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Temporally localized distortions account for the highest variance in subjective evaluation of coded speech signals (Sen (2001) and
Hall (2001)). The ability to discern and decompose perceptually relevant temporally localized coding noise from other types of
distortions is both of theoretical importance as well as a valuable tool for deploying and designing speech synthesis systems. The
work described within uses a physiologically motivated cochlear model to provide a tractable analysis of salient feature trajectories
as processed by the cochlea. Subsequent statistical analysis shows simple relationships between the jitter of these trajectories and
temporal attributes of the Diagnostic Acceptability Measure (DAM).
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1. Introduction

The deployment of a multitude of speech coding and
synthesis systems on telecommunication networks as well as
in auditory prosthetic systems makes the accurate evaluation
and monitoring of speech quality an important field of
research. Despite significant gains in the field of objective
measurement, the most accurate/reliable method of evalua-
tion remains subjective testing. Typical subjective evaluation
methods include the Mean Opinion Score (MOS) and the
Diagnostic Acceptability Measure (DAM) [1]. While MOS
testing provides a unidimensional quality score to any given
speech system, the DAM evaluates the quality on a multi-
dimensional distortion axes—ranging from “interrupted” to
“tinny”.

The specification of the ITU-T recommendation P.862,
Perceptual Evaluation of Speech Quality (PESQ) [2], pre-
cludes its use for evaluation of low bit-rate vocoders (below
4kbps) [2] as well as speech degraded by environmental
conditions such as babble and military vehicle noise. In
addition, our own tests reveal that PESQ fails to predict
the quality of speech that has simply been distorted by
low pass filtered speech (f. = 2kHz) as well as speech

degraded by narrow band noise (from 400 Hz to 800 Hz).
Even so, the PESQ algorithm betters earlier attempts at
predicting MOS [3]—largely attributable to a highly evolved
Psychoacoustic Auditory Model (PAM). The PAM is an
attempt at modelling the linear component of the highly
nonlinear hydromechanics of the human cochlea.

The work described within this paper is based on the
premise that the inadequacies of PESQ can be resolved—
resulting in higher accuracy objective measures of speech
quality—when explicit neurophysiological models of audi-
tion are used in the place of PAMs. Further, in the same
vein as DAM, and in line with previous research [4, 5], we
consider the speech quality space to be multidimensional.
As such, we hypothesize that the objective prediction of the
individual orthogonal dimensions of the quality space will
lead to further increase in accuracy. An added benefit of this
approach is the ability to discern the type of distortion—
something completely lost with the use of the unidimen-
sional MOS measure or PESQ. In a previous paper, it was
shown using PCA performed on a database of DAM scores,
that the perception of speech quality can be described using
three orthogonal dimensions [4]. The three dimensions are,
temporally localized distortions (PC1 in Figure 1), frequency
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Figure 1: Principal component analysis of a database of DAM
scores. PC1 comprises of temporally localized distortions consisting
of SB, SE, SI, and SD, and accounts for 55% of the variance in overall
quality. PC2 comprises mostly of frequency localized distortions
which consists of SH and SL and accounts for 15% of the variance.
PC3 includes SN and ST and accounts for less than 10%. Note that
the first two components alone account for 70% of the variance [4].

localized distortions (PC2 in Figure 1), and those that are
neither entirely localized in time or frequency. The temporal
distortion dimension was found to be composed of the SI,
SD, SB, and SF quality elements of DAM. Of these, SB, SF
and SI are highly correlated with each other, as illustrated
in Figure 2. The frequency localized distortions SL and SH
were successfully predicted in earlier work [6]. The focus of
the current paper is an attempt at predicting the family of
temporally localized distortions, which account for 55% of
the total variance in overall quality. The frequency localized
distortions, in comparison, contribute 15% of the total
variance.

In this paper, we propose a new methodology to extract
features from a cochlear model response, to predict the
perceptibility of temporally localized distortions. The paper
is organized as follows. Section 2 discusses the cochlear
model and explains the feature extraction process. Section 3
discusses the prediction of temporally localized distortions
using the extracted features, followed by experimental
results, and a discussion of the overall methodology.

2. Cochlear Response Feature Extraction

2.1. The Cochlear Model and the Motivation for Its Use. The
performance of PESQ can be largely attributed to the use
of a PAM. The PAM, however, is a functional model that
approximates simultaneous masking. It can be treated only
as an approximate estimation of the Basilar Membrane (BM)
response. A primary failing of the PAM in the context of
the current work of isolating and distinguishing temporal
distortions is its lack of temporal resolution. To achieve
high temporal resolution, the analysis frames used in PAM
would be required to have compact time support. This
would however render inadequate frequency resolution—
inherently necessary for the PAM to produce accurate results.
Moreover, the spreading functions (or filters) typically
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FIGURE 2: PCA analysis of DAM foreground attributes [4]. SH and
SL stay at one side, while the temporally localized distortions are on
another side. However, SD is slightly deviated from other three, that
is, SB, SE, and SI.

used in PAM to model BM functionality reduce frequency
resolution, which is not reflective of the BM travelling waves.
These carry far more spatiotemporal detail than can be
observed by the PAM. It may be argued that such detail is not
necessary to predict human perception. However, it is also
true that not all of the loss in resolution depicted by the use
of PAM is due to cochlear mechanics. Some of it is likely to
be at higher stages of the auditory neurophysiology pathway.
The methodology adopted in this work involves using the
cochlear response resolution to first identify salient features
and, only when the features have been detected and tracked,
to reduce the resolution to a level that is representative of
human perception. This strategy is impossible if a PAM is to
be used to reduce time-frequency resolution as a front-end
acoustic model.

Further, the linear characteristic of PAM means that it
is not able to predict a number of nonlinear characteristics
of the true physiological response of the cochlea [7],
such as two-tone-suppression and cochlear emissions, and
corresponding psychophysical phenomenon such as Upward
Spread of Masking (USM) and loudness [8]. An explicit
physiological model of the cochlea, on the other hand, is not
burdened by the drawbacks of a PAM and is able to provide
precise and high resolution spatiotemporal response of the
cochlea due to auditory stimuli. In a latter section of this
paper we discuss and compare the characteristics of the PAM
as well as spectrograms with cochlear model output in the
context of the current work. In particular we show that the
PAM output lacks the resolution to carry out the analysis
described within this paper, and that a consistent gain in
prediction is achieved from using a nonlinear cochlear model
(when compared with a linear cochlear model).
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The cochlear model (CM) used in this paper is a spatially
2D hydromechanical model, which computes various elec-
trical and mechanical responses in the cochlea. In particular,
the model can be used to calculate BM and Inner Hair Cell
(IHC) response as a function of time and space. A block
diagram of the cochlear model depicting the transduction
path from the acoustic stimuli to its eventual transduction
is shown in Figure 3. While detailed aspects of the cochlear
model are beyond the scope of this paper, they may be
found in various publications [6, 7, 9, 10]. The cochlear
model can be broadly divided into three components:
the macromechanical model, the micromechanical model,
and the nonlinear elements. The ear-canal and ossicles are
modelled as a linear filter—shown simply as “Middle Ear” in
Figure 3. Various benchmarks comparing the model output
to physiological and psychophysical data have been carried
out to verify the performance of the model [7-9].

The macromechanical model is concerned with the
dynamics of the fluid filled scalae and the Organ of Corti
along the length of the cochlea. Of particular relevance
is the travelling wave type mechanical response of the
basilar membrane (BM). A Green’s function [10] is used
to numerically solve (in the time domain) the differential
equations that result from assumptions of continuity (or
conservation of fluid mass), inviscid and incompressible
cochlear fluid loaded by the mass/stiffness and damping of
the fluid and structures along the length of the cochlea.
Spatial sampling is achieved by linearly discretizing the
cochlea at 512 points along the 3.5 cm length of the cochlea.

The micromechanical model is concerned with the cilia
(submerged between the tectorial membrane and the BM)
and the associated Inner (IHC) and Outer (OHC) Hair Cells.
The movement of the cilia are modelled as the direct result
of the shear force created within the subtectorial space as a
result of the relative movement of the BM to the tectorial
membrane (TM). The TM is modelled as a transmission line,
terminated by the cilia [9]. The phenomenological result of
the micromechanical model is a cilia response that reflects
an attenuated BM response basal to the Characteristic Place
(CP). The cilia displacements are rectified and low-passed
to derive the OHC and IHC receptor potentials. The IHC
and OHC models are thus alike except for a high-pass filter
that precedes the THC model to account for the fact that
the ITHC cilia are not attached to the TM, but are driven by
viscous fluid drag [11]. The IHC response from the model are
reflective of receptor potentials, however no attempt is made
to normalize them to units of Volts. Throughout the paper, it
is these IHC responses that have been used as the output of
the cochlear model and referenced as the CM response.

Cochlear nonlinearity imposed by OHC motility is
modelled as mechanical feedback from the OHC, which
modifies the macromechanical impedance. This is shown in
Figure 3 as “Mechanical feedback.” This is a cycle-by-cycle
effect meaning an almost instantaneous feedback path in the
model. The second and slower feedback due to efferent nerve
fibres is not modelled within the model.

The model is implemented completely in the time
domain. Due to discretization methods used in the model, as
well as noise considerations inherent in nonlinear feedback
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FIGURE 3: A computational model of the cochlea, used in this paper,
showing the transduction path in auditory physiology.

systems, stability of the model is guaranteed only when it
is run at a sampling rate considerably above the Nyquist
sampling rate [10]. To adhere to this requirement, the 8 kHz
sampled acoustic stimuli used in this work were upsampled
by a factor of six before being processed by the cochlear
model. Input to the cochlear model is on a sample by
sample basis. Thus, for every sample into the model there is
effectively a frame of 512 points of spatial data at the output.
We discard every five of six frames, which has the effect of
temporal downsampling back to 8 kHz.

A drawback of the use of the CM model is that it is highly
redundant—due to the fact that the output is a 512 times
oversampled relative to the input stimuli. This necessitates
dimensionality reduction and our strategy towards this has
been to extract distinct features from the model response.
In particular, we isolate features which correspond to the
perception of the temporally localized distortions—the focus
of this paper.

2.2. 2D Evolution Tracking. The 2D cochlear Model response
across time CM, (), at a single discrete place p (of arbitrary
units), is a quasiperiodic waveform, with primary period T,
dictated by the characteristic frequency f. = 1/T, at place p.
For voiced speech, a second mode of periodicity Ty can also
be observed on the smooth low-passed envelope of the signal
ep(t) = E{CM,(t)}. This periodicity is due to the pitch of
the speaker and is independent of place p (except for a slow
evolution across space). These T, Ty are shown for a typical
voiced section in Figure 4.

Due to causality, at place p + 1, the envelope of the
cochlear Model response ey (t) will have evolved albeit
slowly for voiced sections. The rate of evolution is a function
of the amount of voicing, such that for highly voiced sections,
this evolution is slow, whereas the rate is fast for unvoiced
sections. Exactly the same argument can be made in the
alternate dimension of looking at the Cochlear response as
a function of place at discrete time t; and its evolution at
to + 1. It is necessary to track this evolution in both space
and time dimensions since the envelope is evolving in both
dimensions. A peak tracking algorithm is used in Figure 5 to
illustrate this evolution for a voiced section of speech.

We hypothesize that these peak tracks of the cochlear
Model response are essential features that represent the rate
of evolution of the response. It can be observed that the peak
tracks are almost parallel when the rate of evolution is slow
as is the case for voiced speech. This parallel structure is lost
for unvoiced sections of speech and is shown in Figure 6.

The output of the cochlear model is 2D data across time
and space. The spatial sampling is 0.0684 mm/sample, such
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FIGURE 4: Cochlear response cross-section for voiced speech. Two
types of periodicity, T. and Ty, can be observed. T, is given by
the characteristic frequency of the place where the cross-section is
taken, while T is determined by the fundamental frequency of this
speech segment.
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FIGURe 5: Cochlear response as a function of time and place,
with peak tracks for a voiced segment of speech (/0/). Dark lines
indicate the peaks or crests of the response, and exhibit a regular,
quasiperiodic structure which is also evidenced in Figure 4.

that there are 512 discrete points across the approximate
3.5cm length of the human BM. The relationship between
place and frequency can be approximated using Greenwood’s
map [12]. This mapping is however only valid at threshold
levels. To provide an indication to the reader, 24 mm along
the cochlear length represents the characteristic place for a
600 Hz sinusoid (at threshold), as can be seen in Figure 7.

The steps below describe an algorithm to track the 2D
evolution of the cochlear response CM,,(¢) on a closed spatial
region p = [pi, pn] along the BM, where p; and py, are the
lower and upper bounds along the place axis with p;, pr, €
(1,512].

(1) We start at the lowest boundary place p;, which
corresponds to the highest frequency in the region [p; pp].
All local maxima along the time axis CM -, (t) are found,
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FIGURE 6: Peak tracks from the cochlear response for an unvoiced
segment of speech (/s/). The quasiperiodic structure that appears in
Figure 5 is not present.
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FIGURE 7: Relationship between frequency (in Hz and Bark) and
place. Place can be converted to frequency using Greenwood’s map
[12].

such that there are M, peaks attime #, k = 1,2,..., M. The
peaks are chosen such that at time f, the cochlear response
CM,, (1) satisfies the criterion that it is larger than the N
neighbouring time samples, on either side of it, as follows:
CM,, (tx) > CM, (1 — 1) > CM,,(tx = 2) - - - > CM,, (& — N,
and CMpl(tk) > CMPl(tk-i-l) > CMpl(tk"'z) e > CMPI(tk-f-
N). The value of N is a function of the temporal sampling
rate and is empirically determined to ensure the capture of
salient features.

(2) The process in Step (1) is repeated for each spatial
point in the range (p;,pn]. The position of the peaks are
stored in a matrix PT, such that PT(p., k) = t,k =
1,2,...,M,,. The size of the matrix is given by the maximum
number of peaks at any place (i.e., max(M,)).

(3) The next step is to associate each peak with a track
across time and place. To do this we look in a distinct
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Ficure 8: THC response in comparison to track distances. as
function of place. The left vertical axis represents IHC response
while the right vertical axis represents time difference between the
tracks (in milliseconds). The line in blue, red, and black represents
mean track distance, standard deviation of the track distances and
the average THC response over time. It may be observed that the
track distance rises in discrete steps, with small steps corresponding
to high THC response, and high steps corresponding to low THC
response and high standard deviation. Three regions labelled as “1”,
“2” and “3” between dotted vertical lines, have been identified as
Perceptually Relevant Regions (PRR). The plot corresponds to the
same response in Figure 5 averaged over time and with an extended
range in place.

neighborhood (i.e., [,y 1 — fbackwords tk,p— 1+ tforward|) Of €ach
peak position from the previous place, p—1. Due to causality,
the peak tracks always move towards increasing time and
place. For this reason, tpackward can be small. If a peak is found
within the above range, then it is considered to be part of the
same track as the one at #; , ;. If more than one peak is found
within that range, then the one closest to # 1 is chosen.
If no peaks are found within that range, then the track is
terminated at place p — 1 and no further search along this
track is performed in the future. It is important to account
for any new tracks that originate at a higher place (i.e., was
not at place p — 1) by ensuring that new peaks not associated
with the previous place are not discarded but are stored for
future tracking until they terminate.

(4) Further postprocessing involves connecting broken
tracks which are possibly part of the same track, and checking
to ensure that the track lengths are longer than a certain
threshold. If not, these short tracks are discarded.

(5) The final tracks are stored in a matrix T'(m, n) where
each column describes a single track.

An example of the above steps is illustrated in Figures 5
and 6. The continuous lines capture information related to
the evolution of the spectrum over time and space. During
voiced speech, this evolution is slow and is characterised by
peak tracks which do not change drastically (over time and
space) and thus result in almost parallel looking tracks.

2.3. Locating Perceptually Relevant Regions. Articulatory fea-
tures such as vocal tract resonances (formants) and pitch
harmonics are easily distinguishable in the 2D rendering of
the CM response. During voiced speech, these features are
distinguishable as distinct “peaks” or high energy regions
in the CM response, as can be observed in Figure 5. In the
figure, three pitch harmonics at the first formant region
can clearly be tracked over time and place. They appear
at approximately 23.11 mm, 24.20 mm, and 25.57 mm from
the base of the BM, their positions changing slightly with
time. These places correspond to approximately 710Hz,
590 Hz, and 463 Hz. Instead of referring to these in terms
of articulatory features, it is more appropriate to refer to
these as Perceptually Relevant Regions (PRR), reflecting
the association between each place along the length of the
cochlea with a characteristic frequency.

The peak tracking algorithm described in the previous
section tracks the PRRs extremely accurately over time and
place. What is actually being tracked is the effect of the
articulatory features as processed by the cochlea. This is
one of the main reasons that the use of CM response is
far superior to the use of a spectrogram or a PAM, as the
CM response reflects only the information that remains after
nonlinear cochlear processing.

One of the important features of the PRRs is their
stationary nature over time and place. This can be observed
on the CM response by the fact that the number of peaks
remain unchanged for the duration of the voiced speech, as
well as the fact that the peak-tracks are approximately parallel
to each other (in the 2D projection across time and place)—
especially in the regions of the PRRs. This is demonstrated in
Figure 4.

The next step in our feature extraction is to focus on
just the PRRs. This is facilitated by the observation that
the average time difference between the peak tracks A;, =

(1/(K-1)) sz:—11 (tpkr1—1pk) (over the duration of the voiced
section) is almost constant across the region of each PRR,
where k is the index of track, and K is the total number
of tracks. This is shown in Figure 8 which shows that in
each of the three PRRs, 1, 2, and 3, the ATP , shown by
the blue line, is almost constant along the width of the
each of three formant places. The standard deviation of
the time difference, shown in red, is also shown to be low.
Further, there is a conspicuous increase in the average time
difference with increasing distance—such that the A;, for
region 1 is lower than the A, for region 2. This is a direct
consequence of the fact that the number of peaks at any
one place decreases with increasing distance, reflecting the
fact that the characteristic frequencies 1/T, decrease with
distance.

To focus on the PRRs, we use a two pronged strategy.
First, we impose an energy threshold such that only sections
of the CM response above the threshold are kept. In addition,
we use the characteristic of the A, , whereby it increases in
(almost) discrete steps (as shown by the blue line in Figure 8).
The boundaries of the plateaus further distinguish relevant
regions. These regions are shown in Figure 9 as areas between
horizontal lines (“PRR1”, “PRR2”, and “PRR3”). The three
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F1GURre 9: Cochlear response with peak tracks for voiced speech /o/
on the time-place plane. The parallel structure between tracks can
be observed at the PRRs (between straight horizon lines). The three
regions PRR1, PRR2, and PRR3 are the same three regions labelled
in Figure 8 as “1”, “2”, and “3”. Also, the T, and T in Figure 4 are
indicated here.

regions correspond to the three dominant pitch harmonics
in the vicinity of the first formant.

2.4. Center of Mass for Each Formant Region. A characteristic
of the peak tracks within each PRR is the fact that they
are quasiparallel on the time-place plane (much more so
than in other regions). To reduce the dimensionality and
computational complexity, the “center of mass” of each track
slot (restrained by PRRs) is computed. Each new point is
characterised by a time, place, and amplitude, (7, y, R). We
call these points Track Center Points (TCP). The amplitude is
simply the average of the IHC responses constrained by the
boundaries of a track. The time (7) and place y values are
calculated using the following three equations:

| M
R= MZIHQ,
i=1
M
= ZA;{] IHCiti) (1)
o HC;
Y THC p;
= S0
>io IHC;

Here THC; is the IHC amplitude, t; is time position, and
pi is the place position, of point i. M is the number of
points in one track. A typical set of consecutive TCPs (in
one formant region) is plotted in Figure 10, which is inferred
from PRR3 in Figure 9. The plot reveals a swirling 3D curve.
The period of the swirl corresponds to the periodicity of the
underlying (time domain) speech signal and is given by T,
in Figure 4.

Corresponding TCPs across period Ty, are also similar
in intensity and place—more so than neighbouring TCPs.
In a further attempt at reducing dimensionality, each set of
TCPs in a single period Ty is reduced to a single “center
of mass” as given by (1). We call these points the Salient
Formant Points (SFP), reflecting the fact that they are
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F1GURE 10: Center of Mass of tracks in one PRR. Notice the swirling
characteristic of TCPs.

indicative of formant energy as a function of time and place.
Time periodicity has been removed as a result of this final
process. These corresponding SFPs between the original and
distorted speech signals are highly synchronized in time.
This is of great benefit as most intrusive objective speech
quality measures, such as PESQ [2], require fairly complex
preprocessing to synchronize the two signals accurately, a
step for which our system can afford to be less precise due
to this automatic SFP synchronization. Figure 11 indicates
the final result of this process and shows the extracted
Salient Formant Points (SFP) in 3D space of time, place,
and IHC response. Figure 12 is a plot of the points showing
the extraction times of the original and distorted signals,
respectively. A most notable feature is that the points
extracted in this manner for the two different systems are
automatically synchronized, without an explicit requirement
for the signals to be synchronized accurately at the input.

Figure 14 shows that the points are lightly dispersed
over place due to the different coding systems, as should
be expected. Finally, Figure 13 shows the IHC response at
each of the extracted points. Note the significant amplitude
difference between original and distorted signals. In our
intrusive prediction for speech quality, original signals are
used as a reference of “smoothness” A perceptual formant
distance PFD is defined as below:

PFD = |SFPgis — SFPorilvoiced- (2)

The PFD is used to predict temporal distortions, as described
in the next section. Note that in an extreme situation, if
the original and distorted SFPs are parallel to each other
in amplitude, the PFD is flat or constant, only reflecting
a multiplicative constant between the two signals. It is
the deviation along the time axis of the PFD that carries
information on temporal distortions.
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FiGure 11: Extracted Salient Formant Points. Three sets of original
and distorted (perceptual) formants are displayed. Both the original
and distorted TCPs in Figure 10 are converted to SFPs.

3. Predicting Temporally Localized Noise

Unlike frequency localized distortions [6], temporally local-
ized distortions are isolated over compact sections of the time
axis. In contrast, frequency localized distortions extend over
wide lengths of time, or indeed over the entire length of
the signal (as would be the case for low-pass or high-pass
speech). Temporally localized distortions have been repre-
sented using descriptors such as “clipping”, “additive noise”
and “fluttering” amongst others. In our observation, the
temporally localized distortions can be further subclassified
into a “rapid” and “slow” category depending on the rate at
which the formants of the distorted signal vary with respect
to the original signal. The “slow” category causes distortions
that are typically described as “fluttering” and “babble” while
the rapid category causes distortions that elicit “raspy” and
“crackling” types of responses from listeners.

The above observation leads us to the hypothesis that
temporally localized distortions are related to the rate at
which the synthesized salient features deviate from the
original in both time and frequency. A similar hypothesis
relating “fluttering” distortions to “formant fluttering” was
made in [13]. The PFD calculated in Section 2.1 combines
the effect of formant deviations in cochlear response and
place (frequency) and thus lends itself to the exploration
of the above hypothesis. We estimate the rate of formant
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FIGURE 12: 2D projection of Figure 11 showing the time instances of
the extracted SFPg;; and SFP,,;. Note that the time instances fall on
top of each other—implying an automatic synchronization in time
between the distorted and original signal.

deviation (in the cochlea) (or “jitter”) using the following
two equations:

N
]slow = Kl Z iZ:(PFD, —W)z, (3)
voiced Nizl
d(PED)
]rapid = KZ Zd T (4)

Here K; and K; are constants. Equation (3) is well suited
to the prediction of distortions in the slow category (of
temporally localized distortions) while (4) is well suited for
the prediction of distortions in the fast category. To test
our hypothesis, we have attempted to predict the relevant
attributes of a database of DAM subjective test scores. In
particular, we have classified the SE SI, and SB attributes of
DAM to the second “slow” category of temporally localized
distortions and the SD attribute of DAM to the “rapid”
category.

The DAM specification [13, 14] defines SB, SF, and SI, as
“Babbling”, “Fluttering” and “Interrupted” distortion respec-
tively. SD is defined as “Signal Rasping”, and “Crackling” [13]
and being caused by a broad range of factors, (e.g., center
clipping, additive noise, etc.). One difference between SD
and the other three, is that the former represents distortion
that is localized over smaller lengths of time, implying rapid
evolution of formants and eliciting a “harsh” perception
amongst listeners.

The classification of these attributes to temporally local-
ized distortions was based on earlier work [4], where it
was shown that these attributes contribute almost 55% of
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FIGURE 13: 2D projection of Figure 11 showing amplitude of the
extracted SFPg;; and SFP;. The distance between original and
distorted amplitude carries the temporally localized distortion
information.
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FIGURE 14: 2D projection of Figure 11 showing the (place) location
of the extracted SFPy;s and SFP,;.

the total variance in the subjective scores (as shown in
Figure 1). It is interesting to note that while all four of
these DAM attributes (SE, SI, SB, and SD) were classified
as temporally localized distortion descriptors in [4], there
was clear demarcation between SD and the rest as shown in
Figure 2. In the next section we report on the results of using
(3) and (4) to predict these DAM attributes.

4. Results

Nine different coding systems were tested, each with three
male and three female speakers. The systems tested are shown
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TaBLE 1: Coding Systems represented in the database being under
test.

Index  Codec name

1 original

2 G728_clean_0

3 LPspeech_clean_0, low pass filter, f. ~ 2kHz

8 G729_clean_0

11 emMELP52_quiet_0

14 MELPWI52_quiet_0

31 E1 (Combined Melp and WI, 5.2 kbps—in quiet)

32 F1 (G729a 8 kbps—in quiet)

49 E4 (MELPe_fix 1.2 kbps, 42 bit quantizer—1% random
BER)

50 F4 (G729a 8 kbps—1% random BER)

in Table 1. There were thus a total of 54 candidates with
different system and speaker combinations to be tested.

For each candidate, we calculated an objective score in
the “rapid” category, and another in the “slow” category as
given by (4) and (3), respectively. We hypothesize that the
“slow” score is correlated with all the three attributes of “SB”,
“SF”, and “SI”, due to their similarity shown in the PCA and
MDS analyses while the “SD” attribute is correlated with the
“rapid” category objective score.

The correlation coefficients p between the subjective
DAM attributes [14] and corresponding predicted scores
(from (3) and (4)) are calculated as follows:

Y(si-S)(oi-0
o Shlden)
\/zfil(si—S) >, (0:-0)

where S and O are the subjective (DAM) and objective (Jsow
or Jrapid) prediction scores, respectively, and N is the number
of candidates (54 in our case).

As hypothesized, the predicted score Jqow is highly
correlated with all three temporal DAM attributes: SB, SF,
and SI [15]. The correlation coefficients are psg,,, = —0.91,
PSE,Juon —0.86, PSiju. —0.81. Figure 15 illustrates
the relationship between the subjective SB scores and the
objective prediction. Further improvements can be achieved
by performing polynomial regression [13]. Our test results
show that a second-order polynomial regression can improve
the psg J,, to 0.93.

SD, the only one attribute in the “rapid” category, is
highly correlated with the prediction of Jiapia, which presents
the correlation coefficient psp ., of —0.89. Figure 16 reveals
the relationship between SD subjective scores and objective
predictions Jrapia. Like SB, the psp, ., can also be slightly
improved to 0.90 with third-order polynomial regression.

5. Discussion

The results above show that the process of extracting and
tracking (across space and time) salient features from a
cochlear model output and their subsequent time rate of
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FIGURE 15: Scatter plot of SB versus Jqow of (3). The continuous line
is a second-order line of best fit. The resulting correlation coefficient
is p = 0.93.

deviation in comparison to a feature set derived from a clean
(undistorted) signal is correlated with the perceptibility of
temporally localized distortions. The feature set that was
extracted was broadly termed Salient Formant Points or
SEPs. The SEPs are so named due to their association with
the cochlear processed high energy formants and are clearly
represented over the time-place dimension in the cochlear
response.

The methodology described in the paper to extract
temporally localised deviations is facilitated by the spa-
tiotemporal resolution of the cochlear response. Figures
17, 18, and 19 show the output of the cochlear model, a
psychoacoustic model (using a frame length of 1024 points)
and a spectrogram (using a frame length of 1024 and an
overlap such that one new sample was introduced at each
frame). It is clear from these figures that the resolution
afforded by the cochlear model is not available in either of
the other two analysis methods. Indeed, when we blindly
replace the CM with a PAM, the feature extraction/tracking
algorithm was unable to perform as various characteristics
of the response was just not present at the output of the
PAM. The same is true if we were to replace the CM with a
spectrogram. Increasing the temporal resolution of the PAM
by taking shorter analysis frames renders it inaccurate in
the frequency domain. Increasing the time resolution of the
spectrogram does not produce an output, that is, reflective of
the processing carried out by peripheral auditory processing.

One aspect of the cochlear model that makes it superior
to simultaneous masking models (essentially the PAMs used
in systems such as PESQ) is its ability to reproduce nonlinear
phenomena. This is a direct result of incorporating the OHC

p = 0.90209
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FIGURE 16: Scatter plot of SD versus Jrapiq of (4). The continuous line
is a third-order line of best fit. The resulting correlation coefficient
is p = 0.90.
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FiGure 17: Cochlear Model response for /ai/ in the vicinity of the
first formant. The y axis is place (mm), ranging from 23.2 mm to
27.3 mm, which correspond to approximately 694 Hz to 335 Hz.
Figures 18 and 19 correspond to the same time segment of the
speech signal.

mechanical feedback into the model. To test how much of an
effect the nonlinearity has in predicting temporally localised
distortions, we turned off the nonlinearity in the CM and
ran an identical feature extraction, tracking and subsequent
deviation analysis as described in this paper. The results
are shown in Table 2 below. While the differences are not
significantly high, the predicted results using a nonlinear
model is higher than that using a linear model for three
out of the four cases. A better test of course would be to
use a subjective database where different loudness levels of
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FIGURE 18: Response from a psychoacoustic model for response for
/ai/—the same segment of the speech signal as Figures 17 and 19.
The y axis is frequency (Hz), ranging from 335 Hz to 694 Hz, which
corresponds to 3.25 to 6.34 Bark frequency. The psychoacoustic
model uses a frame length of 1024 and an overlap such that one
new sample was introduced for each new frame.
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FIGURE 19: Spectrogram for first formant for /ai/—the same
segment of the speech signal as Figures 17 and 18. The spectrogram
use a frame length of 1024 and an overlap such that one new sample
was introduced at each frame.

TasLE 2: Correlation coefficients between subjective and predicted
scores using linear and nonlinear cochlear models. The results for
linear CM are consistently lower, compared to nonlinear CM, except
for SE.

Distortions Nonlinear CM Linear CM
SB -0.91 —-0.88
SF —-0.86 —0.865
SI -0.81 -0.78
SD -0.89 -0.81

speech were tested. We did not have at our disposal such a
database as the speech was always presented to the listeners
at 79 dB SPL. The consistency in which the nonlinear model
produces better prediction in our tests allows us to conjecture
that when speech is presented at different levels, a nonlinear
model of the cochlea will lend itself to more accurate
predictions of distortion detectability.

The results of the current work match the PCA/MDS
analysis carried out earlier. In the current work, DAM
attributes of SB, SI, SF, and SD were empirically subclassified
into two groups based on their rate of SFP evolution.
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“Fluttering” (SF), “babble” (SB), and “interrupted” (SI)
types of distortions were observed to evolve at a slower rate
than raspy (SD). This motivated the two proposed “jitter”
distortion measures, Jrapia and Jiow. The former was used
to predict SD, while the latter was used to predict SB, SE,
and SI. The accuracy in prediction of these two classes of
temporal distortion matched the earlier PCA/MDS analysis
which showed high correlation between SB/SF/SI and the
slightly differentiated SD.

Future work will be focused on the precise prediction
of the Composite Acceptability Estimate (CAE) and MOS
scores, both of which are unidimensional measurements of
speech quality.

Definitions

MELP: Mixed excitation linear prediction
MELPe: Enhanced MELP
WI: Waveform interpolation

DAM: Diagnostic acceptability measure, one
subjective speech quality developed by
Dynastat Inc., USA. This set of measures put
speech quality into a multidimensional space

SB: Babble, for example, systems with errors

SD: Harsh/raspy, for example, peak clipped
speech

SE: Fluttering, for example, interrupted speech

SI: Interrupted, for example, packetized speech

with clitches. SB, SF, SI, and SD are
temporally localized distortions

SH: Thin, for example, high pass speech. Not like
the above four distortions, SH and SL below
are frequency localized

SL: Muffled, for example, low pass speech

CAE:  Composite acceptability estimate. It present
overall speech quality, based on other
subjective parameters, for example, SB, SF,
SH, etc

MOS: Mean opinion score

PESQ: Perceptual evaluation of speech quality, the

current ITU-t standard for intrusive
objective measurement of speech quality
CM: Cochlear model

PRR:  Perceptual relevant region. Each region
actually represent a perceptual pitch, while a
few regions nearby group to be one
perceptual formant

TCP:  Track center point

SFP:  Salient formant point. TCPs in one PRR are
reduced to SFP for easier comparison
between original and distorted systems

PCA:  Principal component analysis
MDS:  Multidimensional scaling.
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