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With ageing, human voices undergo several changes which are typically characterized by increased hoarseness and changes in
articulation patterns. In this study, we have examined the effect on Automatic Speech Recognition (ASR) and found that the
Word Error Rates (WER) on older voices is 10% absolute higher compared to those of adult voices. Subsequently, we compared
several voice source parameters including fundamental frequency, jitter, shimmer, harmonicity, and cepstral peak prominence of
adult and older males. Several of these parameters show statistically significant difference for the two groups. However, artificially
increasing jitter and shimmer measures do not effect the ASR accuracies significantly. Artificially lowering the fundamental
frequency degrades the ASR performance marginally but this drop in performance can be overcome to some extent using Vocal
Tract Length Normalisation (VTLN). Overall, we observe that the changes in the voice source parameters do not have a significant
impact on ASR performance. Comparison of the likelihood scores of all the phonemes for the two age groups show that there is
a systematic mismatch in the acoustic space of the two age groups. Comparison of the phoneme recognition rates show that mid
vowels, nasals, and phonemes that depend on the ability to create constrictions with tongue tip for articulation are more affected
by ageing than other phonemes.

1. Introduction

Older people form an important user group for a variety
of spoken dialogue systems. Systems with speech-based
interactions can be particularly useful for older people with
mobility restrictions and visual impairment. One of the
main challenges in developing such systems is to build
Automatic Speech Recognition (ASR) systems that give good
performance on older voices.

With ageing, several changes occur in the human speech
production mechanism consisting of the lungs, vocal cords,
and the vocal cavities including the pharynx, mouth, and
nose.

In the respiratory system, loss of elasticity [1], stiffening
of the thorax, reduction in respiratory muscle strength
[2], and loss in the diaphragm strength [3] are the most
significant changes. This leads to a reduction in forced
expiratory volume and lung pressure in older people, as a
result of which there is a decline in the amount of air that

moves in and out and the efficiency with which it moves
[4, 5].

Changes in the larynx that occur during old age, such
as stiffening of the cartilages [6] to which the vocal cords
are attached and degeneration of intrinsic muscles [7],
reduce the ease of vocal fold adjustments during phonation
[8]. Increase in the stiffness of vocal cord cover is also
observed, leading to instability of the vocal fold vibrations
[7]. Thickening of laryngeal epithelium progressively with
age has been reported [9] which may contribute to the
lowering of fundamental frequency and increased harshness
observed in older voices.

Changes observed in the vocal cavity include degener-
ation of pharyngeal muscles, decline in salivary function,
loss of tongue strength and tooth loss [4, 10]. Degenerative
changes are also observed in the temporomandibular joint
which controls the jaw movement during speech production
[11]. These changes could considerably affect the articulation
of speech. Changes in vocal tract dimensions have also
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been observed in older speakers [12], which may affect the
resonance patterns in older speakers resulting in reduction
of articulatory precision.

There is, however, a large variability in the extent and the
rate at which voices age. Vocal ageing is not only dependent
on chronological age, but also on several other factors that
influence voice such as lifestyle, medical condition, smoking
habits, and profession of the person.

Although there have been numerous studies on the
effects of ageing on voice, there has been limited work
to understand how these changes affect the performance
of Automatic Speech Recognition (ASR) systems. Higher
Word Error Rates (WERs) of about 9–12% absolute in older
voices as compared to adult voices have been reported in
[13, 14]. In a study of speech recognition for the children
and older people [15], it was found that the WERs increased
dramatically for voices above 70 years of age.

Apart from the difference in acoustics, older people also
appear to differ in linguistic characteristics when interacting
with Spoken Dialogue Systems (SDS) [16]. They tend to use
a lot of words compared to younger adults in their queries
and talk to systems as if they were humans [17]. This kind
of interaction style also needs to be accommodated into
the design of ASR systems [18] by appropriate language
modeling targeted towards the user age group.

The speech production mechanism can be viewed as a
source filter model, where the glottal excitation represents
the source and the vocal tract acts as the filter modifying
the excitation to generate the desired sounds. In this article,
we focus on the voice parameters that capture the source
characteristics of the speech and attempt to understand the
effect of changes in these parameters on ASR accuracies. We
have compared several important voice characteristics such
as the fundamental frequency, jitter, shimmer, harmonicity,
and cepstral peak prominance of adult and older voices and
wherever the measures differ significantly, we analysed the
effect of changes in these parameters on ASR performance.
We have also compared the average likelihoods of the
phonemes and phoneme error rate to find out if the drop
in ASR performance with ageing is due to changes in
articulation patterns of a subset of the phonemes.

The organisation of the rest of this article is as follows.
In Section 2, the ASR experimental setup is described
and the ASR performance on adult and older voices are
compared. Voice parameters of the two age groups are
compared and their effect on ASR performance is analysed
in Section 3. In Section 4, the likelihood scores and phoneme
error rates for the two age groups are compared. The
results are discussed in Section 5 followed by conclusions in
Section 6. Wherever suitable, the results have been shown
in graphs and the relevant numbers are tabulated in the
Appendix.

2. ASR Performance

2.1. Corpus. Most of the speech corpora used in ASR
research have inadequate representation of older voices.
The Supreme Court of the United States (SCOTUS) speech
corpus [19] was found appropriate for our experiments as

it has sufficient speech data from healthy older and adult
voices. One advantage of this corpus for ASR experiments
is that the recording setup for the court proceedings has
remained the same over a period of time and hence
the variations in noise and microphone characteristics are
minimal. The other advantage is that the language used in
the Supreme Court is formal and is fairly similar across all
the speakers.

The SCOTUS corpus has been made public under
the Oyez project (http://www.oyez.org/). Each court case
recording’s duration is about one hour and consists of
speech from the advocates and judges arguing the case. These
recordings were archived on reel-to-reel tapes, which were
later digitized and made public.

The recordings from later half of 1990s until 2005 have
been used in our experiments. In all, the experimental corpus
contains 534 recordings. It consists of speech from 10 Judges
over several years and about 500 advocates. The birth dates
of the Judges are known and hence their age at the time of an
argument can be precisely calculated. The birth dates of the
advocates are not easily available, hence wherever the birth
dates were not available, their age has been approximated by
using the year of their law graduation and assuming their age
at graduation to be 25.

In order to obtain the sentence boundaries and speaker
turn alignments in each of these one-hour-long audio
recordings, forced alignment was performed on each record-
ing using acoustic models trained on 73 hours of meetings
data recorded by the International Computer Science Insti-
tute (ICSI), 13 hours of meeting corpora from the National
Institute of Standards and Technology (NIST) and 10 hours
of corpora from Interactive Systems Laboratory (ISL) [20].

Using this corpus, we have built a state of the art ASR
system using the Hidden Markov Model Toolkit (HTK)
(HTK version 3.4 http://htk.eng.cam.ac.uk/).

2.2. Feature Extraction. The SCOTUS corpus in MP3 for-
mat was first converted to 16 kHz wav format and then
parametrised using perceptual linear prediction (PLP) Cep-
stral features. A window size of 25 ms and frame shift of
10 ms were used for feature extraction. Energy along with
1st and 2nd order derivatives were appended giving a 39-
dimensional feature vector.

Cepstral means and variances were computed for each
speaker in each recording. These were then used to normalise
the feature vectors to minimise any channel introduced
effects.

2.3. Acoustic Models. The acoustic models were trained on
90 hours of speech data from 279 speakers. A major portion
of the entire corpus is from males, hence the training data
set is also similarly skewed in favour of males with around
77 hours of speech from 189 male speakers and 13 hours
of speech from 75 female speakers. Age information of only
61 of the training set speakers is available. The average age
computed over these speakers is 44.3 years (Std.Dev: 10.1).
Since most of the speakers used in the training set are
Advocates in the Supreme Court, the average age over all the
speakers is expected to lie in the range of 40–50 years.
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Figure 1: Comparison of WER on adult and older voices.

The acoustic models have been trained as cross-
word context-dependent triphone Hidden Markov Models
(HMM) [21], each state modeled as 18 components Gaussian
Mixture Model (GMM) for all speech phones and 36 com-
ponents GMM for nonspeech (sil & short pause) models,
respectively.

2.4. Language Models. The language models were con-
structed from the transcripts of 260 United States Supreme
Court recordings from the 1970s comprising of about 2.5
million words. Back off bigram language models [22] were
constructed from this data. The vocabulary consists of 23445
words. The pronunciations used in the AMI vocabulary [20]
were used for those vocabulary words common to AMI and
the pronunciations for the rest of the vocabulary words were
generated using the Festival speech synthesis system [23].

2.5. Test Utterances. For the adult test set, speech utterances
from 27 speakers (23 Males and 4 Females) in an age range
of 30–45 (Average: 41.3) were chosen. For the older test set,
speech data from 12 speakers (10 Males and 2 Females)
in the age range of 60–85 (Average: 68.4) were used. The
speaker set used for testing is disjoint from the training set
speakers. 10 utterances (about 130 seconds on average) for
each test speaker were kept aside for speaker adaptation and
the remaining utterances formed the test set. In all the adult
test set comprises of 4323 utterances (12.5 hours) and the
older test set comprises of 6410 utterances (18 hours). The
perplexity [22] of the language model on the adult test set is
178.3 with Out Of Vocabulary (OOV) rate of 3.8% and on
the older test set is 169.7 with OOV rate of 4.3%.

2.6. ASR Word Error Rates. The ASR word error rates on
adult and older test sets are seen in Figure 1. The results

show a significant difference of 10% absolute higher WERs
for older voices as compared to adult voices. The WERs
difference for males is 8.7% absolute while for females it is
13.7%. The differences in WERs are statistically significant
with P < .001 using the Mann-Whitney test [24].

Speaker adaptation and speaker normalisation tech-
niques are often used to improve ASR performance [25].
We have used the standard Maximum Likelihood Linear
Regression (MLLR) mean adaptation [26] to see if speaker
adaptation can alleviate age-induced errors in ASR. Using
the adaptation set of 10 utterances for each speaker, MLLR
transforms were computed for each speaker and used in
decoding the test utterances. One of the main sources of
interspeaker variability in acoustic features is the variation
in vocal tract dimensions. Vocal Tract Length Normalisation
(VTLN) is a standard approach used to overcome this
variability. Vocal tract length normalised acoustic models
were constructed using an iterative approach as described
in [27]. Using the normalised models, warping factors were
estimated for each of the test speakers from the adaptation
set utterances.

From Figure 1, we observe that though speaker adap-
tation and speaker normalisation improve the recognition
performance marginally, the gap between the WERs for adult
and older voices is not bridged. The results for females may
not be a true representation of the difference as the sample
set is very small, but overall the difference in WERs seems to
be large enough for investigation into the possible causes.

3. Voice Parameter Analysis

Since the number of female speakers in the corpus is very
small, we used only the male speakers test set for voice
analysis. This also helps to keep the analysis free from gender-
related effects. We have analysed and compared the samples
of phoneme “aa” from adult and older male speakers.

Voice analysis is typically carried out on sustained
vowel pronunciations in a noise-free recording environment.
However the SCOTUS corpus is spontaneous speech with
a considerable amount of background noise. Being spon-
taneous in nature, the corpus also does not have sustained
vowel pronunciations with durations over few seconds. Most
of the samples of the vowels are typically a fraction of a
second long and are part of a longer utterance. In order to
pick the best available instances of the phoneme “aa” from
the speech the following procedures were used.

(1) Each utterance was force aligned to triphone tran-
scription, in order to determine the frame boundaries
and the likelihood of each triphone in the utterance.

(2) All the triphone samples with the centre phoneme
“aa” were selected.

(3) Out of the selected samples, the ones with negative
log likelihood greater than a threshold of 1000 were
rejected.

(4) From the remaining, those samples having a duration
less than 0.1 seconds were rejected, to get the final set
of vowel “aa” samples for analysis.
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In all, 2970 samples of “aa” from 23 adult male speakers
and 2105 samples from 10 older male speakers were used
for voice analysis. Several voice parameters such as the
fundamental frequency, jitter, shimmer, and harmonicity
measures were computed for the selected samples using
“Praat” [28].

Apart from these parameter computations on sustained
vowels, using complete speech utterances cepstral peak
prominence measures and speaking rates were computed and
analysed.

Each of the following subsections deals with one voice
parameter analysing if there is a significant difference in the
parameter value between adult and older speakers. Wherever
the difference is significant, we artificially modify those
parameters in clean speech to analyse the effect on ASR
performance.

3.1. Fundamental Frequency (F0). Among the several param-
eters affected by ageing, the fundamental frequency F0 has
been one of the most extensively studied. There is no general
agreement on the trend of changes in F0 due to ageing.
While results reported in [29, 30] indicate that the F0 reduces
significantly by about 40–60 Hz for both males and females
above 60 years of age, the results reported in [4, 31] suggest
that F0 decreases in females after menopause but in males,
it decreases till a certain age around 60 years and increases
again.

The results of the analysis of fundamental frequency
are tabulated in Table 1. We observe that the fundamental
frequencies for older voices are about 15 Hz (10%) lower
than those of adult male voices. The differences in F0

measures are statistically significant at P < .001 using Mann-
Whitney rank sum test.

In order to understand the effect of reduction in F0

on ASR performance, we artificially reduce the F0 by 10%
and compare the WERs of the original waveforms and
modified waveforms. The factor of 10% was used to reflect
the difference in adult and older voices. For this experiment,
the ASR system is the same as that described in Section 2.
We use 400 utterances from 8 adult speakers (4 Males and
4 Females) as the test set. For each waveform, the pitch
tier is calculated using using Praat. The frequencies are then
scaled to 0.9 of their original value. Using the new pitch tier,
the waveforms are resynthesized using pitch synchronous
overlap and add (PSOLA) method [32]. Figure 2 shows an
example of the waveforms and F0 contours before and after
pitch manipulation.

The word error rates before and after reduction in
pitch are given in Table 2. The WER increases by 1.1%
absolute to 33.2% and is statistically significant with P <
.001 using the Matched pair sentence segment word error
(MAPSSWE) test [33]. In order to be able to attribute the
increase in WER to the change in fundamental frequency and
not to the resynthesis process, we repeated the resynthesis
process described above without modifying the pitch tier.
The WER for the resynthesized waveforms is 32.0 and
the difference with respect to the original waveform is
statistically insignificant with P = .61 using MAPSSWE
test.
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Figure 2: Modification in F0.

Table 1: F0 Analysis.

F0
Adult Males Older Males

P-value
Mean Std Mean Std

Median F0 144.4 44.3 128.2 45.4 <.001

Mean F0 143.9 43.2 128.0 44.6 <.001

Table 2: Word Error Rate with artificial reduction in F0.

Word Error Rate (WER) %

Original Reduced pitch P-value

Without VTLN 32.1 33.2 <.001

with VTLN 28.8 29.5 <.01

We also perform VTLN calculating the warping factors
for each speaker separately for the two sets. Using VTLN, the
difference in WER is reduced to 0.7% absolute at P < .01
using MAPSSWE test.

3.2. Jitter. Jitter is a measure of the cycle-to-cycle variation
of the pitch period. Jitter is caused by instability in the vocal
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Table 3: Jitter analysis.

Jitter
Adult Males Older Males

P-value
Mean Std Mean Std

Jit Loc 1.89 1.50 2.41 1.83 <.001

Jit RAP 0.85 0.96 1.08 1.14 <.001
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Figure 3: Artificial increase in Jitter.

fold vibrations. It correlates with the hoarseness in voice.
Increased jitter with age has been observed in both males and
females [4, 34].

For our analysis, the following Jitter measurements as
defined in Praat [28] were computed.

(i) Jitter Local (Jit Loc) is the percentage ratio of average
absolute distance between consecutive periods to the
average period.

(ii) Jitter Relative Average Perturbation (Jit RAP) is the
ratio of average absolute difference between a period
and the average of it and its two neighbours, to the
average period.

Since the durations of the analysed segments of speech is
small, jitter measures that are averaged over larger number of
cycles have not been compared.

The variations of each of these jitter measurements are
shown in Table 3. The changes are statistically significant at
P < .001 using Mann-Whitney rank sum test.

In order to understand the effect of increased jitter on
ASR performance, we artificially introduce jitter into the 400
test waveforms from 8 speakers.

Pulse positions representing the glottal closures are
extracted from the speech utterances. Each pulse position
PPold is then perturbed to get a new pulse position PPnew as
follows

PPnew = PPold + r ∗ α∗ Tavg, (1)

where −0.5 ≤ r ≤ 0.5 is a uniformly distributed random
variable, α is a factor controlling the maximum perturbation
allowed as a fraction of the average period Tavg.

Table 4: WER: Artificial increase in jitter.

Word Error Rate (WER) %

Original α = 0.05 α = 0.10

32.1 32.2 (P = .62) 32.4 (P = .17)

Table 5: Shimmer analysis.

Shimmer
Adult Males Older Males

P-value
Mean Std Mean Std

Shim Loc 10.73 5.22 11.33 5.27 <.001

Shim APQ3 4.65 2.70 4.93 2.88 <.001

Using these new pulse positions, the waveform is resyn-
thesized by pitch synchronous overlap and add method to get
a waveform with increased jitter. Figure 3 shows an example
of the waveforms before and after artificial increase in jitter.

Maximum temporal perturbations of 5% (α = 0.05)
and 10% (α = 0.10) were introduced into the waveforms.
Table 4 shows the ASR WERs on the original waveforms and
the waveforms with increased jitter. With α = 0.10, the
waveforms sound very hoarse, yet the change in WER with
increased jitter is statistically insignificant (using MAPSSWE
test) and the ASR system performance is seen to be quite
robust to jitter variations.

3.3. Shimmer. Shimmer is a measure of variability of the
peak-to-peak amplitude of the signal. This measure also
correlates with hoarseness in voice. Shimmer has been
found to have a strong correlation with age [29]. Amplitude
perturbations have been reported to increase during old age
in [4, 34, 35].

For our study, the following Shimmer measures were
computed using Praat.

(i) Shimmer Local (Shim Loc) is the percentage ratio of
the average absolute difference between the ampli-
tudes of consecutive periods to the average ampli-
tude.

(ii) Shimmer Three point Amplitude Perturbation Quo-
tient (Shim APQ3) is the average absolute difference
between the amplitude of a period and the average
of the amplitudes of its neighbours, divided by the
average amplitude.

Table 5 shows that the shimmer measures for older males
are higher compared to the adult males and the results are
statistically significant (with P < .001 using Mann-Whitney
rank sum test).

We artificially introduce shimmer in the test waveforms
to understand the effect of increased shimmer on ASR
performance. Pulse positions representing glottal closures
are extracted for each test waveform. From the location of the
pulse positions, the voiced and unvoiced segments in speech
are determined. To simulate shimmer effects, the speech
samples xold between two adjacent pulses in voiced segment
are scaled to obtain xnew as follows

xnew = xold ∗ (1 + r ∗ α), (2)
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Figure 4: Artificial increase in Shimmer.

Table 6: WER: Artificial increase in shimmer.

Word Error Rate (WER) %

Original α = 0.05 α = 0.10

32.1 32.1 (P = .65) 32.1 (P = .13)

where −0.5 ≤ r ≤ 0.5 is a uniformly distributed random
variable which is fixed for all the speech samples between two
adjacent pulses, and α is a factor controlling the maximum
perturbation allowed.

An example of the waveform before and after artificial
introduction of shimmer is seen in Figure 4. (Examples of the
original and modified waveforms can be accessed from http:
//homepages.inf.ed.ac.uk/s0680896/atypicalSpeech/)
Table 6 shows that perturbations in amplitude between
adjacent periods do not affect the ASR accuracies signifi-
cantly.

3.4. Harmonicity. Another voice quality associated with
ageing is breathiness. Breathiness is thought to arise due
to incomplete glottal closure during closed phase of the
phonatory cycle. The nearly sinusoidal shape of the breathy
glottal waveforms is responsible for the increase in the
relative amplitude of the first harmonic [36]. Breathy signals
tend to have more high frequency energy than normally
phonated signal [37]. Breathy speech also tends to be less
periodic, especially in the mid and high frequencies where
aspiration noise is large [38].

Harmonic-to-Noise Ratio (HNR) measures the signal-
to-noise ratio in a periodic waveform and acts as a good
indicator of voice quality. It is computed as the ratio of the
noise to the energy of the signal in the periodic part of the
signal [39]. An increase in Noise-to-Harmonic Ratio (NHR)
values in older voices has been reported in [29].

The results of the analysis of autocorrelation (Autocorr)
and NHR in our experiments are tabulated in Table 7.
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Figure 5: Illustration of Cepstral Peak Prominence.

A measure that correlates well with breathiness in voice is
Cepstral Peak Prominence (CPP) proposed by Hillenbrand
and Houde [36]. The cepstrum is a Fourier analysis of
the logarithmic amplitude spectrum of a signal. When the
log amplitude of the spectrum contains regularly spaced
harmonics, the Fourier analysis of the spectrum then
captures the periodicity in the spectrum and will show a
peak at a quefrency corresponding to the spacing between
the harmonics. The cepstral peak reflects both the level of
harmonic structure in the signal and the overall amplitude
of the signal. To normalise for overall amplitude, a linear
regression line is calculated relating quefrency to cepstral
magnitude. The CPP measure is the difference in amplitude
(in dB) between the cepstral peak and the value of the
regression line at the cepstral peak (illustrated in Figure 5).
CPP is computed on frames of 10 ms and averaged over all
the frames in an utterance. CPP values for breathy voices are
lower than those for normal voice since the cepstral peak
is expected to be smaller in breathy voices due to loss of
periodic structure in higher frequencies of the spectrum.

A smoothed version of CPP called CPPS is computed
similarly with some additional smoothing. For CPPS, a frame
size of 2 ms is used instead of 10 ms and 2 levels of smoothing
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Table 7: Harmonicity analysis.

Harmonicity
Adult Males Older Males

P-value
Mean Std Mean Std

Autocorr 0.85 0.08 0.85 0.09 .61

NHR 0.21 0.15 0.21 0.16 .79

CPP 10.81 0.83 10.69 0.82 <.001

CPPS 2.71 0.43 2.69 0.40 <.05

are applied. First the cepstrum is averaged across time by
replacing an unsmoothed cepstrum at a time frame with the
average of itself and the adjacent cepstral frames. A second
level of smoothing is then applied by a running average of the
cepstral magnitude across quefrency for each cepstral frame.

We computed CPP and CPPS for all the test utter-
ances of adult and older speech and the average values
are shown in Table 7 (The program cpps.exe available at
http://homepages.wmich.edu/∼hillenbr/ has been used for
the computation of CPP and CPPS measures).

It is observed that the differences in the harmonicity
measures of adult and older voices are statistically insignifi-
cant (by Mann Whitney rank sum test). Though the changes
in CPP and CPPS measures are found to be statistically
significant, the actual difference in the values is very small.
CPPS, which has been reported [36] to be better correlated
with perceived breathiness in voice than CPP, differs only by
a value of 0.02 for the two age groups. This coupled with the
comparative results of NHR suggests that the difference in
breathiness chracteristics of adult and older test sets used in
our experiments do not differ much.

4. Phoneme Acoustic Likelihoods and
Phoneme Recognition Rates

From the results in Section 3, most of the changes in voice
source parameters seem to have a negligible effect on the
ASR performance. The changes in the articulation pattern
during old age could be a strong factor that affects the
ASR performance. It is hence of interest to see if ageing
affects the recognition performance of certain phonemes
more than others. Comparing the average log likelihood of
each phoneme for adult and older speech is likely to give a
good indication of the mismatch between the features.

In order to compare the likelihoods, all the test utterances
(of adult and older male voices) as described in Section 2
were first force aligned to the triphone transcription. The
left and right contextcs in the triphones were stripped and
the average negative log likelihood per frame for the centre
phoneme for each age group was computed.

Figure 6 shows that the likelihood scores for older voices
are consistently lower than those of adult voices for all the
phonemes. The difference is statistically significant at P < .01
for all phonemes except “oy” for which it is insignificant.
We also observe that the variations in likelihood scores for
each phoneme of older voices are higher than those for adult
voices indicating a larger variability in the pronunciations of
all phonemes.

Table 8: Comparison of Word Error Rate on adult and older voices.
(see Figure 1).

Word Error Rate (WER) %

Adult voices Older voices P-value

Overall 30.4 40.4 <.001

Male 30.1 38.8 <.001

Female 32.4 46.1 <.001

Table 9: Comparison of Word Error Rate using MLLR speaker
adaptation on adult and older voices. (see Figure 1).

Word Error Rate (WER) %

Adult voices Older voices P-value

Overall 29.6 38.7 <.001

Male 29.5 38.1 <.001

Female 30.0 41.0 <.001

Table 10: Comparison of Word Error Rate using Vocal Tract Length
Normalisation on adult and older voices. (see Figure 1).

Word Error Rate (WER) %

Adult voices Older voices P-value

Overall 28.7 38.6 <.001

Male 28.7 37.9 <.001

Female 28.2 41.3 <.001

These results indicate that there is a mismatch in the
acoustic models (which are trained on speech dominated by
adult voices) and feature space of older voices. These results
are consistent with the findings in [13] where for an older
test set, acoustic models trained on older voices resulted in
about 3–5% absolute improvement in WER over acoustic
models trained on younger adult speech. The mismatch in
the acoustic space of younger and older people has also been
exploited in speaker age group classification tasks [40, 41].

To get a picture of the ASR accuracies for individual
phonemes for the two age groups, we trained monophone
models, each phoneme modeled as a three-state HMM with
18 Gaussian components per state. A phone loop decoder
was used to generate the phoneme sequence hypothesis for
the test utterances of the two groups. Percentages of correct
recognition for each phoneme is shown in Figure 7.

We observe that the phonemes that are most affected
are “aa”, “ae”, “ao”, “aw”, and “er” with over 10% drop in
the recognition rates. These phonemes form the mid vowels
where the tongue hump position is located in the central
region of the mouth and the jaw is lowered relatively more
than that for other phonemes. “hh” is a whisper sound which
also has over 10% lower recognition rates for older voices.
The nasals (“m”, “n”, “ng”) have about 3–5% decrease in
recognition rates. The phonemes in which the tongue forms
a constriction near the upper teeth (“t”, “th”, “r”, and “l”)
have a drop of around 4% in the recognition rates. The other
phonemes that have a drop of around 5% are the affricate
“jh” and the unvoiced fricative “f”.
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Figure 6: Average phoneme negative log likelihood per frame.
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Figure 7: Phoneme recognition (% Correct).

These results suggest that certain phonemes that are
mainly dependent on the pronounced jaw movement and
certain tongue movements (creating a constriction with mid-
dle of the tongue and the tongue tip) for clear articulation are
the worst affected in terms of ASR accuracy.

5. Discussion

Many of the voice analysis measures reported in this article
are somewhat higher than the published values in diagnostic
medical research. This is due to the fact that we have not
used sustained vowel pronunciations in clean recording con-
ditions, but extracted sustained phones from spontaneous
speech. Due to chunking, there is also a co-articulation effect
at the beginning and the end of each analysed phone sample.
However the same procedure has been applied to both adult
and older voices in similar recording environments to analyse
the differences between the two groups. Indeed our analysis is
relevant in this context as it is made on natural speech which
is the typical input to ASR systems.

Jitter and Shimmer measures have been extensively
studied and have been used by researchers in age recognition
from voice. From our experimental results too, we observe a
clear increase in jitter and shimmer values for older voices.
These measures can work well for the detection of older
voices. In automatic speech recognition, the human speech
production mechanism is seen as a source filter model,

where vocal fold vibrations act as source forcing air out
of the vocal tract channel to generate speech. Front end
feature extraction techniques in ASR such as perceptual
linear prediction used in our experiments are quite robust
and suppress the variations in the source characteristics.

Language modeling plays a significant role in the per-
formance of ASR systems and hence needs to be taken in
account when comparing ASR performances. However due
to the nature of the corpus (being court case arguments),
linguistic characteristics do not vary much across speakers.

The results of the phoneme likelihood scores indicate that
there is a mismatch in the acoustic space of adult and older
voices. Training acoustic models for a particular age group
are likely to improve the ASR accuracies for that group but
are likely to degrade the performance for another age group.
A suitable solution in such a scenario, where speakers from
different age groups form the users of an ASR system, is to
train gender and age group specific acoustic models and to
allow the system to pick the acoustic model that maximises
the likelihood score as the user speaks.

6. Conclusion

In this study we have performed experiments to understand
the difference in ASR performance on adult and older
voices. We then analysed several voice source parameters and
found that the parameter values of fundamental frequency,
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Table 11: Likelihood scores (Negative log likelihood per frame) and
Correct recognition percentages of all the phonemes (see Figures 6
and 7).

Phoneme
Negative Log Likelihood Correct (%)

Adult Older
Adult Older

Mean Std Mean Std

aa 65.7 7.1 67.0 7.1 67.5 52.8

ae 66.9 6.9 67.7 7.2 53.2 41.5

ah 68.0 6.0 69.2 6.7 56.8 59.3

ao 66.7 6.7 67.9 6.9 69.3 58.6

aw 65.5 6.1 66.2 6.7 73.2 57.5

ax 67.3 5.9 68.6 6.2 46.6 46.8

ay 66.1 7.0 66.6 7.2 76.1 73.9

b 66.0 6.2 67.8 7.4 67.5 68.0

ch 66.4 5.9 67.3 5.4 76.2 73.3

d 67.7 6.1 69.1 6.7 48.3 50.3

dh 67.4 5.7 69.2 6.1 61.2 60.8

eh 66.7 6.5 67.3 7.0 54.7 54.8

er 66.0 6.4 67.8 6.8 67.8 57.6

ey 63.3 6.6 64.4 6.9 79.3 78.4

f 62.4 5.8 64.4 6.3 83.8 79.4

g 68.2 5.9 70.2 6.1 67.9 73.3

hh 67.8 6.0 69.7 6.5 70.3 59.5

ih 67.8 6.1 68.7 6.3 50.7 49.2

iy 65.7 6.5 66.3 6.9 74.0 71.6

jh 68.0 5.2 68.8 5.6 73.1 67.7

k 67.1 5.7 69.4 6.5 69.7 70.1

l 66.9 6.2 68.7 7.0 64.3 60.2

m 65.2 6.2 67.2 6.7 76.2 73.1

n 66.5 6.3 67.6 6.7 65.7 61.7

ng 65.8 6.1 67.3 6.8 78.1 72.6

ow 67.3 6.6 68.4 7.2 67.8 70.4

oy 67.7 5.4 67.8 5.3 82.4 81.9

p 64.8 5.5 66.2 6.3 72.3 70.6

r 67.5 6.5 68.5 6.9 64.0 60.1

s 64.8 5.9 66.4 6.5 80.1 80.1

sh 62.4 5.8 63.6 6.0 82.1 83.8

t 67.5 6.2 69.0 6.8 41.3 37.1

th 66.1 6.3 68.4 6.6 54.4 50.0

uh 69.6 6.2 70.2 6.5 74.4 74.5

uw 65.7 6.5 67.8 7.2 69.9 68.7

v 64.9 5.8 66.0 6.2 63.9 62.2

w 67.5 6.2 68.9 7.1 81.1 79.0

y 66.7 6.6 68.1 7.0 78.5 77.7

z 66.6 5.7 68.0 6.0 72.4 68.0

zh 64.3 5.8 66.1 6.5 80.2 80.0

jitter and shimmer measures show statistically significant
differences in adult and older voices. Even though older
voices show increased Jitter and Shimmer, these measures
do not appear to effect the ASR performance significantly.
Average phoneme likelihood scores indicate that older voices
are not as well matched to the acoustic models as adult

voices. This could possibly be overcome by the selection of
training data targeted towards the domain of older speakers.
Phoneme accuracy results also indicate that mid vowels,
nasals, and phonemes requiring constriction with the tongue
tip are more affected than other phonemes as a result of
ageing.

Appendix

Results tables for the graphs in various sections of this article
are listed in Tables 8, 9, 10, and 11.
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