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This paper describes a novel approach for localization of multiple sources overlapping in time. The proposed algorithm relies
on acoustic maps computed in multi-microphone settings, which are descriptions of the distribution of the acoustic activity in a
monitored area. Through a proper processing of the acoustic maps, the positions of two or more simultaneously active acoustic
sources can be estimated in a robust way. Experimental results obtained on real data collected for this specific task show the
capabilities of the given method both with distributed microphone networks and with compact arrays.

1. Introduction

During the last two decades, many efforts were devoted
to investigate Speaker LOCalization (SLOC) technologies
[1]. Beside early applications in audio-video conferencing,
generally based on the use of small microphone arrays,
more recently the interest of the scientific community
on microphone networks for “ambient intelligence” has
been constantly growing. In these scenarios, a microphone
network consists of sets of microphones distributed in space
and aimed at analyzing the acoustic scene from different
perspectives; the term “multiple sources” may refer to a
main source and to persons or other sources which in turn
could be competitive users or interferers. In the past years,
several projects addressed the SLOC task as, for instance,
the CHIL EC project [2] whose main goal was to develop
and integrate perceptual technologies as person tracking,
event detection, distant-talking speech recognition, person
identification, and so forth. Under CHIL, different person
tracking systems were developed based on audio, on video, or
on both modalities. In particular, it was shown that acoustic
maps represent a very effective way to address the localization
of one speaker given a microphone network.

One of the most critical issues under real-world condi-
tions is the robustness of these techniques in multiple active
source contexts. The automatic transcription of meetings

represents a typical task where this situation occurs fre-
quently. With this regard, multiple source localization was
addressed in the past years under AMI and AMIDA EC
projects for diarization tasks (http://www.amiproject.org/).
Smart home is another application scenario where a multiple
source context is very common. For instance, in a real
domestic environment, a radio or a television may irradiate
sound overlapping with a human trying to interact by voice
with an automatic system. A similar application has been
recently investigated in the EC funded DICIT project whose
main goal was to realize a voice-enabled natural language
interface able to control a TV and a Set-Top-Box at a distance
of some meters from an array of microphones. Details about
the project, together with public deliverables and video clips,
are available at http://dicit.fbk.eu.

Typically, the solutions to both single and multiple
source localization problems are based on estimations of the
Time Difference Of Arrival (TDOA) at different microphone
pairs, which are obtained by means of Generalized Cross-
Correlation PHAse Transform (GCC-PHAT) [3], also known
as Crosspower-Spectrum Phase (CSP) [4]. Solutions based
on short-term spatio-temporal clustering [5, 6] and tracking
algorithms as Particle Filtering (PF) [7–9] have been recently
applied to the localization of multiple sources, relying on the
assumption that measurements associated to all sources can
be obtained with sufficient temporal density. Unfortunately,
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in a real environment GCC-PHAT seldom provides reliable
information about all sources [10] since one of them
tends to dominate over the others. If the dominant source
maintains activity over a period of time, information about
other sources may be lacking, making tracking difficult. An
approach that partially tackles this problem is presented in
[11] and relies on dispersed microphone arrays in order to
get TDOA measurements related to two or more directional
sources. However, as the authors state, this method does not
work when a single compact array is used since there are
not enough measurements associated to both sources. In a
completely different perspective, as reprised in the following,
a multisource algorithm for Direction Of Arrival (DOA)
is presented in [12], where two maxima of a frequency-
beamformer energy are obtained by putting a null in the
DOA of the loudest source. Finally, other approaches have
been investigated that make use of different observation
measurements instead of GCC-PHAT: in [13], a likelihood
function for the phase difference at two microphones for
each frequency bin is implemented, in [14], mixtures of
gaussians are used to model the steered beamformer output
in the frequency domain and in [15] a method derived from
Blind Source Separation (BSS) is presented.

In this paper we focus on two simultaneously active
sources and present an approach that manipulates basic
GCC-PHAT measurements in order to extrapolate and
enforce the information associated to both sources. GCC-
PHAT postprocessing is performed via acoustic map, which
allows one to take into account implicitly some real con-
straints introduced by the geometry of the problem (e.g.,
microphone distribution in space, size of the room, etc.).
As shown in the following a good choice of acoustic map
is the Global Coherence Field (GCF). The approach can be
extended in a straightforward manner to deal with more
sources, although in many situations performance may drop
as soon as the number of sources is larger than three.
Typical scenarios that can benefit from the application of
the proposed technique are those characterized by two or
more individuals who are speaking together, with temporary
overlap of their voices. Experiments on real data collected
with different sensor configurations show the effectiveness of
the method. In particular, the GCC-PHATmanipulation not
only highlights the less dominant source but also allows one
to pinpoint, and then process in the most appropriate way,
potential “ghosts” which may be generated by constructive
interferences in the acoustic map domain. These ghosts are
often related to minor peaks in the GCC-PHAT functions,
which are difficult to process in a coherent way across
differentmicrophone pairs, while they can be interpreted and
compensated via acoustic maps.

A preliminary analysis on the basic idea of GCC-PHAT
de-emphasis was outlined in [16], based on a limited amount
of synthetic data referred to the use of a linear microphone
array. The purpose of the current paper is to examine
other formulations of the given technique and provide
a comprehensive analysis of its effectiveness under more
complex real scenarios.

Together with localization in space, in a real-world
application a crucial aspect is the estimation of the number

of sources that are active at each time instant. Although
the purpose of this work is not to analyze in details and
propose a solution for the latter estimation problem, in the
remainder of this paper a statistical investigation on acoustic
map maxima will be addressed, which shows the potential
of these cues also when applied in deriving the number of
simultaneously active sources.

The paper is organized as follows. After a description of
acoustic maps for source localization in Section 2, Section 3
presents our approach to the multiple source localization
problem. Experimental results are then reported in Section 4,
while Section 5 investigates on automatic detection of the
number of active sources. A discussion and an outlook on
future development conclude the paper in Section 6.

2. Acoustic Map Analysis

As already mentioned, GCC-PHAT is still the building block
of most localization algorithms presented in the literature [1]
because it is capable of evaluating the coherence between two
signals for each allowable time delay τ. In ideal conditions
GCC-PHAT presents a maximum sharp peak at a delay
which is a robust estimate of the actual TDOA [4]. Among
the countless localization approaches presented over the
years, acoustic maps provide a very simple and effective
tool to perform localization of acoustic sources when several
microphone pairs are available. Let us assume that we sample
the space of potential source positions and create a grid of
points Σ. An acoustic mapM(s, t) is a function representing
the plausibility that a source is active at a given point s ∈ Σ
and time t. The dependency on time is neglected for the
sake of simplicity hereafter. In ideal conditions, acoustic
maps are characterized by a global maximum at the point
corresponding to the actual source position. Hence the
position of the source is estimated by picking the maximum
peak ofM(s)

ŝ = argmax
s∈Σ

M(s). (1)

Since acoustic maps introduce a spatial discretization, beside
the temporal sampling of signals, some artifacts or aliasing
may be introduced if the density of Σ is not high enough. In
this study, we set up the experimental framework to reduce
the impact of this possible bias.

Given Np microphone pairs and a GCC-PHAT function
Cl(τ) for each pair l, l = 0, . . . ,Np − 1, there are several
different ways to define an acoustic map. A common
technique implements a Least-Squares (LS) approach by
considering for each pair l the time lag τ̂l that maximizes
Cl(τ)

τ̂l = argmax
τ

Cl(τ). (2)

The acoustic map based on the LS criterion is computed as
follows [17]:

LS(s) = − 1
Np

Np−1
∑

l=0

∣

∣τ̂l − δl(s)
∣

∣

2, (3)
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where δl(s) is the geometrically computed TDOA at micro-
phone pair l when the source is assumed to be in s.

As mentioned before, one of the most effective acoustic
maps is the so called Global Coherence Field that was
introduced in [18]. For a given point s ∈ Σ, the value of the
map is computed according to

GCF(s) = 1
Np

Np−1
∑

l=0
Cl(δl(s)). (4)

For a microphone pair l, a peak of the GCC-PHAT function
Cl(τ) is projected onto the GCF map as a hyperbolic
distribution of points characterized by a high magnitude,
and with a dispersion that increases with the distance of the
point from the two microphones. Summing the projections,
computed over the entire set of microphone pairs, gives
rise to GCF peaks resulting from constructive interference
between the above mentioned hyperbolic distribution of
points, as shown in Figure 1. Thanks to this mechanism
of coherent recombination, the resulting GCF acoustic map
can even reveal the possible relevance of low magnitude
peaks of the GCC-PHAT functions, which may refer to early
reflections.

GCF is also known as Steered Response Power PHAse
Transform (SRP-PHAT) [1] and there are several imple-
mentations (e.g., [19, 20]) and variations (e.g., [21]) of
this method. Among these variations, GCF was extended
in [22] to the Oriented Global Coherence Field (OGCF)
that deduces information about the orientation of a non-
omnidirectional source. In particular, OGCF is useful when
directive sources are dealt with and microphones are dis-
tributed in pairs surrounding the area of interest. If we
consider a set of No potential angular orientations, OGCF
is computed for each point s ∈ Σ and each orientation
o ∈ {o, . . . ,No − 1} as follows

OGCF(s, o) = 1
Np

Np−1
∑

l=0
Cl(δl(s))wlo(s), (5)

where wlo(s) is a weight meant to give more emphasis to
those microphone pairs which are frontal to a source aiming
at the given direction o (i.e., direct wavefronts impinge on
them) [22, 23]. This weight is computed as:

wlo(s) = 1√
2πσw

exp

(

−θlo(s)
2

2σ2
w

)

, (6)

where the parameter σw must be selected taking into account
the source directivity as well as the microphone spatial distri-
bution. θlo(s) is the angular distance between the orientation
o and the line connecting the position s and the microphone
pair l. It can be easily shown that the Gaussian weighting
function adopted in this work is a convenient choice for
handling various cardioid-like emission patterns. Given the
position of the source, which can be estimated through GCF
maximization, OGCF provides a sort of radiation pattern of
the source (Figure 2) from which the most likely orientation
can be derived. A spatial map, named M-OGCF, can then be

obtained from OGCF through local maximization over all
orientations for each s ∈ Σ:

M-OGCF(s) = max
o

OGCF(s, o). (7)

2.1. Acoustic Maps with Multiple Sources. As the literature
shows, the given acoustic maps represent efficient tools to
localize a single source, even in moderately reverberant
environments. Although they were not conceived to process
simultaneously active sources, in the latter situation they
often exhibit several peaks that can be exploited to localize
at least the main source. In practice, in most of these cases a
source is predominant over the others which consequently
manifest a lower coherence at most of the sensor pairs.
This phenomenon is due to different dynamics and spectral
contents as well as to different propagation patterns and is
observed in the GCC-PHAT function too [10], that is, it is
not due to the map computation. It must also be considered
that the GCC-PHAT is a nonlinear operator and therefore
the principle of superposition of effects does not strictly
hold. As a consequence, even if the position of the dominant
source can always be correctly determined, a simple search
for the second maximum within the acoustic map hardly
ever allows the localization of the secondary source position.
In specific favorable conditions, the peaks alternate in time,
and therefore a memory-based algorithm can keep track
of the positions of two sources, for instance by means of
short-term spatio-temporal clustering [6]. The examples of
Figure 3 show the x-coordinate of the maximum peak of a
GCF map along time when two sources are active. Notice in
Figure 3(a) how the estimated coordinate keeps on jumping
from one source to the other. Conversely, when one source
is predominant in the long term, as shown in Figure 3(b),
only few observations of the position of the weaker source are
available. Very long observation intervals are then required to
detect the second source, resulting in huge processing delays
and latency in real-time tracking.

Moreover, when operating with several distributed
microphone pairs, the problem is further complicated by
possible constructive interferences that generate ghost peaks
in the map. Figure 4 shows an example of ghosts generated
by GCC-PHAT peaks referred either to active sources or
to early reflections. The position of Speaker 1 can be
derived in a straightforward manner by maximizing the GCF
acoustic map, or by taking into account the GCC-PHAT
maxima referred to the first two microphone pairs. However,
deriving the position of Speaker 2 becomes difficult due
to misleading peaks both in the GCC-PHAT domain and
in the GCF domain. It is worth noting that this example
corresponds to a simplified representation of that analyzed
in Figure 9 of the experimental section. It sketches a typical
real-world situation, where normally GCC-PHAT functions
are characterized by several minor peaks related either to
active sound sources or to early reflections [24], while GCF
acoustic maps provide a more effective representation to
deduce source positions.
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Figure 1: Examples of GCF functions when using different sensors of the setup depicted in Figure 7. The source is in central position and
oriented downward (P4 in Figure 7). Figure (a) shows the GCC-PHAT functions computed at 4 microphone pairs (only a subset of delays is
reported in the figure; the maximum possible delay would be 52 samples). Figure (b) shows the GCF map when Pair 1 and Pair 2 are used
microphone positions are represented by white semicircles in the GCF maps. Figure (c) depicts the map based on Pair 5 and Pair 6: note
how the hyperbolas would cross each other outside the room in the location of an image source. In figure (d), the map resulting from the
combination of the 4 pairs is reported. Finally, Figure (e) shows the map obtained when using 7 microphone pairs.
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3. Proposed Approach

The previous section highlighted some problems that can
be found, even in single speaker localization, when directly
processing either GCC-PHAT functions or GCF acoustic
maps. In order to extend acoustic map analysis to the
multiple source case, we present a novel method that
attempts to de-emphasize the dominant source, after it has
been detected, in order to let the other sources stand out.
For the sake of simplicity we consider only two sources
overlapping in time. Our proposed method can be split into
4 steps.

(1) Given an acoustic map M(s) based on (3), (4) or
(7), take the coordinates s0 of the map maximum
as estimate of the dominant source position (the
position of the peak may be derived from the current
observations only, or could result from a more
articulated tracking algorithm),

(2) For each microphone pair l, derive a new GCC-PHAT
function C′l (τ) by reducing the magnitude of the
original function Cl(τ) for τ close to δl(s0),

(3) Compute a new map M′(s) using the C′l (τ) func-
tions,

(4) Search for the maximum of M′(s) and take its
coordinates s1 as estimate of the lower-rank source
position.

The core of the method is the GCC-PHAT de-emphasis
performed in Step (2) which will be described in Section 3.1.

One of the main advantages of this approach is that
removing contributions associated to the dominant source
at GCC-PHAT level enables also the removal of peaks in
the GCF map that are associated to ghost sources. For
instance, applying it to the example in Figure 4 all the
given four ghosts would disappear and Speaker 2 could
be localized. In practice, de-emphasizing GCC-PHAT for a
given microphone pair at delays related to the primary peak
corresponds to reduce GCF scores at the related hyperbolic
distribution of points which includes the position of the
located dominant source.

The algorithm can be extended to deal with more than
two acoustic sources by iterating steps from (2) to (4).
However, due to background noise and reverberation, the
performance drops considerably when dealing with three
or more sources. In the latter case, a smart combination
of the proposed de-emphasis technique with memory-based
tracking schemes allows localization of sources that alternate
their acoustic activity in time.

It is worth noting that a similar mechanism was exploited
in [12]. However, that algorithm was limited to a DOA
estimation based on the maximum of GCC-PHAT function;
hence, it did not address problems related to ghosts. The
localization of multiple sources was achieved by applying a
null to the beamformer output at the time delay associated
to the loudest source. As a consequence, slight deviations in
the estimation of the position of the source may result in
putting the null at wrong time delays, vanishing the effect

0
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Figure 2: Examples of OGCF(s, o) computed at the point that
maximizes GCF with Np = 7 and No = 128. The figure refers
to a case where the source is in a central position of the room in
Figure 7 and oriented approximately toward−π/2. The inner curves
are obtained using only microphone pairs 1-2 and 5-6, respectively,
(see Figure 1). The external curve corresponds to the use of 7
microphone pairs. Arrows indicate the directions corresponding to
the maximum values of each OGCF function. The scale for OGCF
values is logarithmic.

of the null itself. In other words, the method is robust
in simple situations and with the use of a single array;
however, it generally fails when distributed arrays are used,
and when early reflections and head orientation issues are to
be addressed.

3.1. GCC-PHAT De-Emphasis. Let us consider the micro-
phone pair l and its corresponding function Cl(τ). Given
the time delay δl(s0) associated to the dominant source,
a modified version of GCC-PHAT C′l (τ) is computed
by applying a mask to Cl(τ)

C′l (τ) = φ(τ, δl(s0)) ·Cl(τ). (8)

Among several possible alternatives, we adopt the following
notch function φ(·):

φ
(

r,μ
) = α

[

1− e−(|r−μ|/b)
p
]

, (9)

where parameters b and p determine the sharpness of the
notch, while α is a normalization factor updated for each
frame to guarantee that:

τmax
∑

τ=−τmax

C′l (τ) =
τmax
∑

τ=−τmax

φ(τ, δl(s0)) · Cl(τ)

=
τmax
∑

τ=−τmax

Cl(τ),

(10)
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Figure 3: Positions of the peak in a GCF map when two sources are active. The horizontal axis represents time while the vertical axis shows
the x-coordinate related to the located sources. Actual source positions are indicated by continuous lines. In (a) the estimated coordinate,
represented by dots, jumps from one source to the other, while in (b) one of the sources is almost always predominant.
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Figure 4: A synthetic example, derived from the case analyzed in Figure 9, which describes the contributions of GCC-PHAT functions to
the GCF computation. For the sake of simplicity, hyperbolas have been replaced by lines. The dashed peak (in the GCC-PHAT) and line (in
the map) correspond to the effect of a reflection on the wall. Figure (a) shows “simplified” GCC-PHAT functions consisting of few impulses.
Figure (b) depicts the corresponding GCF map; lines correspond to peaks in the GCC-PHAT functions. Numbers close to intersections
represent the amplitude of the map peaks resulting from the combination of GCC-PHAT peaks in Figure (a). Note that GCF has a maximum
corresponding to Speaker 1 position, and that other peaks (ghosts), exceeding that in Speaker 2 position, are generated by constructive
interference.

where τmax is the maximum time delay determined by the
inter-microphone distance. The goal of α is to redistribute
over the time lags the coherence removed around δl(s0).

As shown in Figure 5, in practice a sort of sharp notch-
filter is applied in the lag domain to filter out GCC-PHAT at
δl(s0). Small values of b generate very selective de-emphasis
functions in the sense that the difference in attenuation
between the null and the adjacent time delays is very high.
Conversely, large values of b yield a considerable attenuation

also for time delays in the neighborhood of the targeted one.
The parameter p determines the sharpness of the function
by controlling the width of the notch. In this sense, we can
distinguish between wide and sharpmasks. When p = 0, φ(·)
is flat and no de-emphasis is performed.

In Figure 6 one can appreciate the effects of de-emphasis
on a GCC-PHAT function. Figure 6(a) shows the original
function when two speakers are active and the corresponding
TDOAs are −1.1 and 17.7 samples. Note that a peak is



EURASIP Journal on Audio, Speech, and Music Processing 7

0

0.2

0.4

0.6

0.8

1

1.2

−40 −30 −20 −10 0 10 20 30 40

r

p= 0

(a)

p = .05

0

0.2

0.4

0.6

0.8

1

1.2

−40 −30 −20 −10 0 10 20 30 40

r

(b)

0

0.2

0.4

0.6

0.8

1

1.2

−40 −30 −20 −10 0 10 20 30 40

r

p = .5

(c)

0

0.2

0.4

0.6

0.8

1

1.2

−40 −30 −20 −10 0 10 20 30 40

r

p = 2

(d)

0

0.2

0.4

0.6

0.8

1

1.2

−40 −30 −20 −10 0 10 20 30 40

r

b = 0.5
b = 2
b = 20

p = 20

(e)

p= 100

0

0.2

0.4

0.6

0.8

1

1.2

−40 −30 −20 −10 0 10 20 30 40

r

b = 0.5
b = 2
b = 20

(f)

Figure 5: Example of functions φ(·) for three different values of b when μ = 18. Values of p range from 0 to 100. The factor α guarantees
that φ(·) sums up to 1.
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Figure 6: Example of GCC-PHAT functions before and after de-emphasis. The true TDOAs are −1.1 and 17.7 samples. The vertical line
represents the delay of the dominant source. Figure (a) shows the original function. Figure (b) refers to a wide de-emphasis (b = 4.5 and
p = 1.5) while (c) shows how C′l (τ) changes when a selective notch is adopted (b = 2.5 and p = 0.5). Finally Figure (d) shows the result of
applying a very selective function (b = 1.5 and p = 0.2).

present at the time lag associated to each source, although
the one at negative lag is considerably higher. Figure 6(b)
depicts C′l (τ) when b = 4.5 and p = 1.5: the main
peak has been removed and the second one can be now
identified. On the other hand, in Figures 6(c) and 6(d), where
sharper and more selective φ(·) are used, the removal of
the main peak is less effective and it fails in the latter case.
Choosing an appropriate de-emphasis function is, hence,
fundamental in order to obtain satisfactory performance.
From a general point of view, a wide and less selective de-
emphasis is preferable because s0 comes from an inherently
noisy estimation process. On the other hand, if the TDOAs
of two sources are only few samples apart, a sharp function
allows the removal of one source without affecting the second
one. Therefore, a careful tradeoff must be found depending
on the characteristics of the application and of the expected
source positions (if a priori knowledge is available) and
according to the sensor deployment and the environmental
acoustics.

4. Experimental Analysis

The proposed algorithm was evaluated on real data acquired
with two different sensor settings: the first one implements
a Distributed Microphone Network (DMN) that consists
of a set of microphones distributed in space to observe an
acoustic scene from different points, while the second one
consists of a linear array. Data and references are available for
download at the following link: http://shine.fbk.eu/people/
brutti/database. Three acoustic map methods are taken into
account in this analysis: LS, GCF and M-OGCF. The LS map
is used in this study as reference for GCF and M-OGCF, due
to its low computational requirements.

In order to simulate overlapping sources, a talker was
recorded while uttering some sentences in different positions
and orientations. Recorded signals from each single-source
session were then summed up. The peak search was restricted
to a 2-dimensional space and the resolution of the grid Σ
was 2 cm. The sampling rate was 44.1 kHz in the DMN and

http://shine.fbk.eu/people/brutti/database
http://shine.fbk.eu/people/brutti/database
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48 kHz in the linear array case. In both settings, the number
of orientations No for M-OGCF computation was 32 and σw
in (5) was 2. The length of the signal chunks processed for
FFT computation was set to 214 samples with 75% overlap
between consecutive sequences of samples. The two position
estimates were constrained to be at least 50 cm apart from
each other.

In order to measure the improvement provided by the
proposed approach, a baseline localization method was used
for reference which simply derives the first and second
highest peaks of the acoustic map. As upper bound we
considered the performance when the sources are active in
a nonsimultaneous way, and the localization algorithm is
applied to each of the two given maps.

4.1. Metrics. The performance of the proposed localization
algorithm were measured in terms of “double localization
rate” (Fd). Let us denote with si(n) and pi(n) the estimated
and the actual positions, respectively, for the ith source (i =
0, 1) at time frame n. The localization error is defined as
the euclidean distance between the estimated and the actual
positions

ei(n) =
√

∥

∥si(n)− pi(n)
∥

∥
2
. (11)

Considering only those frames when both sources are active
(the signals were manually transcribed in order to establish
speech activity intervals for each speaker) and denoting with
Nc the number of localizations for which both e0 and e1 are
lower than 20 cm, and with Nt the total number of estimates,
Fd is defined as

Fd = Nc

Nt
· 100. (12)

Since the given procedure does not aim at providing the
identification of each source, estimates si(n) are associated
to sources based on a minimum distance criterion. The use
of Fd, instead of a metric based on the euclidean distance,
is necessary to reduce potential bias in the results due to
inaccurate reference coordinates of human speakers.

4.2. Distributed Microphone Network. As a first study case
we consider a DMN, as the one adopted in the CHIL
project, which consists of 7 arrays, each one including 3
microphones placed along a horizontal line at 20-cm distance
each other. The positions of the 7 arrays are shown in
Figure 7 where they are labeled as T0-T6. Since we did
not consider pairs consisting of microphones from different
arrays, the resulting number of used pairs is Np = 21.
The DMN is installed in a room whose dimensions are
5.9 × 4.8 × 4m. Its reverberation time RT60 is equal to
0.7 s. Based on measurements of Direct-to-Reverberation
Ratios using different sources (e.g., a loudspeaker diffusing
white gaussian noise and a real human speaker) located
in different positions, a critical distance ranging between 2
meters (human speaker) and 3 meters (loudspeaker) was
observed. Actually, the range is due to the fact that critical
distance depends on the source directivity. With this regard,

P3

P5

P2

T1T2

T3

T4

T5

T0

T6

P1

P4

5.9m

4.
8
m

Figure 7: Microphone and source positions in the DMN setting.
Circles represent sources placed at a height of approximately 1.5
meters. Arrows indicate the orientation of the speaker. Arrays are
represented by boxes. The size of the room is 5.9 × 4.8 × 4m and
microphones are placed at 2.1 meter height.

speaker orientation also represents an important issue in
our experimental task. The given critical distance and RT60
estimates confirm that the experiments described in the
following section are characterized by the presence of quite
strong early reflections and reverberation tails in the signals
acquired by most of the microphone pairs.

As discussed in Section 2, in a DMN scenario, the subset
of microphone pairs that capture direct soundwaves emitted
by a source is more useful for localization purposes. The
microphones placed at the back of a directional source
receive mainly reflections, and hence, do not provide a reli-
able contribution to deduce the location of sound emission.
In the given DMN configuration, if two sources are frontal to
separate subsets of microphone pairs, the weak source may
result quite evident even without de-emphasis. However,
ghost peaks can be generated as outlined in Section 2.
These phenomena depend on the relative positions and
orientations of the sources with respect to the sensors and a
reliable model is hardly achievable due to its complexity and
variability.

Five speaker positions were taken into account as shown
Figure 7. Since human speakers are directional sources, the
orientation is also shown bymeans of an arrow. A sentence of
approximately 10 seconds was uttered at each position, which
was at least 1.5 meters away from the closest microphone and
at more than 3 meter distance from the frontal microphones.

Figure 8 shows examples of GCF maps when two sources
are active in positions P1 and P5. Figure 8(a) reports the map
before the de-emphasis process, while Figure 8(b) shows the
resulting map after the dominant source has been removed
(b = 5.5, p = 1.5). Finally, Figure 8(c) shows the GCF
map when a more selective de-emphasis function is applied
(b = 0.5 and p = 1.5). Color and detailed figures depicting
the same maps are available on-line at http://shine.fbk.eu/
people/brutti/jaspmp/jaspmp.html.

In the previous example, the two sources are quite
evident even in the original map because different sensor
pairs contribute to give rise to different peaks. Let us consider

http://shine.fbk.eu/people/brutti/jaspmp/jaspmp.html
http://shine.fbk.eu/people/brutti/jaspmp/jaspmp.html


10 EURASIP Journal on Audio, Speech, and Music Processing

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

(a)

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

(b)

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

(c)

Figure 8: GCF map before (a) and after de-emphasis (b), (c), when sources are in P1 and P5. In (b) notice the dark area introduced after the
removal of the dominant source in P1. The same map is reported in (c) after a more selective de-emphasis function is applied.
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Figure 9: GCF maps before (a) and after de-emphasis (b) when sources are in P2 and P4. Circles in (a) show where the second localization
would occur without applying de-emphasis to GCC-PHAT functions. The GCF values in those points are approximately 0.7, while in P4 the
map value is about 0.6.

the maps in Figure 9 which refer to two sources in positions
P2 and P4. Here the amplitude of the peak associated to the
secondary source (i.e., P4) is lower than the amplitude of
two ghost peaks which are located just on the left and on
the right of P4 in the lower part of the map. As shown in
Figure 9(b), de-emphasis allows a clear identification of the
second source.

4.2.1. Results. First of all, performance in terms of Fd is
analyzed over all the combinations of the five positions.
Figure 10 shows the averaged Fd for different de-emphasis
parameter settings and different acoustic map computation
methods. Full square and circle represent the baseline and the
upper bound, respectively. Table 1 reports on the best average
performance delivered by each map method in contrast with
the baseline and the upper bound. The table reports also the
de-emphasis parameter sets that maximize Fd.

From the given results, it is clear that on average the
proposed algorithm provides a gain with respect to an
approach which does not implement de-emphasis. Notice
that GCF and M-OGCF baselines are quite good thanks to
the distributed nature of the sensor set up and to the full
use of GCC-PHAT information, while the LS baseline is very
poor because it uses only the time lags associated to GCC-
PHAT maximum peaks.

Table 1: Average performance obtained using the DMN sensor
configuration, compared with the baseline and the upper bound.

Map type b p Fd Baseline Upper bound

LS 4.5 2.5 69.2% 21.1% 100.0%

GCF 2.5 0.7 84.7% 59.9% 100.0%

M-OGCF 1.5 0.4 85.1% 59.7% 100.0%

GCF and M-OGCF seem to deliver very similar results,
with the latter performing slightly better. Regarding GCF, the
best performance is achieved using relatively small values of
p (0.4÷0.7) and values of b ranging between 2 and 4. Notice
how performance in Figure 10(a) degrades rapidly as soon
as b increases and p is larger than 1. As far as M-OGCF
is concerned, a similar trend is observed in Figure 10(b).
Optimal values for b are between 1.5, and 4 and p should be
chosen between 0.2 and 0.7. The fact that M-OGCF accen-
tuates the contributions of frontal pairs, through a proper
weighting, makes the system less sensitive to the choice of
the de-emphasis parameters. For what concerns the LS map,
although it performs worse than the other two approaches,
the gain with respect to the baseline is considerable.

Analysis of Single Cases. The previous discussion was based
on average performance over all the combinations under
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Figure 10: Fd computed on average over all combinations in the DMN scenario. Three acoustic maps are reported: GCF, M-OGCF, and LS.
(d) refers to the specific case P1-P3 and GCF map.

investigation. Let us focus on single cases to analyze the
convenience of the proposed approach from different per-
spectives. This convenience may vary considerably, depend-
ing both on the relative positions and on the distribution
of the microphone pairs that are impinged by direct waves.

In the following, we do not consider LS since it performs
much worse than the other two maps. Let us denote as
(bloc, ploc) the best local parameters, that is, those parameters
maximizing locally the performance. Table 2 reports on the
corresponding performance for each source combination.
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Table 2: Performance obtained on each combination when parameters are locally optimized. The final row shows the average performance
when the best local parameters are applied for each source combination.

GCF M-OGCF

bloc ploc Fd Baseline bloc ploc Fd Baseline

P1-P2 3.5 0.7 91.1% 54.4% 3.5 0.7 87.3% 50.6%

P1-P3 0.5 0.4 92.2% 62.7% 1.5 2.5 80.4% 64.7%

P1-P4 1.5 0.2 88.9% 79.8% 5.5 0.2 90.8% 85.3%

P1-P5 5.5 2.5 100% 65.7% 5.5 1.5 100% 61.6%

P2-P3 3.5 2.0 84.8% 55.7% 3.5 2.5 86.0% 55.7%

P2-P4 3.5 1.5 78.1% 17.2% 5.5 1.5 79.7% 28.1%

P2-P5 7.5 1.5 84.2% 61.4% 7.5 1.5 86.2% 57.4%

P3-P4 2.5 2.0 88.9% 52.8% 1.5 1.0 91.7% 55.6%

P3-P5 8.5 0.7 99.0% 75.5% 2.5 1.0 100% 68.6%

P4-P5 1.5 0.7 79.3% 48.3% 1.5 1.0 82.7% 48.3%

Best — — 87.9% 59.9% — — 88.7% 59.7%
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Figure 11: GCF maps when sources are in P1 and P3. (a) shows the original map: the presence of the dominant source in P3 compresses
the function dynamics at other points. (b) shows the map after a selective de-emphasis (b = 0.5 and p = 1.5) is performed: the secondary
source in P1 is now evident (in the circle). Conversely, in (c) a wider φ(·) (b = 5.5 and p = 1.5) is applied which removes completely the
contribution of T2 and hence eliminates also the peak associated to P1.

The final row of the table indicates the average performance
when using the best parameter set for each source combi-
nation which clearly gives an improvement with respect to
using the same parameters for all source positions (see results
in Table 1).

Although the average performance is reasonably good,
processing some source combinations leads to some discrep-
ancies in the results. As shown in Figure 10(d), the combina-
tion P1-P3 presents a particular behavior, which deserves a
more detailed analysis. As evidenced by the GCFmaps shown
in Figure 11, in this case the T2 array is directly affected by
both sources and hence the notch filter must be very selective
in order to guarantee an effective estimation of the second
source location. As a confirmation, Figure 10(d) shows that
when p ≥ 0.2 and b ≥ 2, Fd decreases because the resulting
φ(·) is too wide. Figure 11(b) depicts the map after a very
selective de-emphasis is applied: the dominant source (i.e.,
P3) is removed and the secondary peak (see the circle in the
figure) still benefits from the T2 contribution. Conversely,
Figure 11(c) shows the resulting map when a wider de-
emphasis is performed: the contribution of T2 has been
removed and the peak associated to P1 is no longer present.

From this analysis, it is clear that average performance
derives from a set of quite different experimental situations.

For some of them, adapting the de-emphasis process to the
mutual source positions and orientations could give a further
improvement to performance.

4.3. Linear Array. In many application contexts, a DMN
solution, with microphones all around the walls of a room,
cannot be adopted and instead a compact array, typically
a linear one, has to be employed. Although this sensor
configuration offers a reduced spatial coverage and is not
robust in estimating the distance from the array, the presence
of more microphone pairs close to each other permits
an effective multichannel processing that ensures a robust
estimation of the direction of arrivals (i.e., the azimuthal
angle). In general, localization algorithms with linear arrays
are evaluated in terms of azimuth error. Here, we consider
again the 2D localization error for an easier, although
more challenging, comparison with results presented in
Section 4.2.

As shown in Figure 12(b), in this work a harmonic
array of 13 microphones was used. The array was specifically
designed, under the DICIT project, to allow its subdivision in
4 linear subarrays with different inter-microphone distances.
In the following experiments, we used a subset of 7
microphones spaced of 32 cm, which allowed us to derive
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Figure 12: Scheme of the experimental settings in the linear array scenario. Figure (a) depicts the roommap with the source positions under
investigation. The bar on the right represents the linear array which was installed at a height of 1.5 meters. Note that a window is present on
the wall at the bottom. Figure (b) shows the geometry of the harmonic array used in the data recordings. Circles identify the microphones
that were used for source localization.

acoustic maps from 6 microphone pairs. Similarly to the
DMN case, 5 positions were taken into account as reported in
Figure 12(a). However, the combination P3-P5 was excluded
because it is not tractable in the current sensor setting with
the method under analysis. By means of arrows, the figure
shows also the orientation of the speakers, which are always
facing the array. The room dimensions are 5× 3.5× 3m and
the reverberation time RT60 is about 0.15 s. In each position
the source was more than 1.5 meters away from the center of
the array.

4.3.1. Results. Figure 13 reports the average performance
over the different position combinations, and Table 3 sum-
marizes the results comparing them with both the baseline
and the upper bound.

First of all, notice that baseline results are much lower
than in the DMN case because in this configuration different
source orientations can not be processed in an effective way
due to the limited spatial extent of the microphone array. As
a result, in the baseline the source is often localized in the
right direction (small azimuth error) but with a quite large
distance error. Using the GCF map, the best performance
is achieved with b = 8.5 and p = 1.5 which leads to
Fd = 92.1%. In contrast with what was observed in the
DMN case, large values of b offer the best performance.
A wider de-emphasis mask is preferable in general if the
source positions and the microphone deployment permit
it. In the current setting, the maximum peak of the map
is based on contributions provided by all the microphone
pairs (the speakers are always facing the array); therefore
removing the contribution of a pair, due to the de-emphasis
process, is not so detrimental as in the DMN scenario.
Similar results are obtained with M-OGCF, which however
can not be fully exploited in this sensor configuration due
to the nonsurrounding nature of the array, yielding slightly
worse performance than GCF. Finally, also when the LS map
is employed the proposed approach provides a considerable
gain in performance over the related baseline, although
the overall result is below those obtained with the other
maps.

Table 3: Average performance obtained using the linear array,
compared with baseline and upper bound.

Map type b p Fd Baseline Upper bound

LS 8.5 2.5 88.0% 10.3% 96.3%

GCF 8.5 1.5 92.1% 34.6% 97.4%

M-OGCF 8.5 1.5 91.1% 35.1% 97.4%

As in the DMN case, GCF and M-OGCF results are
reported for each source combination in Table 4. In general,
the trend is very similar to the average case and it is clear
that the proposed method always outperforms the baseline.
As for P2-P5, even though the performance is still above
the baseline, in this configuration the algorithm performs
worse than the average. A more detailed analysis reveals
that the algorithm fails to estimate the position of P2. In
particular, the estimation of the DOA is accurate while most
of the errors concentrate in estimating the distance from
the microphones. It is likely that the given loss is related to
some acoustic properties of the room (e.g., the window in
Figure 12(b)).

5. Estimation of the Number of Active Sources

As mentioned in the introduction, in the given application
context detecting the number of active speakers at each time
instant represents another crucial task. Although the main
focus of the paper is on localization, in this section we will
briefly show how the acoustic map peaks can also be used
as cues to estimate the number of active sources. In general,
algorithms for speech activity detection are based on acoustic
features (e.g., energy) and on their temporal correlation that
generally provides more robustness rather than processing
each frame independently [25, 26]. In our investigation, for
the sake of simplicity and to emphasize better the properties
of the given cues, the focus will be limited to an analysis based
on a single frame or on two adjacent frames.

Let us denote with H0 the hypothesis that there are no
active sources and with H1 the hypothesis that at least one
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Figure 13: Average Fd computed over all combinations in the linear array configuration.

source is active. We consider the statistical distributions of
the map maximum peak under the two hypotheses, that is,
π(M(s0) | H0) and π(M(s0) | H1), respectively. Figure 14(a)
shows the two distributions obtained from the data set
collected in the DMN case when using the GCF map. The
two distributions are clearly distinct and the detection of the
presence of an acoustic source can be achieved by using a
simple thresholding.

Once hypothesis H1 has been detected, we consider the
peak of the de-emphasized map M′(s1) and define two
new hypotheses: H11 when a single source is active, and
H12 when two sources are simultaneously emitting sounds.
Figure 14(b) shows the distribution of the peak of the
de-emphasized map in the two cases. Here, the distributions
overlap more than in Figure 14(a) but it is still possible to
distinguish between H11 and H12 by thresholding the map
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Table 4: Localization performance for each single-source combination in the linear array setup. Performance is contrasted with both the
baseline and the upper bound. P3-P5 was omitted as it is an intractable case with the array in use.

GCF M-OGCF

bloc ploc Fd Baseline bloc ploc Fd Baseline

P1-P2 6.5 0.7 96.2% 35.4% 7.5 0.7 96.2% 37.7%

P1-P3 8.5 2.0 91.4% 52.6% 9.5 2.5 90.8% 53.3%

P1-P4 10.5 2.5 100.0% 32.6% 2.5 1.0 99.0% 32.6%

P1-P5 3.5 1.5 100.0% 52.1% 6.5 2.0 100.0% 52.1%

P2-P3 9.5 2.5 90.1% 15.1% 9.5 2.5 90.1% 15.9%

P2-P4 10.5 0.7 96.1% 1.3% 6.5 0.7 93.4% 1.3%

P2-P5 7.5 1.5 67.4% 9.5% 7.5 1.5 67.4% 9.5%

P3-P4 2.5 1.5 92.2% 24.5% 4.5 1.0 92.2% 23.5%

P4-P5 8.5 0.7 97.9% 60.1% 9.5 1.0 96.6% 61.5

Best — — 92.7% 34.6% — — 92.2% 35.1%
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Figure 14: (a) distribution of the acoustic map maximum peak with and without active sources. (b) distribution of the maximum the peak
of the de-emphasized map when 1 and 2 sources are active: although the two distributions get closer, a distinction between one and two
active speaker contexts is still feasible.

peak. Moreover, the detection can be improved by jointly
using the map peaks related to two adjacent frames. In this
case, other related investigations showed that the separability
betweenH11 andH12 increased if compared to a single frame
based processing.

To show this experimental evidence, a simple detection
scheme was defined, based on a frame-by-frame analysis with
fixed thresholding. The resulting system was evaluated in
terms of false alarm and miss detection rates. Figure 15(a)
reports the ROC (Receiver Operating Characteristic) curves
related to the automatic discrimination between H0 and
H1 while Figure 15(b) refers to H11 and H12. The figures
show the detection performance obtained using the GCF
peak of a single frame (label “Single”) or of two consecutive
frames (label “Double”). Experiments show that a ROC
substantially lower than 0.1 is obtained to detect if at least
one source is active. One can then distinguish between one

and two active sources with a ROC less than 0.2 when
using two frames. This fact suggests that multiple speaker
activity detection algorithms based on GCF peak analysis
performed on intervals of duration larger than two frames
may provide a better result. Taking into account also the
spatial distribution of the peaks, one can expect to further
improve this performance.

6. Discussion and FutureWork

This paper presented an algorithm for localization of multi-
ple simultaneous sources through acoustic map analysis. The
proposed approach has been successfully tested on real data
sets collected by two different microphone settings.

Experiments show that different sensor deployments
call for different parameter settings and hence an accurate
selection of the de-emphasis function is needed to ensure
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Figure 15: ROC curves. Figure (a) shows the ROC curve for the first source detection based on 1 or 2 acoustic map peaks. Similarly Figure
(b) shows the ROC curve for the second source detection.

satisfactory results. Therefore, the adoption of an adaptive
de-emphasis depending on the relative positions of sources
and microphones would probably help and will be investi-
gated in the future.

The proposedmethod is suitable to be applied in a multi-
source tracking framework, based on either Particle Filtering
[27] or Kalman Filtering, since it ensures observation
availability for all sources. Moreover, if tracking is employed,
the de-emphasis function can be tailored to the hypothesized
source positions.

The presented algorithm is also being integrated in
audio-video tracking of multiple targets relying on a
Bayesian framework [28]. Moreover, it has been used in
the real-time DICIT prototype to track the position of
two simultaneously active speakers while two loudspeakers
(located at known positions) are reproducing stereo TV
output.

The experimental work also shows that the main peaks
of acoustic maps can be exploited to determine the number
of active sources. Further analysis on this issue requires the
introduction of these cues in a speech activity detection
component. To this regard, several approaches can be
followed, as, for instance, Random Finite Sets (RFS) that
attempt to model death and birth of sources [29]. Other
solutions may rely on short-term spatio-temporal clustering
[5], which identifies the number of sources by clustering the
localization estimates. Both methodologies will be addressed
in future studies.

Finally, a further improvement can be achieved by
exploiting some knowledge of the acoustic properties of
the environment, in particular, for what concerns reverber-
ation [24]. In this way, the early reflections associated to
the dominant source could be properly handled, reducing
their detrimental effects on the localization of the second
source.
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