we would also animate the articulation of the
tongue; however, gathering dynamic data regarding tongue
movement is complex. Our capture setup does not currently
allow this, and image-based modelling of the tongue from
photographs yields parameters poorly suited to animation.
Were we to include head movements, eye blinks, and other
nonarticulatory motions, this would inevitably lead to a great
improvement in the naturalness of our output animations.
Improvements could be achieved; yet the current system is
focused upon creating natural lower facial for speech and
would only be a part of a full facial animation system.

6. Evaluation

A short evaluation study has been conducted to determine
the quality of the rendered animations. Seven subjects (with
no special prior knowledge of the experimental setup) were
shown synthetic sentences in several categories: (1) real data
played back using the animation system (see Section 5);
(2) animations generated using the model described in this
paper; (3) animations generated using a technique which
interpolates viseme centres. The interpolation method we
use selects context-viseme examples from the dataset to
match the phonetic transcription of the target utterance.
These centres are interpolated using C1 continuous Catmull-
Rom splines to produce a continuous trajectory. The three
different cases are each rendered using the same technique
to remove any influence of the method of display on
naturalness. Each animation consisted of three repetitions
of a single sentence with natural audio, and the subject was
asked to mark the quality of the animation on a 5-point
scale from 1 (completely unnatural) through to 5 (completely
natural). In total 66 sentences were presented to participants,

22 sentences repeated for each of the cases. The sentences
selected for evaluation were taken from a 2-minute segment
of recorded TIMIT sentences not used in training the model.
These sentences were selected randomly and contained no
overlap with the training set. The intention was to evaluate
the quality of generated synthetic trajectories, whilst not also
implicitly evaluating the quality of the animation technique
itself. The playback of real data provides a ceiling on the
attainable quality; that is, it is likely not possible to be
more-real-than-real. Furthermore, the viseme-interpolation
method is the lowest quality technique which does not
produce entirely random or “babbling” speech animations.
In this way we attempt to find where between these two
quality bookends our technique falls. The results of the study
for individual participants and overall are summarised in
Table 3.

As expected overall and individually participants rated
our method better than simple viseme interpolation. Gen-
erally, our technique came out as a mid-way point between
the real and interpolated sentences. Furthermore, in some
cases our technique was rated equal in quality to the
equivalent animation from the real data, although this
was for a minority of the sentences. The most obvious
difference between our technique and the real motions is
overarticulation. Our trajectories tend to articulate all the
syllables in a sentence, whereas real speech tends to find a
smoother trajectory. Having said this, our method does not
overarticulate to the degree seen in the viseme-interpolation
case, and the state-based model ensures that there is a
strong constraint on how the lips move. Several subjects
commented that the smoothness of the animation was a
major factor in determining the naturalness of an animation.
Potentially moving to a syllabic unit basis (or a multiscale
basis, e.g., phoneme/triphone/syllable combined) may yield
this smoothness, yet with the drawback of a much larger data
capture requirement.

It is also worth noting that the results of our technique
are quite variable, as is the case with most data-driven
techniques. If an appropriate exemplar is not available in the
database then the result can be a poor animation. It only
takes a problem with a single syllable of a synthetic sentence
to leave a large impact upon its perceived naturalness. Again
this is most likely a problem of database size, notably audio
speech synthesis databases are often far larger than the
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8 minutes/103 sentences that we use as the basis for our
system; however, the problem of capturing and processing a
large corpus of visual speech movements needs to be solved
to address this issue.

7. Summary and Discussion

In this paper we describe a hybrid technique for the synthesis
of visual speech lip movements from audio, using elements of
both unit selection and a global state-based model of speech
movements. The underlying data for our system is captured
surface movements for the lips and jaw gathered using a
dynamic face capture system. By using dense surface data
we are able to model the highly complex deformations of
the lips during speech to a greater degree of accuracy than
traditional capture techniques such as motion-capture and
image-based modelling. From this data a speech manifold
is recovered using dimensionality reduction techniques; this
manifold demonstrates a strong structure related to the
cyclical nature of speech lip movements. Our state-based
model is constructed according to the clustering of data on
this manifold. At synthesis time phonetic units are selected
from the stored corpus and used to cull possible paths
on the speech manifold and reduce the ambiguity in the
mapping of audio speech parameters to visual speech lip
movements. A Viterbi-type algorithm is used to determine
an optimal traversal of the state-based model and infer a
trajectory across the manifold and therefore a continuous
sequence of lip movements. We generate animations using a
layered model which combines the synthetic lip movements
with a 3D jaw rotation model. The animations deform an
image-plane according to the 3D speech lip movements
and therefore create photorealistic output animations. A
short perceptual study has been conducted to determine the
quality of our output animations in comparison with both
real data and simple viseme-interpolation. The results of
this study indicate that in some cases our technique can be
mistaken for real data (i.e., the naturalness is ranked equal or
higher then the equivalent real movements), but in general
the quality lies somewhere in-between the two extremes. In
terms of evaluation this is not specific enough to truly define
the quality of the technique, and further experimentation is
required to compare with other existing techniques available
in the literature.

The resulting animations are certainly far from perfect;
we can see clearly from Figure 4 where the generated
trajectory diverges from the real signal. It is worth noting that
techniques driven entirely or partially (as is the case here)
from audio tend to lag behind the quality of target driven
techniques. This may be due to several factors, ranging from
issues related to the capture of large visual speech databases
to problems with the ambiguity in mapping from audio to
visual trajectories. Visual speech databases, particularly in
3D, are far more difficult to capture than audio corpora.
This is in large part due to the camera equipment used to
capture facial movement, which in our case leads to restricted
head movement (i.e., due to the size of the capture volume)
and the need to place markers on the skin to get temporal

registration. Any capture of this form is not going to get truly
natural speech due to the intrusive nature of the setup, which
may be a factor in the quality of our synthetic lip movements.
Furthermore, the physical size of 3D databases and the time
required to capture and reconstruct consistent data is a
limiting factor in the size of our captured corpus. Eight
minutes of data are small when compared to databases that
are commonly used in speech analysis, and there is certainly
an issue with sparsity when synthesising an utterance with
our technique. With a data-driven approach missing data
is a difficult problem to tackle, except with the obvious
method of capturing more data. It is our hope that with
the development of 3D capture technology these issues will
be reduced, which will increase the viability of using surface
capture technology for speech analysis and synthesis. Lastly,
ambiguity in the mapping from audio to visual movements
is also significant. We have found that it is generally true
that clustering in the common audio parametric spaces (e.g.,
MFCC, PLP, etc.) does not lead to tight clusters in the
visual domain, and vice versa when clustering in the visual
domain. This is a fundamental problem and the motivation
behind combining unit selection into the technique pre-
sented in this paper. However, this may be an issue with
how we parameterise speech audio itself. These parametric
spaces seem to serve speech recognition well, where we are
decomposing a signal into a discrete sequence of symbols
but may be less appropriate for generating continuous speech
movements. There is a great deal of information within the
audio signal which is not relevant to animating visual speech
movements, for example, the distinction of nasalised or
voiced sounds. There may also be information missing, such
as information regarding respiration, which is important in
producing realistic speech animations. It is obvious that the
representation of the audio signal is key in determining the
quality of animation from techniques such as our own, and
perhaps research is required into the joint representation of
speech audio and visual movements to reduce the ambiguity
of this mapping.

Generating truly realistic speech animation is a very
challenging task. The techniques described in this paper
demonstrate the quality of animation that are attained when
real lip movements can be used to infer the task space
of speech production. Potentially capture techniques will
advance such that more complex interactions between the
lips and teeth can be captured (e.g., the f-tuck) which are
not well modelled in the reported approach. However, this is
only a part of the problem. To get truly natural characters we
need to extend our models to full facial movement, to blinks,
nods, and smiles. It is difficult to drive the movement of
the articulators using the information embedded in a speech
audio signal, let alone the complex emotional behaviour
of a character. Yet this is the outcome that a viewer is
looking for. Naturalness is perceived globally with regards
to the movement of the entire face, and indeed body; this
hampers current models which treat speech animation as an
isolated part of human behaviour. It is probably the case
that the next breakthrough in generating truly naturalistic
synthetic facial animation will come as a result of a holistic
approach to the modelling of behaviour, as opposed to
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the piecemeal approaches commonly seen. Advances have
currently been made as a result of data-driven modelling,
as in this paper, and these approaches can yield convincing
results. The drawback to such approaches lies in data capture;
is it possible to capture truly comprehensive databases across
speech and emotion? This is a huge problem that must be
addressed if we are to reach the next level in purely synthetic
character animation.
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