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Speech recognition applications are known to require a significant amount of resources. However, embedded speech recognition
only authorizes few KB of memory, few MIPS, and small amount of training data. In order to fit the resource constraints
of embedded applications, an approach based on a semicontinuous HMM system using state-independent acoustic modelling
is proposed. A transformation is computed and applied to the global model in order to obtain each HMM state-dependent
probability density functions, authorizing to store only the transformation parameters. This approach is evaluated on two tasks:
digit and voice-command recognition. A fast adaptation technique of acoustic models is also proposed. In order to significantly
reduce computational costs, the adaptation is performed only on the global model (using related speaker recognition adaptation
techniques) with no need for state-dependent data. The whole approach results in a relative gain of more than 20% compared to a
basic HMM-based system fitting the constraints.
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1. Introduction

The amount and the diversity of services offered by the
latest generation of mobile phones (and similar embedded
devices) has increased significantly during the last decade,
and these new services are considered as crucial points by the
manufacturers in terms of both functionalities and market-
ing impact. At the same time, the size of such devices has
been reduced considerably, limiting the usability of the most
complex services that could be embedded. Moreover, the use
of hands and/or eyes is sometimes required by classical input
mechanisms, forbidding the use of a mobile device when the
attention should be focused on other activities. Voice-based
interfaces provide a friendly human-computer interaction
medium in mobile environments, freeing hands and allowing
a rich interactivity between human and compact devices.

Embedded speech processing has been largely investi-
gated in the two last decades, both on industrial and research
aspects. The major difficulties faced in an embedded imple-
mentation are caused by the limitations in the hardware-
resources available, and by the variability of the contexts
where the system may operate. This last issue has been
tackled in the more general framework of automatic speech
recognition (ASR) system robustness; most of the proposed

methods operate at the signal level or at the acoustic
model level. Front-end based techniques focus on the noise-
reduction problem, by performing echo cancellation, noise
substraction, and so forth. At the model level, the acoustic
variability is considered as a more general issue, including
but not limited to environmental noise, speaker variability,
and speech style diversity (spontaneous and/or interactive
speech). Most of the recent advances in acoustic modelling
rely on the integration of sophisticated techniques such
as discriminative training, vocal tract normalization, or
multiple system combination. Nevertheless, the relevance
of training corpora remains a key point for the accuracy
of the acoustic models, and recent state-of-the-art sys-
tems generally use huge amounts of materials for acoustic
training. DARPA evaluations demonstrated the efficiency of
these approaches for Large Vocabulary Continuous Speech
Recognition (LVCSR).

Although significant improvements can be made through
use of relevant training corpora, it cannot be expected that
the varying environment of a mobile device can be fully
modelled by any closed corpus. A further consequence of the
extensive approaches for acoustic modelling is the increase
in computing resource requirements, especially memory
footprint: classical LVCSR systems rely typically on acoustic
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FIGURE 1: An overview of the proposed architecture. For state x, the state-dependent GMM (GMMx) is obtained by applying the

transformation function T, to the state-independent GMM.

models that are composed by more than 10 million free
parameters and 60 K words in the lexicon. In spite of the
recent advances in hardware technology, light mobile devices
are not able to carry such complexity, and embedded speech-
based functionalities have to be limited in order to satisfy the
cost and hardware limits.

Research on embedding speech processing systems on
small devices has been active for a long time. While strong
advances in hardware technology have appeared, system
requirements and user needs have progressed simultane-
ously. Therefore, hardware advances induce a scale change
but fundamental issues, concerning the hardware capacities,
remained.

Several architectures have been proposed for reducing the
memory footprint required by the acoustic models. Vector
Quantization (VQ) was introduced 25 years ago [1, 2],
initially in the field of information encoding for network
traffic reduction. VQ is a very low level approach. Our focus
in this paper is on the modification in the modelling scheme
to achieve memory footprint reduction. Moreover, VQ could
be combined with the proposed modelling approach without
any problem. In [3] a subspace distribution clustering
method was proposed. It consists of splitting the acoustic
space into streams where the distributions may be efficently
clustered and tied. This method has been developed within
several contexts, demonstrating a very good tradeoff between
storage cost and model accuracy. Most of the recent ASR
systems rely on Gaussian or state sharing, where parameter
tying reduces computational time and the memory footprint,
whilst providing an efficient way of estimating large context-
dependent models [4-6]. In [7] a method of full Gaussian
tying was proposed. It introduced Semi-continuous HMMs,
for LVCSR tasks. In this architecture, all Gaussian compo-
nents are grouped in a common codebook, state-dependent
models being obtained by Maximum LikeLihood Estimation
(MLE) based selection and weighting of the dictionary

components. Numerous methods have been developped
starting from this technique [8-10], mostly for hardware-
limited devices.

In this paper, we present a new acoustic-model archi-
tecture where parameters are massively factored, with the
purpose of reducing the memory footprint of an embedded
ASR system whilst preserving the recognition accuracy.
This factoring relies on a multi-level modelling scheme
where a universal background model can be successively
specialized to environment, speaker, and acoustic units. We
propose various morphing functions for this specialization
and evaluate the corresponding memory footprint reduction
rates, accuracy and adaptation capacities. The performance
and acoustic adaptation of the proposed approaches are
investigated in various conditions within the general scheme
of embedded speech recognition systems.

The next section presents an overview of our acoustic
modelling architecture. Section 3 describes the corpora used
for system training and testing. In Section 4, we define
the application constraints targetted in this task and we
present some baseline systems (obtained using classical
LVCSR system). All steps of the proposed architecture
are detailed in Section 5. Acoustic adaptation issues are
discussed in Section 6. Finally, we conclude and we present
some perspectives.

2. The Proposed Approach: Overview

HMM (Hidden Markov Model) based acoustic modelling
for LVCSR usually consists in identifying and training a
large set of HMMs which model various context-dependent
acoustic units. This approach builds an exhaustive repre-
sentation of the acoustic space, but significant amounts
of information may be duplicated in overlapped state-
dependent GMM (Gaussian Mixture Model). We propose
to reduce significantly the memory footprint of the models
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by using an acoustic model with two levels (¢f. Figure 1).
The first level attempts to represent the entire acoustic space
with a unique single GMM (the state-independent GMM)
shared by all HMM states (whithout considering phonetic
or linguistic structures). The second level corresponds to a
set of transformation functions that allows for the modelling
of phone-dependent information. It is shared by all state-
dependent GMM:s while preserving the topology of classical
HMMs.

With this architecture, the global complexity of the
acoustic models depends not only on the GMM, but also on
the complexity of the state-dependent transformations.

Two kinds of morphing functions where evaluated for
mapping the initial word model to state-dependent ones:

(i) the first function is similar to that used in Semi-
Continuous; whereas in SCHMM-based approach,
one reestimates the weight with a MLE criterion, we
propose two other discriminative criteria;

(ii) the second morphing function is based on a linear
transformation of the mean parameters before a
weight reestimation.

Both morphing functions are compared to the tradi-
tionnal HMM-based approach in Sections 5.4.1 and 5.4.2.
Baseline and proposed approaches have the same memory
footprint when there are compared.

To further reduce the number of parameters, a Gaussian
selection for each state of the HMMs is performed. This
technique is often used for embedded systems [11, 12].

More details about the proposed architecture are
explained in Section 5.

3. Corpora

The availability of relevant databases for model training is a
critical point for ASR systems design. Usually, application-
dependent corpora are not large enough to estimate accurate
models and a frequently used strategy consists in training
models on a large but generic database and adapting them
to the targeted context. Adapting this approach, we first
use a task independent corpus, BREF [13], and two task
dependent databases corresponding, respectively, to isolated
digits in a clean environment (BDSON corpus [14]) and
voice commands in a noisy environment (VODIS corpus
[15]). These corpora are described in depth in the next
section.

3.1. Application Independent Corpus

BREF. BREF [13] is a relatively large read speech corpus
composed of sentences selected from the French newspaper
Le Monde. It contains about 100 hours of speech material
from 120 speakers. This corpus is considered as application-
independent. It is only used for training generic models
whereas BDSON and VODIS corpora are related to specific
acoustic and operational environments.

3.2. Application Dependent Corpora

BDSON. BDSON [14] is a French database composed of
recordings of isolated digits from 30 speakers (15 male and
15 female speakers). Recordings are performed in a clean
acoustic environment. The file set was divided in two parts:

(i) one part for the application-context adaptation
(BADAPT): it includes 700 digits uttered by 7
speakers (4 male and 3 female speakers); this set is
used for adapting the baseline HMMs and the state-
independent GMM to the application context. This
phase is done once and we denote BDSON-models as
the models issued from this process,

(ii) the second part for testing (BTEST): composed of
2300 digits uttered by 23 speakers (11 male and 12
female speakers).

The performance is evaluated on a digit recognition task
in terms of Digit Error Rate (DER), where the digits are
considered as words (i.e., no specific adaptation of the system
is done, like reduction of the number of phoneme models).

VODIS. VODIS [15] is a French corpus dedicated to
automotive applications. It includes recordings from 200
speakers. It contains a large variety of data: letters, digits,
vocal commands, and spelled words. Recordings are made
with close-talk and far-talk microphones. The acoustic
environment varies for every recording session (three cars,
the window is opened or closed, the radio is turned on
or off, the air conditioner is turned on or off). We use
only the subset containing the voice commands (70 different
commands are present in this subset), under the close-talk
condition. This corpus was divided into two parts:

(i) one part for the application context adaptation
(VADAPT): it includes 2712 commands uttered by 39
speakers;

(ii) the second part for testing (VTEST): composed
of 11136 utterances of commands uttered by 160
speakers.

As we performed voice command recognition the eval-
uation measure used is the Command Error Rate (CER).
The speakers of BADAPT and VADAPT, respectively, are
different from the speakers of BTEST and VTEST (and are
also different from the BREF speakers).

4. Baseline Systems

In this section, we investigate the impact of the macro-
parameters on the system performance and compactness
without changing the topology of the HMM. Two system
profiles are defined to match the typical hardware resources
available on mobile phones; a very compact model, cor-
responding to an upper-limit memory foot print of 6000
free parameters, and a compact model, providing 12000 free
parameters. We built various models by tuning the number
of Gaussian components per state and the acoustic space
dimensionality.



TasLE 1: Evolution of DER and acoustic-model size according to the
number of Gaussian components per state (context-free models).
The acoustic vectors are composed of 39 coefficients (12 PLP plus
energy with A and AA). 2300 isolated-digit recognition tests were
performed on the corpus BDSON (digit/clean).
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TaBLE 3: DER and acoustic model size according to the number of
Gaussian components per state (context-free models). The acoustic
vectors are composed of 13 coefficients (12 PLP plus energy).
2300 isolated-digit recognition tests were performed on the corpus
BDSON (digit/clean).

No. of gauss/state No. of parameters DER
2 17 064 1,48%
4 34128 0,96%
128 1092 096 0,96%

TasLE 2: Evolution of CER and acoustic-model size according to the
number of Gaussian components per state (context-free models).
The acoustic vectors are composed of 39 coefficients (12 PLP plus
energy with A and AA). 11136 tests performed on the corpus
VODIS (voice command/noisy).

No. of gauss/state No. of parameters CER
2 17 064 5,48%
4 34128 3,40%
128 1092 096 1,80%

In this paper, the features extracted from the speech
signal is the Perceptual Linear Predictive (PLP—[16]) coef-
ficients. Regarding the literature (e.g., [17]), Mel Frequency
Cepstral Coefficients (MFCC—[18]) are both used.

For an HMM system, the estimation of the number of
parameters can be done using the equation

nb_gauss * nb_emst * (2 * nb_param + 1), (1)

where nb_gauss is the number of Gaussian in each state-
GMM, nb_emst the number of emitting states, and nb_param
the dimension of the acoustic parameters vectors.

4.1. Reducing the Number of Gaussians per State. Starting
from a classical HMM-based model for speech, we study how
the number of Gaussians impacts the system performance.

A first set of experiments is performed on the clean
corpus BDSON. Table 1 presents the evolution of the Digit
Error Rate (DER) according to the model size. Using
128 Gaussians per state achieves a DER of 0.96%, which
corresponds to error rates reported in previous literature (see
[2, 3]). Reducing the number of states results in an increase
in DER to 1.48% for the smallest 2 Gaussian per state model,
whilst the size of the acoustic model is decreased by a factor
of 60.

In Table 2, we show the evolution of the CER according
to the number of components of each emiting-state. The
acoustic model is first trained with BREF and then an adap-
tation (MAP—(19]) is performed on the subset VADAPT of
VODIS. Table 2 shows the performance on the noisy VODIS
corpus. In this table, for the 2 Gaussians per state model, we
observe a CER increase from 1.80% (which corresponds to
the average error rate reported in the literature—[20, 21] or
[22]) to 5.48% while the number of parameters is decreased
by a factor of 60.

No. of gauss/state No. of parameters DER
2 5832 4,96%
4 11 664 4,43%
128 373 248 4,52%
full 1092 096 0,96%

TaBLE 4: Evolution of CER and acoustic model size according to the
number of Gaussian components of the emiting states (context-free
models). Acoustic vectors are composed of 13 coefficients (12 PLP
plus energy). 11136 voice-command recognition tests performed on
the corpus VODIS (voice command/noisy).

No. of gauss/state No. of parameters CER
2 5832 5,80%
4 11 664 4,80%
128 373248 3,94%
full 1092 096 1,80%

This first step allows to reduce the acoustic-model size
by a factor of 60. Nevertheless this decrease is not enough,
considering the memory space limits previously described:
6000 parameters and 12000 parameters, respectively.

4.2. Reducing the Feature-Vector Size. Starting from the
2 Gaussian-per-state models presented in the Section 4.1,
further steps were taken in order to reduce the memory
footprint by removing the first and second order derivatives.

Table 3 shows the influence of dynamic features (first and
second order derivatives) using the clean corpus (BDSON).
The DER raises from 0.96% (without any model reduction)
to 4.96% for the very compact model. This 4% absolute
increase leads to a reduction by a factor of 190 of the acoustic
model size.

The same technique evaluated on VODIS results in
similar behaviour. Since the intial model obtained 1.8% CER,
the removal of first/second order (A and AA) derivatives
leads to an absolute CER increase of about 2%. Finally,
by using only static parameters (13 PLP coefficients) and
2 Gaussians (resp., 4 gaussian components) per state, the
model size is divided by 180 (resp., 90) with respect to the
targeted constraints and the accuracy loss is about 4% CER
(resp., 3%).

The performance achieved using these reduced HMM
representation act as baselines for the remains of this article.
For the very compact model (5832 parameters) the baselines
results are set to 5.80% with VODIS and to 4.96% with
BDSON. Baselines performance obtained using the compact
model (11664 parameters) are 4.80% for VODIS and 4.43%
for BDSON.

Data-analysis-based methods, such as HLDA, are com-
monly used in LVCSR systems. However, it seems difficult to
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FIGURE 2: Process to obtain the state-independent GMM.

apply it in our experimental framework where only a small
application-dependent corpus is available. We could estimate
the transformation matrix on the generic corpus but we have
also to adapt it to the task-dependent corpus. Some methods
may be used for that, but or goal, at this point, was mainly to
report baseline results of a classical method.

5. The Approach Proposed: Details

As explained in Section 2, our method is based on a two
level architecture to model the acoustic units. The first level,
the state-independent GMM, models the whole acoustic
space. The second level consists of a set of state dependent
transformation functions that model the phone dependent
acoustic specifications.

The next subsections describes the method used for
the state-independent GMM training and the two different
classes estimating of the state-dependent morphing func-
tions.

5.1. Training the State-Independent GMM. The state-inde-
pendent GMM is derived from a classical HMM by grouping
all the Gaussian components of each HMM state in a
single codebook. Then, to obtain the targeted number
of components, the closest Gaussians are merged. Lastly,
weights are reestimated in order to get a GMM from the
codebook. This sequence of steps is illustrated in Figure 2.

The first step consists of training a classical HMM. We
used a set of 38 French phonemes and a classical 3-state
left-right HMM topology. These HMMs are then adapted
by using the appropriate adaptation subset (resp., the subset
BADAPT for the BDSON corpus, and the VADAPT set for
VODIS).

This inital HMM is used to build a preliminary GMM.
It is obtained by grouping all the Gaussian components in
a large GMM. At this point, all components are equally
weighted.

Finally, this GMM is reduced by hierarchically merging
the closest Gaussian pairs; we use the minimum likelihood
loss criterion to identify the best Gaussian pairs. The number
of expected Gaussian components is obtained using (4) and
(22) according to the morphing functions used.

The distance between two components N; (41, 21, ¢;) and
No (U2, 22, ¢2) is defined by:

! VZ (%) VZ
D(eN], e/VZ)— cito log(\/Z) + ato log(\/zfz>, (2)

where ¥ corresponds to the variance of the Gaussian
component that stems from N, and N, as defined by (3).

The Gaussian g'(c’,u’,Y"), results from merging
gi(ci, ui, Z;) and gi(cj, uj, Z;), is defined by

¢ =c+cj

P GiKHECR Y

>

Cit¢j
Ci Cj C,‘*Cj tr
3= i+ : (= ) (i = )
. . . i 2\ 7 ! 1)
Citc¢j Cit¢j (ci+cj

(3)

The last step consists of reestimating weight and mean
parameters of each component, in order to obtain real
GMMs and not only a codebook of Gaussians. This is
achieved classically by likelihood maximization with the
Expection-Maximization (EM) algorithm (see [23]).

5.2. Weight Reestimation—WRE. This approach estimates
the state-dependent weight vectors from the state-
independent GMM and an HMM-based frame alignment.
Then, each state is represented by the state-independent
GMM component set and by its specific weight vector. Three
criteria are used for this weight reestimation:

(i) maximum Likelihood Estimation (MLE),

(ii) discriminative training by Frame Discrimination
(FD),

(iii) fast Discriminative Weighting (FDW) which relies on
a fast approximation of FD.

For the WRE approach the estimation of the parameters
number is done using this equation:

nb_gauss * 2 * nb_param + nb_emst * nb_sel_gauss,  (4)

~

state—indepe;ldent GMM Gaussian weights

where nb_gauss is the number of Gaussian in the state-
independent GMM, nb_param the dimension of the acoustic
parameters vectors, nb_emst the number of emitting states
and nb_sel_gauss the number of selected Gaussians (Gaussian
components are selected by highest weight). This last
parameter is set to 20 for the very compact model and to 30
for the compact model.



In (4) the parameters nb_param, nb_emst, nb_sel_gauss
are, respectively, set to 13 (only PLP coefficients without any
delta or delta-delta parameters), 108 (due to the French set of
phonemes) and 20 or 30 (depending on the required model
size). So, the number of Gaussian components for the state-
independent GMM is 141 for the very compact model and
324 for the compact one (in order to stay within the 6k and
12 k limitation).

5.2.1. MLE. The estimation of weights (¢j,,) according to the
MLE criterion is achieved by applying the updating rule:

Zxreﬂl Cim * L(xt | G]m)
S e Z;Ll cjm * L(xt | Gjm) )

~

Cim =

(5)

where cj,, is the a priori weight of the mth Gaussian
component of state j; L(x; | Gj,) corresponds to the
likelihood of the frame x; knowing the Gaussian component
Gjm, nj the number of components of state j, and Q; the
training corpus of state j.

Furthermore, the likelihoods of the components from
the state-independent GMM are computed only once, with
the state likelihoods being computed by a simple weighted
combination of Gaussian-level likelihoods.

5.2.2. Discriminative Weighting. Acoustic model estimation
based on the Maximum Mutual Information (MMI—([24])
criterion has been widely studied in the last decade. The
general principle of this approach is to reduce the error rate
by maximizing the likelihood gap between the good and the
bad transcripts. The search of optimal model parameters A is
performed by maximizing the MMI objective function Fy,ic:

Zl PAO |MW)P(Wr)

Emie(A) = 8 PO, | MW)P(W)

(6)

where w, is the correct transcript, M,, the model sequence
associated with the word sequence w, P(w) the linguistic
probabilities and O, an observation sequence. The denom-
inator of the objective function sums the acoustic-linguistic
probabilities of all the possible hypotheses.

One of the main difficulties in parameter estimation is
the complexity of the objective function (and the derived
updating rules) which requires a scoring of all the bad
paths for evaluating the denominator. In order to reach a
reasonable computational cost, several methods have been
presented in the literature. For example, methods based on
phone lattices (see [25]) or specific acoustic model topologies
(see [26]).

In the particular case of our architecture, the sharing of
the Gaussian components over the states could allow a direct
selection of discriminant components. We highlight this
point by developing, in our specific modelling framework,
the frame discrimination method initially proposed in [26].
In this paper, the authors propose to approximate the
objective function denominator by relaxing the structural
constraints on the acoustic models. The resulting weight
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updating process consists in finding the weights Cj,, that
maximize the auxilary function:

yden

~ Ljm o~

F. = Z y;%m log<cjm) - Cim |» (7)
jom m

where 7" and yde" are the occupancy rates estimated,

respectively, on positive examples (corresponding to a
correct decoding situation, noted num) and on negative
examples (den); ¢, is the weight of the component m of state
j at the previous step and Cj,, is the updated weight.

By optimizing each term of this sum while fixing all other
weights, the convergence can be reached in a few iterations.
Each term of the previous expression is convex. Therefore,
the update rule can be directly calculated using the equation:

num

~ Vim
Cjim = L den Cjm> (8)
jm

where yj?m (k can be num or den) is the probability of being
in component m of state j; this probability is estimated on
the corpus Q) that consists of all frames associated with state

Therefore, the occupation rate can be expressed using the
likelihood functions L:

S L(X1S;)  cimL(X | Gjm)
Vim = G LT S) ' L(X | Sj)
( ) (9)
o _ oy, LXIGm)
Yim Xg)kcﬂ" SiLX|S)

By isolating the likelihood of frame X knowing the state
Sk in the denominator, we obtain:

yk _ Z . L(X | Gjm) .
jm MLX | Sk)+zi¢kL(X | Si)

XeOk

(10)

In semicontinuous models, components G,-m are state-
independent.
Let

€= > LIX1S), (11)

itk
then the occupation rate can be formulated as

yir Sxeo (L(X 1 Gim)/(L(X 18)) +¢7))
ylen 30 Yxea(LX | Gr)/(LIX | S) +€1) |

(12)

By assuming € =~ 0, the numerator and the denominator
of the previous rate are reduced to the update function of
classical EM weight estimation. Then, the previous equation
can be approximated by

num
Vim ~ Cim

)/751" Zl Clm

(13)
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By combining this heuristic with (8), we obtain the
weight update formula:
2

~ ij

Cim= <=
m Zlclm

The weight vectors are normalized (in order to obtain a
sum equal to 1) after each iteration.

Thus, this training technique uses the Gaussian sharing
properties of SCHMM to estimate discriminative weights
directly from MLE weights, without any additional likeli-
hood calculation. With respect to the classical MMIE training
scheme, neither a search algorithm nor lattice computation
is required for denominator evaluation. Hence, this method
allows one to perform a model estimate at a computational
cost equivalent to the one required by MLE training.

Nevertheless, this technique is based on the assumption
that €; are state-independent (cf. (12)). The a priori valida-
tion of such an assumption seems to be difficult, especially
due to the particular form of (12), where the €; quantities
contribute at the same time to the numerator and to the
denominator of the cost function.

(14)

5.3. Unique Linear Transformation—ULT. The method
LIAMAP presented in [27] allows to adapt globally the
state-independent GMM for a given state, using a unique
and simple transformation. This transformation (which is
common for both the mean and the variance) is a linear
function:

Ustate GMM = Ofdgnl GMM T B,
) (15)
Zstate GMM = & z:gnl GMM>

where « (which is common for gate vy and Zgate M),
a diagonal matrix, and  are estimated from a linear
approximation of MAP adaptation. This adaptation (as
illustrated in Figure 3) corresponds to the estimation of a
linear transformation between two Gaussians obtained by

(i) merging the Gaussian components of the state-
independent GMM. The final Gaussian is defined by
p and X, respectively the mean and the covariance
matrix,

(ii) adapting the Gaussian components of the state-
independent GMM to state-specific data (using
MAP) and then merging adapted Gaussians into a
unique Gaussian defined by /i and &,

(iii) computing « and f as the parameters of a linear
adaptation between Gaussian N (¢, 2) and Gaussian
N (@ 5).

Each final Gaussian component (defined by its mean u},,
and its covariance matrix X,) is computed as follows:

o = £ (g — ) + i (16)

3 =335, (17)

A

Um> Zm
Trasformation
function
£i0
‘M, Z [7) i

FiGure 3: LIAMAP: Method to estimate a unique linear transfor-
mation for all Gaussians of a codebook.

Equation (16) can be expanded as
= il/zZ’mym _ il/zz—l/zy +.17 (18)
if we set

o= 21/22—1/2’

N (19)
ﬁ _ _21/2271/2‘[4 +‘a’
then (16) and (17) become
o = O + (20)
T = ol (21)

Equations (20) and (21) correspond to a linear adap-
tation function defined only by the vectors a and S (the
transformation is shared by all the Gaussian components of
the state-independent GMM).

Our technique for adaptation is similar to the fMLLR
(feature Maximum Likelihood Linear Regression—(28, 29]),
but it has several advantages: the o parameters of (20) is a
simple diagonal matrix instead of a full matrix, the criteria
used are simpler (just MAP and lost-likelihood), there is no
matrix inversion.

In our context, ULT is used as a first step (optional)
before the weight reestimation. The WRE step (cf. 5.2) is
always performed (using ULT or not). Figure 4 presents the
complete process (ULT+WRE).

The usage of the ULT+WRE approach requires more
CPU consumption compared to WRE (only) method.
Indeed, during the test, before performing likelihood esti-
mation, the ULT+WRE approach requires the estimation of
the GMM parameters of each state, because only the « and
B parameters of the transformation are stored. Moreover,
whilst the ULT+WRE approach requires the estimation of
the likelihoods for each Gaussian component of each state,
the WRE (without ULT)calculates the state likelihood as a
weighted sum of pre-computed Gaussian likelihoods.



EURASIP Journal on Audio, Speech, and Music Processing

LT WRE
o
|
1
Ha> s | et Zst1
I
I
|
1
I
\ : \
1
’ ’ 1 ’ ’
P> 2st2 ! > 22
I
L. I L
1
i
I
i — [
WAL VAN
\ ! \
.M;tn’ Z;tn H;tn’ zgln

FIGURE 4: State-dependent transformation by applying ULT followed by WRE.

For the ULT+WRE approach the estimation of the
parameters number is calculated as

nb_gauss x (2 x nb_param)

state-independent GMM
(22)
+ nb_emst x (2 * nb_param + nb_gauss_sel),

linear transf. & weight

where nb_gauss is the number of Gaussian in the state-
independent GMM, nb_param the dimension of the acoustic
parameters vectors, nb_emst the number of emitting states
and nb_sel_gauss the number of selected Gaussian. This last
parameters is still set to 20 for the very compact model and
to 30 for the compact one.

In (22) the parameters nb_param, nb_emst, nb_sel_gauss
are, respectively, set to 13 (only PLP coefficients without
any delta or delta-delta parameters), 108 (due to the French
set of phonemes) and 20 or 30 (considering the model size
expected). So, the number of Gaussian components for the
state-independent GMM is 33 for the very compact model
and 216 for the compact one (in order to stay under the 6 k
and 12 k limits, resp.).

5.4. Results. The presented approach allows state-models
to be trained directly from a unique GMM (the state-
independent GMM) that represents the whole acoustic space.
This process consists of two steps (ULT and WRE) for which
the influence is highlighted in the two next subsection.

In Tables 5 and 7, we compare the Digit Error Rate of
all methods presented here with the baseline. Tables 6 and 8
present the Command Error Rate obtained on VODIS corpus
(noisy conditions) and results are also compared with the
baseline.

TABLE 5: Results obtained with WRE approach compared to
the baseline system. Digit Error Rate depending on the weight
reestimation rules (MLE, FDW et FD) without ULT. 2300 tests
performed on BDSON corpus (clean).

WRE .
Baseline
MLE FDW FD
Very compact model ~ 3.35% 2.78% 3.13% 4.96%
Compact model 2.83% 2.17% 2.48% 4.32%

TaBLE 6: Results obtained with WRE approach compared with
the baseline. Command Error Rate depending on the weight
reestimation rules (MLE, FFDW and FD) without ULT. 11 136 tests
performed on VODIS corpus (noisy).

WRE ;
Baseline
MLE FDW FD
Very compact model  6.05% 8.54% 5.99% 5.80%
Compact model 5.15% 7.50% 5.15% 4.80%

5.4.1. WRE Approach. With clean data (BDSON corpus),
the WRE approach outperforms, in terms of Digit Error
Rate, the baseline system(cf. Table 5). For the very compact
model, the minimal DER is 2.78% (obtained with the FDW
weight updating rule); to be compared to the 4.96% for the
baseline system, a relative gain greater than 40% is achieved.
Moreover, with the compact model, we note a decrease of
the DER from 4.32% to 2.17% (always with FDW) which
corresponds to a relative decrease of about 50%.

In noisy condition (with VODIS corpus), the baselines
obtain a CER of 5.80% for the very compact model and of
4.80% for the compact model (cf. Table 6).

We can notice that the WRE approach alone does not
allow a decrease of the CER. The best CER reaches 5.99%
(WRE with FD weight updating rule) for the smallest model,
whereas the CER of the baseline is 5.80%.
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TaBLE 7: Results obtained with ULT+WRE approach compared
with the baseline. Digit Error Rate depending on the weight
reestimation rules (MLE and FD) with ULT. 2 300 tests performed
on BDSON corpus (clean).

ULT+WRE .
Baseline
MLE FD
Very compact model 3.04% 3.39% 4.96%
Compact model 2.78% 2.26% 4.32%

TaBLE 8: Results obtained with ULT+WRE approach compared
with the baseline. Command Error Rate depending on the weight
reestimation rules (MLE and FD) with ULT. 11 136 tests performed
on VODIS corpus (noisy).

ULT+WRE .
Baseline
MLE FD
Very compact model 5.25% 5.11% 5.80%
Compact model 4.01% 4.27% 4.80%

For this reason, we introduced a previous step before
WRE which perform an adaptation of the state-independent
GMM before applying the weight reestimation (WRE step).

5.4.2. ULT+WRE Approach. In clean conditions (refering
to Table 7), we can observe that the ULT step does not
allow a DER decrease superior to the WRE alone approach.
Nevertheless, there is a significant decrease of DER compared
to the baseline. Indeed, the DER of the very compact model
is reduced more than 38% (to 3.04% with MLE weight
updating rule) and more than 48% (to 2.26% with the FD
weight updating rule) for the compact model.

Table 8 show results for the case of noisy condition. The
ULT+WRE approach reduces the CER to 5.11% (FD weight
updating rule) for the very compact model. This represents a
relative reduction of around 12% compared to the baseline
(CER at 5.80%). With the upper memory size constraint,
the CER decreases to 4.01% (MLE weight updating rule).
Compared to the 4.80% of the baseline, it corresponds to a
relative reduction of about 16% while the memory footprint
stays unchanged.

5.4.3. Conclusion. In conclusion, the proposed approach
provides an important decrease of the error rates with
clean data (BDSON), with or without ULT and whatever
weight updating rule we used. For very compact model, our
approach reaches a DER between 2.78% and 3.39%. With
the compact model, DER is between 2.17% and 2.83%. This
represents a relative decrease between 30% and 50%.

In noisy conditions, the WRE approach seems not to be
sufficient. The CER obtained with our approach is slightly
worse that the baseline one: the CER loss is about 0.2%
(for the very compact model with FD weight updating rule),
however the DER differences remain inside the confidence
interval. The use of ULT (before WRE) allows Gaussian mean
moving which seems to improve the model robustness.It
permits to be more efficient that WRE approach which
operates only on the weight vector. We noticed that it allows
relative gains between 10% and 15%.

Lastly, since FDW provides great improvements on clean
data, the approximation performed seems not to be robust
to noise. With the VODIS corpus, the weight reestimate is
always better with MLE or FD than with FDW.

6. Fast Acoustic Adaptation

Generally, for speaker/environment adaptation, speech
recognition systems use MLLR [30] and/or MAP [19]
methods. In the literature (e.g., [31]) we can notice that these
techniques allowed an increase of accuracy of around 10%.
In this section, we try to show that our approach have similar
adaptation facilities.

Our architecture requires relatively amounts of data
for estimate acoustic parameters, compared to the classi-
cal HMM-based models. In this approach, the standard
topology of the HMM models is preserved but all the
states are sharing a state-independent GMM that repre-
sents the common acoustic features. This specific model
structure could lead to a new adaptation scheme where
state-dependent and state-independent features could be
separately adapted. Considering the very low amount of data
available for training, state-dependent adaptation seems to
be untractable. However, the shared GMM could be adapted
by using the full adaptation data set. This global adaptation
is based on the following idea: if there is a discrepancy
between a state model and the same state model adapted to
a speaker, then the same discrepancy probably exists between
all the state-models. We will try to highlight this point by
adapting the state-independent GMM without changing the
transformation funtions.

This process, illustrated in Figure 5, is composed of 3
steps:

(1) training phase: the state-independent GMM and the
state-transformations are trained with the develop-
ment data,

(2) adaptation phase: the state-independent GMM is
adapted with a small amount of few data from a
speaker,

(3) testing phase: instead of applying the transformation
on the state-independent GMM, they are applied to
the speaker-depedent GMM.

As VODIS is the noisy corpus, we use it to test the adapta-
tion approach. VODIS contains a subset with well-balanced
phonetic sentences. Each speaker has uttered 5 sentences
which will be used for adapting the state-independent GMM
to a speaker. These sentences are different to the commands
used for evaluating the adaptation step (VADAPT or VTEST
sets).

In order to adapt the state-independent GMM we use
the MAP method proposed in [32]. As is usually the case in
speaker recognition, we perform this adaptation only on the
mean parameters.

In Table 9, we show the results obtained with and without
adaptation. Table 9(a) corresponds to the WRE approach
and Table 9(b) to the ULT+WRE approach. An important
gain could be noticed whatever the approach we used.
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TaBLE 9: Command Error Rate for WRE approach (9(a)) and ULT+WRE approach (9(b)) with and without state-independent GMM
adaptation (adaptation performed on 5 sentences phonetically balanced). 11136 voice-command recognition tests performed on VODIS

corpus (noisy).

(a) WRE approach

Without adaptation With adaptation

MLE FDW FD MLE FDW FD
Very compact model (6 k.) 6,05% 8,54% 5,99% 5,48% 8,67% 5,36%
Compact model (11k.) 5,15% 7,50% 5,15% 4,67% 7,28% 4,63%

(b) ULT+WRE approach
Without adaptation With adaptation
MLE FD MLE FD

Very compact model (6 k.) 5,25% 5,11% 4,76% 4,48%
Compact model (11k.) 4,01% 4,27% 3,64% 3,80%

Indeed, the WRE approach (cf. Table 9(a)) allows a
relative gain of 10%. The CER of the very compact model
using FD weight updating rule without adaptation is 5.99%
and with adaptation it decreases to 5.36%, which represents a
relative decrease of 10.52%. The gains obtained with compact
models are similar (a relative decrease of 10.1%, with FD
weight updating rule).

The models based on the FDW weight updating rule
seem not benefit from the adaptation phase; there is no sig-
nificant decrease of the CER. It results certainly from the fact
that FDW is based on the hypothesis that €, (cf. (11)), which
corresponds to the likelihood of non-typical Gaussians of a
state, is insignificant compared to the other terms.

Table 9 shows that the models using the ULT+WRE
approach are able to take more advantage of this adaptation
scheme. The relative CER decrease is between 9% and
12%. For the compact model based on the MLE weight
updating rule before adaptation, the CER is 4.01%. On this
configuration, the adaptation allows to reach 3.64% CER
(12.33% relative gain).

These results confirm the initial assumption of a relative
independance between phoneme-related and speaker-related
information. We obtain a relative gain between 9% and
12%, which is close to the gains typically observed in speech
recognition with MAP or MLLR adaptation.

In conclusion, this approach presents several points of
interests with regards to the state-free adaptation process
compared to classical systems:

(i) only a small amount of data is needed to adapt
efficiently the acoustic model due to the fact that
all the available data are shared to adapt the state-
independent GMM;

(ii) no state alignment is required because there is only
one GMM to adapt (not one GMM per state and/or
class);

(iii) the computational cost of this adaptation remains
very low thanks to the fact there is only one GMM
to adapt.
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7. Conclusion

This paper deals with the issue of speech recognition in
situations of limited memory resource and limited com-
putational cost. Starting from the idea that, in classical
HMM-GMM based models, Gaussian mixtures encode not
only phoneme-specific information but also some general
information about speech, we propose an approach that
aims at limiting the redundancy in acoustic models. This
is achieved by a two level architecture in which the whole
acoustic space and subword units are separatly modelled. At
the upper level, a general GMM models the speech signal,
state-dependent models being obtained by applying compact
transformations on this common GMM.

The proposed methods are evaluated in various exper-
imental conditions. They are compared to classical HMM
models with respect to the limited hardware resource
typically offered by a mobile phone.

Firstly, we evaluated baseline systems that are obtained
by decreasing the number of Gaussians per mixtures and
by reducing the acoustic space dimensionality. Results show
clearly that the classical HMM-GMM based architecture is
dramatically impacted by the strong complexity reduction
induced by mobile-phone hardware limits: with respects to a
large acoustic model used in LVCSR tasks, the error rates are
multiplied, at least, by a factor of 6 in all the test conditions.

Then, we proposed our two level architecture in various
configurations. Two kinds of morphing functions were
evaluated, respectively, based on weight reestimate (WRE)
and a smoothed MAP adaptation (ULT).

The first approach consists of reestimating state-
dependent weight vectors from the state-independent GMM.
Several criteria were used, one based on likelihood max-
imisation (MLE) and two based on discriminative criteria
(FD and FDW). Considering the CPU resources required
by the frame discrimination method (FD), we introduced
the FDW criterion, which is a fast approximation of FD.
This approximation is restricted to semi-continuous HMMs;
it allows a discriminative reestimation of the weights for
a computational cost similar to the one required by MLE
training.

The experimental results demonstrated the efficiency of
the discriminative training of weight vectors on clean condi-
tions: we observed a relative error rate decrease between 32%
and 55%, according to the system configuration, especially
with FDW, which outperforms the standard FD method.
Hovewer, discriminative weighting does not provide any
gain in noisy conditions. Morever, the fast approximation
of frame discrimination seems to be highly sensitive to the
acoustic conditions: error rates increase strongly on the
VODIS corpus, compared to the standard FD method.

In order to improve the recognition rates in noisy envi-
ronments, we proposed a morphing function family oper-
ating on both mean and weight parameters. This method
relies on a global adaptation of the state-independent GMM
by a simple linear transformation (ULT) shared by all the
Gaussian components. This adaptation is performed state by
state. Even if ULT does not obtain any decrease of error rate
in clean conditions (compared to the WRE only approach),

11

it provides a significant accuracy improvement in noisy
conditions. In this case, WRE obtains error rates similar to
the baseline and ULT+WRE allows a relative decrease of the
CER between 9% and 16% (compared with the baseline as
well).

Lastly, the proposed architecture offers a simple and
efficient way of dealing with the speaker/environment adap-
tation issues under memory and CPU constraints. Assuming
that speaker-related and phoneme-related information is
independent, we proposed a fast adaptation scheme that is
tractable in spite of the low amount of adaptation data,
and under strict hardware constraints. In noisy condi-
tions (VODIS, voice-command recognition) this adaptation
scheme obtained a relative decrease of the CER between
9% and 12% compared with WRE or ULT+WRE without
adaptation. Moreover, this adaptation does not require
significant computing resources, nor much adaptation data.

We plan to investigate other transformation families
in order to improve the discriminative capacity of the
acoustic models. Moreover, subspace clustering methods
have demonstrated good efficiency on embedded systems.
The combination of the proposed architecture and subspace
clustering could improve the tradeoff between memory
footprint and model accuracy.
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