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Human communication about entities and events is primarily linguistic in nature. While visual representations of information
are shown to be highly effective as well, relatively little is known about the communicative power of auditory nonlinguistic
representations. We created a collection of short nonlinguistic auditory clips encoding familiar human activities, objects, animals,
natural phenomena, machinery, and social scenes. We presented these sounds to a broad spectrum of anonymous human workers
using Amazon Mechanical Turk and collected verbal sound labels. We analyzed the human labels in terms of their lexical
and semantic properties to ascertain that the audio clips do evoke the information suggested by their pre-defined captions.
We then measured the agreement with the semantically compatible labels for each sound clip. Finally, we examined which
kinds of entities and events, when captured by nonlinguistic acoustic clips, appear to be well-suited to elicit information for
communication, and which ones are less discriminable. Our work is set against the broader goal of creating resources that facilitate
communication for people with some types of language loss. Furthermore, our data should prove useful for future research in
machine analysis/synthesis of audio, such as computational auditory scene analysis, and annotating/querying large collections of

sound effects.

1. Introduction

Natural language is a highly complex yet efficient means of
communication with great expressive power, and it is the
primary mode of human communication and information
exchange [1]. However, for people with language disabilities,
speakers of minority languages in a setting where another
language dominates, and learners of foreign languages, the
linguistic channel of communication may be less effective.
To compensate, nonverbal representations of concepts that
people communicate about have been explored and evalu-
ated as a means to support linguistic representations. These
include animations and videos [2] and especially still pictures
[3]. However, very little research has been done on the
use of nonspeech audio to convey and express concepts in
Augmentative and Alternative Communication (AAC).
Some research indicates that nonspeech audio perception
may be impaired together with speech perception for people
with specific pathological profiles because the process may
share certain channel and brain regions [4]. But there
is evidence that in many other cases, people who suffer
language impairments (as after a stroke) still retain the ability
to recognize environmental sounds [5, 6]. This work suggests

that for both language-impaired populations and for healthy
speakers whose comprehension is compromised for other
reasons, nonspeech audio (environmental sounds) have
the potential of conveying concepts and assisting language
comprehension.

Compared to static images, audio perception may require
a greater processing workload [7], as sound clips have
temporal extension. However, the fact that additional time
is required to finish listening to a sound clip is similar to
that needed to finish viewing an animation or video. In
fact, research [8] has shown that in some cases, sound can
actually enhance vision perception, suggesting that adding
nonspeech audio material may promote people’s compre-
hension of visual languages. Moreover, some concepts, such
as “thunder,” are inherently auditory in nature and can be
better described by a sound than by a picture.

Previous research (i.e., [9]) examined how environmen-
tal sounds are perceived in the human brain. However, not
much work has been devoted to the question as to which
semantic concepts are associated with nonspeech audio and
how, as most of the auditory scene analysis and classification
research focused on using automatic machine learning
algorithms (e.g., [10, 11]). This question has motivated the



work reported here, which concerns people’s evocation of
concepts with specific sounds. The majority of currently
available nonspeech audio databases, such as the BBC Sound
Effects Library that we used in our experiment, include
sound labels provided by the recording engineers; the labels
are therefore not based on discrimination and identifica-
tion. The Freesound Project [12] asked volunteers to label
submitted sounds but relatively few high quality labels were
contributed. Marcell et al. [13] ran several studies gathering
human labels and classification for 120 sounds produced
by animals, people, musical instruments, tools, signals, and
liquids. While it dovetails well with our own research, this
work covered a much smaller sample of common concepts
and focused on naming sound sources instead of semantic
descriptions. Other studies [14] concentrated on a collection
of human gestural contact sounds (scraping, hammering,
etc.), but primarily looked at the human ranked similarity
and categorization of these sounds, rather than looking at
linguistic descriptions of the sounds.

In this paper, we describe a pilot study and a large-scale
experiment devoted to collect human semantic labels for
over 300 nonspeech sounds, which are specifically designed
to convey a set of 184 familiar concepts referring to entities
and events that can be linguistically expressed by different
parts of speech. We examined the effectiveness with which
the sound clips evoke concepts and the extent to which the
labels we collected agree with the a priori labels. Three differ-
ent attempts to categorize sounds into semantically coherent
classes in terms of their auditory expressiveness allowed
some conclusions, but failed for most of the hypothesized
categories. Possible reasons for the failure to identify and
associate sounds with target concepts are discussed.

2. Materials

This section describes the procedure of constructing a
semantic network of concepts enhanced by nonspeech
audio, including (1) a core vocabulary and (2) “soundnails”
associated with each concept.

2.1. Vocabulary Selection. The broader goal of our research is
to use nonspeech audio to improve language comprehension
and acquisition for people facing language disabilities or
language barriers so as to facilitate daily communication,
and for language learning and language rehabilitation. We
designed a “core vocabulary” that includes words needed to
discuss common topics in daily communication covering
the major parts of speech. The initial vocabulary came from
Lingraphica [15], a commercial communication device dev-
eloped by the Lingraphicare Company, for people with lan-
guage impairments. It contains 1376 words (after stemming
and eliminating symbols). We compared this initial voca-
bulary with the collection of words generated from the
BBC Sound Effects Library [16] captions, which has 1368
words after stemming and without nonlinguistic symbols.
For the overlapping Vocabulary between Lingraphica and
BBC library (and after the removal of function words like
articles and prepositions), words were divided according to
their parts of speech. For those which can be assigned to
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multiple parts of speech (like “walk” and “thunder”), only
the more frequent sense (based on WordNet [17]) was kept.
The final word inventory included 211 nouns, 68 verbs, 27
adjectives, and 16 adverbs (http://soundnet.cs.princeton.edu
/OMLA/study/HearMe_Mturk/quality_control/ViewCount
.php?fn=all_noun_211.txt (fn=all_verb_68.txt, all_adj_27.txt,
and all_adv_16.txt for different parts of speech)).

2.2. Creating the Soundnails. We chose the BBC Sound
Effects Library (Original Series) [16] as our principal source
for the nonspeech audio representations because it provides a
large enough vocabulary that can overlap with the core of our
initial vocabulary for a variety of auditory events and scenes
with high quality, cleanly recorded, sound clips. The BBC
Sound Effects Library contains 40 CDs of industry standard
high-quality sound clips recorded and labelled by BBC’s top
engineers. The sounds range from more general scenes like
interior and exterior environments, household, and natural
environments to more specific categories like cars, hospital,
birds, weather, and so forth. All the sounds in the library are
labelled in great detail, for example, “Gale Force Wind And
Rain On Yacht (Recorded In Cabin),” and “Car, Rolls Royce
Silver Sprite, Interior, Electrical Window, Open and Close.”

Despite its size, this collection did not include audi-
tory representations for all the words in our vocabulary.
We looked into other resources as well, including the
Freesound Project [12] and the FindSounds website [18].
The Freesound Project is a collaborative database where
volunteers submit and label sounds they record. The
FindSounds website is a search engine for online audio.
Compared to the BBC Sound Effects Library, audio clips
from these two resources have bigger variance and are less
reliable in both quality and labels.

2.2.1. Concept-Audio Association. Having established a core
vocabulary and a collection of nonspeech audio, our next
step was to draw meaningful associations between concepts
and sounds. Intuitively, almost half of the words in the
vocabulary seemed to be difficult to be illustrated by sound.
To filter our list to words that are good candidates for
audio representation, five people from the Princeton Human
Computer Interface and SoundLab gave an “audioability”
(the ability to be conveyed by nonspeech audio) rating for
each word. A four-point rating scale was used (Table 1), and
each judge wrote a script of what kind of sound can illustrate
the given concept for words with a rating 2 or 3.

Of the 322 words, 184 of them received a rating of 2 or
higher, which means that they are considered “audioable.”
Two additional SoundLab members joined the discussion
and finalized the sound scripts for these 184 target words
(one script for each word). Those scripts formed the
guidelines for selecting and assigning sound clips based on
their original labels. A target word could be assigned to more
than one sound.

2.2.2. Soundnail Creation. The majority of the BBC sound
effects are dozens of seconds long, and many even last several
minutes; this is also the case for the clips obtained from
Freesound and FindSounds. These long clips carry richer
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TaBLE 1: Audioability four-point rating scale.

Rating Justification Example

cannot make sound or be used to
0 produce sound and cannot be “am”
represented by sound

can make sound or be used to
1 produce sound, but cannot be
represented by sound

“desk”

can make sound or be used to
produce sound, and may be able to
be represented by sound, meaning
the sound could be ambiguous

P
glass

can make sound or be used to
produce sound, and can be
represented by sound, meaning the
sound is distinctive

«dog”

and more complex information than can be conveyed by
a single concept. For the applications we have in mind,
such scripts are not suitable. Another problem is the size of
the clips. They are high-resolution stereo files, which makes
them difficult to store and load. For practicality and quality
control, we edited all files to uniform length and down-
sampled all selected clips to 16 kHz, 16 bit mono, which is
a sample rate at which people can still well recognize the
sound scene. Our 16 kHz sample rate decision was based on
the fact that many games (especially mobile/handheld) use
11.025 or 22.05 kHz sample rate, and the speech recognition
community has historically used 16 kHz for recognizers. It
was critical to keep file sizes small for web transmission to
our test subjects (see below), and we could not guarantee that
they would have the proper mpeg/other audio decompressor
installed and working on their computers. Our committee
concluded that 16 kHz, 16 bit audio was of acceptable quality,
and this was verified in a pilot study [14]. All sound clips
were randomly chunked into five-second fragments, as it was
desired to keep files short, of the same length to balance
the experimental conditions, but long enough to still embed
enough information.

Signal Processing and Machine Learning algorithms were
applied to select the representative fragment (one that
contains the most distinctive information). All five-second
fragments were represented in the frequency domain, and
six features (Mean and standard deviations of RMS Energy,
Spectral Centroid, Spectral Flux, 50% and 80% rolloff,
and 6-10 MFCCs) reflecting different characteristics were
extracted (Table 2) [19]. Later, for each original sound clip,
all the fragments were clustered into three to four groups
by K-Means algorithm based on the extracted features. The
fragment that was the closest to the center of its cluster
was selected as the representative for the group. After auto-
matic processing, up to four candidates (depending on the
complexity and variance of the sound scene) “soundnails”
(short representative sound clips) were generated for each
sound clip. Each soundnail included certain characteristic
sounds. In the last step, project group members examined
all candidates and selected one as the representative to be
associated with the target concept.

TaBLE 2: Audio features used in soundnail creation.

Feature Description

Mean and standard
deviations of RMS
Energy

The average frequency that will vary
for each signal.

The average frequency of the signal

Spectral Centroid weighted by magnitude.

Spectral Flux How much the frequency varies over

time.
How much of the frequencies are
0, 0,
gogoctar;lld Ifc?llf) P concentrated below a given threshold
P (50% and 80%).
Mel-Frequency Cepstral Coefficients:
6-10 MFCCs amplitudes of spectra specified by a

set of filters.

A total of 327 5-second soundnails were generated and
assigned. All soundnails are of the same power, except in
specific cases requiring lower or higher volume, such as
sound from far away sources.

3. Experiments

Experiments were designed and conducted to collect human
semantic labels for all the soundnails included in our
vocabulary. Our goals in analyzing the collected responses
were to determine

(i) first, whether the soundnails actually convey the
intended concepts;

(ii) second, if not, what concept people agree on instead;

(iii) third, for disagreements among the labellers, what
causes the ambiguity and how can it help to select
better auditory representations.

Labeling 327 sounds is an intensive task. Furthermore, to
leverage individual differences and generalize meaningful
semantic labels, a large number of human participants is
required, which makes it impractical and expensive to carry
out such a study in a controlled lab environment. Therefore,
we decided on an alternative, conducting an online survey on
the platform provided by Amazon Mechanical Turk (AMT)
[20].

3.1. Tasks and Interface. The purpose of the experiments is
to collect free form human labels for soundnails. In order
to encourage people to come up with as much information
across different parts of speech as possible, participants were
asked to answer three questions, targeting sources, locations,
and actions, respectively, after listening to the soundnail.

(1) What is the source of the sound? (What object(s)/
living being(s) is/are involved?)
(2) Where are you likely to hear the sound?

(3) How is the sound made? (What action(s) is/are invo-
Ived in creating the sound?)
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Answer the following questions (all are required, and give your best guess if not sure):

What is the source of the sound? (What object(s)/living being(s) is involved?)
Where are you likely to hear the sound?
How is the sound made? (What action(s) is involved in creating the sound?)

FIGURE 1: Sound labeling experiment interface.

Figure 1 shows the experiment interface. The interface is
web-based, and the sound automatically starts once the page
is loaded. Subjects could replay the sound as desired.

3.2. Controlled Pilot Study with HCI Students. Although the
main study was conducted online, we carried out a pilot
study in advance to test and modify the study interface (e.g.,
autoplay of the sound and phrasing of the questions) and
generate ground truth human labels for quality control of the
online study (details see the next section).

Twenty-two Princeton undergraduate students from the
Human Computer Interface (HCI) Technology class partic-
ipated in the pilot study. Five to eight labels were produced
for each soundnail, and the time to label each soundnail was
automatically logged as well. A poststudy questionnaire was
given to gather feedback on the design and interface of the
experiment.

3.3. Online Sound Labelling Study on Amazon Mechanical
Turk. Amazon Mechanical Turk (AMT) is a web platform
operated by Amazon, where people can post web-based
surveys in which people all over the world can take part,
requiring only an Amazon account. AMT provides services
including account management, task management, partici-
pant control, and participation payment transaction.

In our sound labelling study, soundnails were shuffled
and randomly grouped into 32 assignments of 10 to 11
sounds each, noted as Human Intelligence Tasks (HITs) by
AMT. The size of the HIT was based on the response time
logged in the pilot study, which avoids an overly long or
tiring task. We requested at least 100 people to label each
HIT, and no one person could label the same HIT twice. On
average, the completion time per HIT was 14.64 minutes.
The completion of the experiment took 97 days. Individual
completion time per sound was logged.

3.3.1. Participants. Although AMT does not provide any
identity and demographic information for the participants,
we collected the geographic location for a sample of the
participants (Table 3). People from 46 countries took part
in the experiment, which suggested that our results had
universal and culture-independent validity.

3.3.2. Quality Control. Since the AMT experiment was
conducted online, we had no control over the environment
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TaBLE 3: Examples of country and participant counts for AMT
study.

Country Participants ~ Country  Participants
United States (49 states) 1344 Macedonia 15
India 465 Bahamas 12
United Kingdom 49 Philippines 12
Canada 48 Germany 11
Egypt 24 Others 55

of the participants and their honesty. Four schemes were
applied to control the quality of the data we collected.

(1) On the front of the experiment page, we specified the
hardware and software requirements, and provided
instructions and links to help people set up for the
study (Figures 2(a) and 2(b)).

(2) Before subjects could proceed to the actual study,
there was a login page with auditory captcha of a
person reading a sequence of letters and numbers.
Subjects were required to enter what had been said
correctly in order to access the experiment page
(Figure 2(c)). This step ensures that people can hear
the sound properly and listen carefully, avoiding a
situation where “robots” hack into the system.

(3) At the beginning of each HIT, an instruction clip
was played, demonstrating what kind of sound would
be played, and how to answer the three questions.
Participants were asked to put down mandatory
words at specified places as a practice. This step
ensures to further check the sound system and
to avoid automatically generated and thus invalid
responses; it also helps participants to familiarize
themselves with the interface and gives an idea of the
desired level of description detail.

(4) Once labels were submitted, our system compared
the new results with the ground truth data from the
pilot study to ensure that people were actually paying
attention to the study and that meaningful labels
were assigned. Finally, a manual review determined
whether to accept or reject the work.

4. Data Processing and Generation of Sense Sets

After the AMT online sound labelling study was completed,
each soundnail had been labelled by at least 100 (up to 174)
participants. All labels were in sentence format. To facilitate
analysis and evaluation, the semantic human label data were
processed as follows.

Each sentence was broken down into bags of words.
Function words that do not contain much information, such
as “the,” “and,” and so forth, were filtered out. The raw
data contained inflected words that we stemmed (reduced
to their base forms) with the help of WordNet [17] and the
Natural Language Toolkit [21]. Each unstemmed word was
first looked up in WordNet, an online lexicon database, to
see if it has a meaning independent of the base form; if this
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HearMe: tag special effect sound

[Hume \ Instructions || Login

Welcome to HearMe!

Thank you for participating in our study of sounds.

Do you have:

+ a headset or speakers?

» proper plug-in on your web browser to play music? (i.e. QuickTime)

If you are ready, let's get started:

« first time users: click on the "Instructions" tab for tips on how to do the tasks;
» return users: welcome back, and click on the "Login" tab.

(a) Hardware and software examination

HearMe: tag special effect sound
Instructions

Tips on how to do the HearMe tasks:

Step 1. Login (and test your sound system):

 click on the sound & and listen to what the person is saying;

+ type in the letters and numbers you heard and click submit;

+ if your sound system works correctly and you pass the test, the HearMe task page will pop up;

+ if you encounter technical problems, please check your headset/speakers and the plug-in on your web browser;
+ please note that all the tasks should be finished in one round; re-login may get to a different set of tasks.

Step 2. HearMe (tag special effect sound):

« click on the play button (») to listen to the S-second sound clip 3; refresh the webpage if no sound comes out;
« based on what you heard, answer three questions (*answers to all the questions are required):
1. What/who makes the sound or is the sound made with?

2. Where might you hear this sound?
3. How is the sound made?

+ click the submit button to upload your answers and move on to the next sound clip;
o click the "Logout and return to HearMe home" link on the upper right when all the tasks are finished.

Contact hearme.omla at gmail dot com if you have any questions or encounter any problem.

Now click on the "Login" tab to get started!

(b) Instructions

HearMe: tag special effect sound
StICtions) | Login
Login to HearMe

Play and listen to the following sound J'

[F——— " - W T

Type in the letters and numbers you heard:

(c) Login and capcha

FIGURE 2: Quality controls.

was not the case, it was stemmed. For example, “woods”
meaning “forest” was not reduced to “wood,” since it has its
own meaning, while “pens” was transformed back to “pen.”
Following these steps, each sound was associated with a set
of validated words.

For each sound, the total number of times each valid
word appears was counted across all labellers. This number
is referred as “word count” in the following sections. Figure 3
shows the top five word counts for the three soundnails
associate with target word “train” This suggests that the
concepts that people associated varied according to the
particular sound scene (three in this example) even though
they have the same source.

The average number of valid words generated per person
per sound is calculated. It is indicative of much information a
sound can evoke, that is, how descriptive a sound is. Table 4
shows the ten most descriptive and the ten least descriptive
sounds. The sounds are listed as “target word, description”.
For example, “Cat, Persian Meowing” is a soundnail for
the word “cat,” and it renders a Persian cat meowing. It is
interesting to see that nine out of the ten sounds that have
the lowest word count are generated by living beings (human
or animal) or natural phenomena (such as wind), suggesting
that natural sounds tend to be more distinctive. Also, more
descriptive sounds (e.g., a doorbell ringing) only involve
one source with no interaction among objects. In these



Target word: train

.|¢tamm

|trm:k station moving 31
nllmrn 22 [track 42 [railroad 26
|muvie 16 |blow 38 |helicopter 20
Bsior 14 [railway 23 19
nlcar 13 |engine 22 |over 16
Bl [asic 12 fmoving 21 [wheel 15
nlsubway 12 |steam 17 [station 15
|com.ing 11 jhorm 15 railway 11
[ 11 [T 10 [railroad 10 [running 10
|brake 10|[toy 8 |engine 10
| 10 |starting 7 |operating 8
|whistle 9|[pull 7 [subway 7
|1'ai]way 9||going 7 [rolling 7
|street 8 |down 7 [noise 7
|consu'uction I 8 |m.rming I 6 |t|riving 7

FIGURE 3: Word count examples for the three sounds for train.

TasLE 4: Top 10 and bottom 10 sounds in their average word count.

Sound (top 10) Word count Sound Word count
P (average) (bottom 10) (average)
Bird,
Beer, Plopp 9.66 Chaffinch 5.47
Ball, Table Doorbell,
Tennis Ball 932 Single 245
Beer, Pour 9.24 Turkey, Hen 5.42
Reverse, Truck Wind,
Backup 9-22 Howling 539
Zoo, Bird Dog Bird,
and People 9:21 Nightingale 534
School, Cat, Persian
Classroom Bell 918 Meowing 531
Weight, Off the Cold,
Scale 8.86 Coughing 528
Beer, Bottle 8,74 Farm, Hen 518
Open House
Farm, Cattle
Roll, Ball 8.71 in Shed 5.12
Move, Concrete 8.67 Bird, Linnet 4.85

Block

cases, fewer words are needed to explain how the sounds
were generated. By contrast, sounds with high average word
counts could be associated with a more complex scene (such
as zoo and school), or with several possible sources (such as
heaviness).

Within the “bag of words” for a given sound, different
words were often used to denote the same or very similar
concept. In this sense, it seemed meaningful to group
those words together as a “sense set” (or concept group)
when considering what concepts the sound evoke. To be
convenient, in the following sections, a sense set will be
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referred as a “label” to be distinguished from “word.” If
not specified, all the calculations and evaluations described
below are based on labels instead of words.

There are three cases how words can be grouped into
labels.

(1) Synonym sets, in which words have the same mean-
ing. For example, “baby,” “infant,” and “newborn”
are group into the “baby” sense set, labelled with the
most frequently used word “baby.”

(2) Similar senses expressed by words from different
parts of speech. For example, “rain (noun),” “raining
(verb),” and “rainy (adj.)” are grouped into the “rain”
sense set.

(3) Hyponym and hypernym (super- and subordinates).
This varied case by case. For example, for the sound
“ball”, “basketball,” “tennis ball”, “ping pong ball” will
all be put in the “ball” sense set, while for the sound
“basketball”, the word “basketball” had its own sense
set.

A weight is calculated for each member word in the sense set
based on their actual word count. In this process, misspelled
words were corrected and taken into account.

5. Evaluation Metrics

Since a word count depends on the number of participants
who labelled the sound and thus varied across sound, a
relative score, referred as “Sense Score” is calculated for each
sense set per sound. It is the average number of times across
all labellers with which a sense set (label) is generated for a
sound. Thus, the sense score shows how much participants
agree on a label

sense score = word count (1)
number of labelers’

For example, a score of 0.5 means 50% of the participants
generate the label (sense set) once, and a score of 2 means on
average each person used the label twice. The estimate of the
highest sense score is 3, meaning that each person used the
label once for answering each of the three questions. Figure 4
is an example of sorted sense score distribution for a sound.

Based on the sense score distribution, statistical descrip-
tors can be calculated. The evaluation metrics (non-
statistical and statistical) we looked at in our primary analysis
include the following.

(1) Top score: the highest sense score for each sound. It
shows the extent to which participants agreed on the
most agreed-upon word. It is the highest y-axis value
in a sense score distribution plot.

(2) Label number: the total number of labels (sense sets)
generated for each sound. It is the highest x-axis value
in a sense score distribution plot.

(3) Mean score and standard diviation: mean and stdev of
the sense scores.
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25 1

1.5 b

20 40 60 80 100 120 140

>

(a) “Skip, tape’

25 ¢ 1

0.5 1

0\\"

50 100 150 200 250
(b) “Umbrella, Opening Umbrella”

FiGgure 4: Examples of a sorted sense score distribution. Each point
on the x-axis is a label (sense set); the corresponding y-axis value is
the sense score for the label.

(4) Steepness: this measure shows quickly the sense scores
drop across labels. Usually, the flatter the sense score
distribution is, the less clearly the sound is associated
with a single concept.

Correlation coefficients between the the metrics were com-
puted. The correlation (Figure 5) between top score and label
number is about —0.7, which means in general, the more
people agree on a concept, the fewer labels are generated.
Figure 6 hows that there is a strong correlation (>0.9)
between top score, mean score, standard deviation, and
steepness. As a result, we can simply use top score and
label number for evaluating how well a sound can convey a
concept.

6. Primary Analysis

Figure 7 shows the histograms for top score (a) and label
number (b) across all sounds. These suggest that most of the
sounds conveyed a certain concept (over 300 sounds have

25 ¢

L5}

Top score

0.5

0 100 200 300

Total number of labels

FiGure 5: Correlation between top score and label number.

a top score greater than 0.5, meaning that over half of the
people use the same label).

6.1. Audio Expressiveness. We provide some evaluation of the
data. Table 5 lists the ten sounds with the highest top score
and the ten sounds with the lowest top score. A high top
score means people have a very similar idea on what the
sound is about, while a low top score means people have
very different opinions. The former indicates that sounds are
distinctive and can easily be associated with a concept. The
latter indicates that sounds are ambiguous and can easily be
associated with more than one sound.

6.2. Effectiveness in Illustrating Target Concepts. Since a major
goal of our study is to determine whether the soundnails can
illustrate target concepts, the sense scores of target sense set
were extracted and compared to the sense sets showing the
highest agreement among the participants. The results can
be categorized into four kinds of situations, exemplified in
Table 6.

(1) For those sounds whose target word shows the
highest agreement, the results confirm that they suc-
cessfully convey the target concept. There are about
ninety sounds in this category. These soundnails are
effective and can likely be utilized to assist language
comprehension and communication.

(2) For the sounds of which the label with the highest
agreement (different from the target word) matches
the sound description (given in the sound file name),
it can be said that the sound (scene) is distinctive and
can convey a concept, though different from what
is desired. About 150 sounds are in this category.
Two possible reasons can be cited for this result.
(a) The desired concept requires extra linkage to the
sound scene; (b) the participants focused on different
objects or aspects related to the sound.



Top score

0 0.1 0.2 0.3 0.4

Mean score

()

Top score

0 0.5 1 1.5 2 2.5
Steepness

(b)

FIGURE 6: Correlation between mean score (a) and steepness (b) and
top score.

(3) The sounds where participants provided labels differ-
ent from the sound description with high agreement
are suggestive of a concept, though not the a priori
one. About 52 sounds fall into this category.

(4) In the case of the sounds for which participants in
general did not agree (low top scores), we conclude
that they lack the necessary characteristics for people
to identify and associate them with specific concepts.
About 35 fall into this category.

Of course, cases (2—4) may simply suggest problems with
the scripting and sound selection. Further analysis on why
people came up with different labels than what was desired
can guide our future refinement of the construction of a
network of concept-nonlinguistic audio connections.

One of our hypotheses, that different sounds that can
be associated with the same concept may differ with respect
to the effectiveness with which they evoke the concept,
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FiGure 7: Histograms of top score (a) and label number (b) across
all sounds.

was verified. For a first test of this hypothesis, we assigned
different sounds to most of the target words. For example, for
“microwave,” both the sounds that were prelabelled “loading
dishes and close the door” and “spinning and ending” were
given. Figure 8 shows the sense score distribution of the top
ten sense sets for the two sounds assigned to “telephone.”
One can see that the “phone ringing” sound is more
distinctive than the “lifting receiver and dialling” sound. The
differences for the agreed-upon sense sets for the two sounds
also suggested that different scenes, events, and actions could
be evoked even with the same sound source.

6.3. Audio Categorization. In order to draw some conclusion
from our results concerning the audioability of our stimuli,
the 327 sounds were categorized based three different
criteria suggested by a linguist and a sound specialist. These
categories reflect the three questions that motivated our
experiment.
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TasBLE 5: Top ten and bottom ten sounds in top sense score.

Top score Sound Top score
Sound (top ten) (label (bottom ten) (label
number) number)

Spring, Door

Skip, Tape 2.8000 (143) Spring 0.4000 (194)
Vibrate
. Stop, Hose
Ring, Telephone  2.6716 (67) Pipe 0.3966 (214)
Cold, Teeth
Scream, Baby 2.5524 (74) Chatter 0.3814 (213)
Cat, Persian Bucket,
ab rersia 2.5254 (54)  ThrowCan  0.3727 (202)
Meowing .
into Bucket
Train Window,
At 2.4622 (87) Window  0.3712 (270)
Choochoo .
Slide Open
Gym,
Cry, Baby Girl Intensive
Cry 2.4608 (59) Wokos 0.3551 (223)
Breathing
Telephone, Ring Bike, Wheel
Pick Us 2.4274 (61) Turning 0.3500 (192)
Horn, Car Horn ~ 2.4224 (64) 22 Iirii’quet 0.3363 (170)
Dryer,
Farm, Hen 2.4123 (50) Hairdryer  0.3008 (203)
House
Stop
Umbrella,
Young, Baby 2.3697 (57) Opening 0.3000 (262)
Talk
Umbrella

TaBLE 6: Examples of situations of how well sounds convey target
concepts.

Situation Sound Target Agreed
concept label
(1) Cat, Persian Meowing Cat Cat
(1) Train, Choochoo Train Train
(2a) Farm, Cattle in Shed Farm Cow
(2a) Day, Rooster Clock Crickets  Day Rooster
(2b) Floor, Walk in Classroom Floor Walk
(2b) Toilet, Flush Toilet Water
(3) Television, Change Channel  Television Radio
(3) Slice, Cut Bread Slice Saw
(4) Umbrella, Open Umbrella Umbrella Match
(4) Bike, Wheel Turn Bike Motor

(1) Source: source of the sound (Table 7).

(2) Event: complexity in terms of the number of interact-
ing participants (Table 8).

(3) Scene: location where the sounds are likely to take
place (Table 9).

From the top score histograms (the y-axis represents the
number of sounds in each bin), we can see that, in general,

0 1 1 1 1 1 1 1 1
Q 18} Q [} [le] — 1]
E £ 2 g &8 £ 3 % E ¥
= ~ < ¢ £ A = = S
~ e o ) 9] 2 <
= B 2
H
(a) Sound: telephone, ring pick up
3
251
2 -
1.5F
1 -
0.5
0 : = e = :
=1 < @ o] o < o o
£ B 2 E § = £ £ & §
o T o a Y S o
) M ~
e

(b) Sound: telephone, lift handle dial

Figure 8: Top 10 sense score distribution of two sounds for
“telephone.”

synthesized sounds are quite ambiguous (Figure 9). People
often associate them with science fiction and movies. By
contrast, single source natural sounds are very distinctive
(Figure 10). An example of an outlier is “Cold, Teeth Chat-
ter” Figure 11 shows that participants could identify sound
scenes involving humans relatively easily. For example, they
can tell a restaurant from a train station and a school from
an office. For most of the other categories, the distributions
of the top sense score are quite spread out, and no solid
conclusions can be drawn.

6.4. Audioability and Parts of Speech. Another way to evaluate
the results is to ask whether how well the semantic human
labels align with the a priori labels classified by parts of
speech and the audioability rating. Table 10 compares the
numbers of words from different parts of speech for the
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TABLE 7: Descriptions of sounds divided by category. TaBLE 9: Descriptions of sounds divided by Scene.
Source Description Scene Description
HumanVocal Vocal sounds made by human, such as Outdoors Sounds evoking a nonspecific outdoor
coughing and laughing location (e.g., wind).
Actions performed by human, such as Indoors Sounds evoking a nonspecific indoor
HumanContact walking on the snow and knocking on the location (e.g., walking on a floor).
door. Bathroom Bathroom sounds such as flushing.
HumanScene Cofmptllixﬂevent that involves humans, such Kitchen Kitchen sounds such as washing dishes.
as footbatl game. ek ae b School School sounds such as suggestive of a
NaturalAnimal So.ull(lcis made by animals such as birds and classroom.
crickets. Office Office sounds such as printing.
Sounds generated by natural phenomena Workshon/f. ds taki h
NaturePhenomenon such as wind and waves (excluding sounds Workshop orkshop/lactory sounds taking such as
. hammering.
made by animals). )
. . . Transportation-related sounds such as car
Sounds resembling sounds occurring in Transportation ds and stati
NatureSemi nature, such as people blowing air or sounds and stations.
splashing water. Sport Sports-related sounds such as a basketball
ObjectContact Sounds made by contact between two game and J O88INg: )
) objects, such as a ball hitting a bat. Transaction Commercial trans.actlon—related sounds
ObjectRustl Sounds made by object, such as a rustling such as a cash register.
JectRustie plastic bag. Nature Nature sounds such as birds singing.
ToolVehicles Sounds related to vehicles (cars, boats, Uncertain Location-independent sounds coughing.
planes) as well as their parts.
. Sounds made by mechanical tools, such as . . .
ToolMechanical scissors and handsaw TasLe 10: Comparison of numbers of different parts of speech in
t . target words and most agreed labels for all sounds.
. Sounds made by a machine or electric
ToolMachine . .
device, such as a drill. POS Target Most-agreed upon All agreed-upon
. Electronic devices such as television and words labels words
ToolElectronic .
radio. Noun 250 271 1328
BellAlarm All kinds or alarms and sirens. Verb 98 65 488
BellOrdinary Bells such as doorbells and church bells. Adj. 14 4 117
BellSynthetic All synthesized sounds. Adv. 6 0 31

TaBLE 8: Descriptions of sounds divided by event.

Event Description
Sounds initiated and completed by a single

SingleSource source can be divided into finer groups:
SingleNature and SingleArtifact.

SingleNature Single source sounds made by living beings
or natural phenomena.

SingleArtificial Smglet source sour}ds made by bells,
machines, and artifacts.

HumanObject Sounds of hl}man manipulating one object,
such as rustling a bag.

ObjectObject Sounds of two objects interacting, such as
pen scratching paper.

MultipleObjects Complex sound scenes or sounds with

multiple entities involved.

target words and the most agreed-upon label for all sounds.
The table further lists the parts of speech distribution among
words (broken down the sense sets) that at least 25% of
the participants agreed to assign to a sound. Table 11 gives
further details in differences between intended parts of
speech and labelled parts of speech. Note that the total
number does not add up to 327 because some words can be

TABLE 11: Pairwise comparison between parts of speech of the target
words and those of the most agreed-upon labels.

Agreed Target Agreed
Target POS POS count POS POS count
Noun 231 Noun 14
Noun Verb 56 Adj. Verb 2
Adi. 4 Adi. 2
Adv. 0 Adv. 0
Noun 38 Noun 6
Verb Verb 39 Adv. Verb 1
Adj. 0 Adj. 0
Adv. 0 Adv. 0

in different parts of speech though with similar meanings.
For example, people used “rain” both as a noun and a verb in
their labels. Difference in labels by part of speech here does
not impact the audioability rating.

7. Discussion

7.1. Sources of Discrepancies in Audio Interpretation. There is
a number of reasons why people may interpret the sounds
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differently from one another and from the a priori labels.
Here, we are discussing cases (3) and (4) mentioned in
Section 6.2.

Concepts that are ambiguous from an audio charac-
teristics perspective do not seem to have a unique sound
associated with them, or at least not a sound distinctive
enough at a finer level. For example, a “desk” does not
have a characteristic sound of itself, because artifacts do not
generate sounds by themselves unless they are deployed by
a user; similarly, it seems difficult to distinguish the sound
of an iron bell from that of a steel bell, which suggests that
fine-grained differences among category members are not
audible.

The participants’ familiarity with the sound could be
an important factor affecting their perception. For example,
many people mistook the lion roaring sound to a bear sound
and even a cow call. Life experience is a related factor.
Comparing the AMT labels to the pilot study labels, we found
that the young students in the pilot study made many more
mistakes in identifying an old-style phone dialling sound.

11

12

Number of sounds in each top score bin

Top score

F1GURE 11: Top score histograms for HumanScene sound category.

A conceptual-linguistic perspective suggests that many
abstract concepts are difficult to evoke with sounds. For
example, we tried to represent the concept “day” (meaning
a complete 24-hour cycle) by combining a rooster crowing, a
clock ticking, and crickets chirping into one sequence. While
most participants were able to identify one or more concepts
in the sequence, none of them generated the label “day.”
Similarly, the sound for “winter” was in most cases labelled
“Christmas.” It suggests that for very abstract concepts,
people tend to associate the sound with more specific events.

We tried to represent abstract concepts like “up” and
“down” by changing the pitch of the sounds, similar to
earcons [22]. However, nearly all participants labelled these
as synthetic sounds for games or alarms. Attempts to
illustrate “left” and “right” failed in similar ways (we could
not determine if users had proper stereo sound systems).
This appears to support previous research that compared to
actual environmental sounds, earcons need more learning
[23].

7.2. Better Audio Categorization in Terms of Expressiveness.
Our three criteria (sources, locations, and events) for
accounting for sounds’ audioability are not sufficient to
explain the results. More relevant factors that impact the
distinctiveness of nonspeech audio should be hypothesized
investigated. For example, material (glass versus metal versus
stone) might be a strong indicator [24].

A Detter categorization of sounds based on their expres-
siveness will provide guidance for designing improved
nonspeech audio representations of concepts.

8. Summary and Conclusions

In this paper, we describe an experiment collecting a
large number of human-generated semantic labels for a
collection of nonspeech audio clips. The ultimate goal is
to create effective auditory representations for commonly
used concepts to assist language comprehension, acquisition,
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and communication. The audio clips are played to evoke
intended concepts to rebuild/enhance the missing links
between words and actual concepts for people with language
disabilities or barriers in the context of Augmentative and
Alternative Communication, language rehabilitation, and
reading comprehension.

In the experiment, which was conducted online via
the Amazon Mechanical Turk platform, 327 “soundnails”
associated with 184 words from different parts of speech
were labelled by over 100 participants each, addressing
the source(s), location(s), and event(s) involved in the
audio content. The soundnails had a maximal length of
five seconds and were extracted from special sound effect
collections using audio processing and machine learning
schemes. Labels were normalized (stemmed) and regrouped
into semantic units (sense set). A score based on word counts
and the number of labellers was calculated per sense set per
sound. Several evaluation metrics were proposed to further
assess how well a sound can convey a concept.

Results showed that about a third of the soundnails
evoked the a priori concepts. For another half of the sounds
the auditory contents were correctly identified, though par-
ticipants agreed on labels (sense sets) that differed from the
target concepts. Those sounds were verified and they can be
directly applied to our nonspeech audio enhanced semantic
vocabulary network. The remaining sounds were either too
similar to other auditory events, or too ambiguous to gen-
erate agreement among human labellers. Different possible
reasons that affect the expressiveness and descriptiveness
of a sound were discussed, from auditory complexity and
characteristics, linguistic features to human-related factors.

Three categorizations of sounds, based on sources,
locations, and events, respectively, were proposed in order
to explore the factors bearing on the distinctiveness of
sounds and their effectiveness in conveying specific concepts.
However, only a few categories were strongly indicative of
the expressiveness of the sounds. Future work will include
analyses based on different criteria, such as the material
make-up of objects involved in the sounds.
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