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The automatic recognition of children’s speech is well known to be a challenge, and so is the influence of affect that is believed
to downgrade performance of a speech recogniser. In this contribution, we investigate the combination of both phenomena.
Extensive test runs are carried out for 1 k vocabulary continuous speech recognition on spontaneous motherese, emphatic, and
angry children’s speech as opposed to neutral speech. The experiments address the question how specific emotions influence word
accuracy. In a first scenario, “emotional” speech recognisers are compared to a speech recogniser trained on neutral speech only.
For this comparison, equal amounts of training data are used for each emotion-related state. In a second scenario, a “neutral”
speech recogniser trained on large amounts of neutral speech is adapted by adding only some emotionally coloured data in the
training process. The results show that emphatic and angry speech is recognised best—even better than neutral speech—and that
the performance can be improved further by adaptation of the acoustic and linguistic models. In order to show the variability
of emotional speech, we visualise the distribution of the four emotion-related states in the MFCC space by applying a Sammon
transformation.

1. Introduction

Offering a broad variety of applications, such as literacy
and reading tutors [1, 2], speech interfaces for children are
an attractive subject of research [3]. However, automatic
speech recognition (ASR) is known to be a challenge for
the recognition of children’s speech [4–8]: characteristics of
both acoustics and linguistics differ from those of adults
[9], for example, by higher pitch and formant positions
or not yet perfectly developed coarticulation. At the same
time, these strongly vary for children of different ages due to
anatomical and physiological development [10] and learning
effects. In [11], voice transformations are applied successfully
to increase the performance for children’s speech if an adult
speech recogniser is used.

Apart from children’s speech, also affective speech can be
challenging for ASR [12, 13], as acoustic parameters differ
considerably under the influence of affect. In [14], acoustic
parameters (MFCC and MFB features) are investigated

for the 4-class problem anger, sadness, happy, and neutral
(emotion portrayals) and the 2-class problem negative versus
nonnegative (data of a real call-centre application). It is
shown that acoustic models for broad phonetic categories
that are trained on neutral speech produce emotional speech
with significantly different likelihood scores, which can be
used to discriminate emotions. In [15, 16], the influence
on ASR of speech under stress as an emotion-related phe-
nomenon is investigated. The two ASR problems children’s
speech and affective speech will typically occur in combination
when building systems for children-computer interaction by
speech: children tend towards natural and spontaneous—
and therefore also affective—speech behaviour in interaction
with technical systems [17–19]. In [20], we addressed the
influence of ASR errors on the performance of an emotion
recognition module based on linguistic features. In this
paper, it is the other way round: we address the influence
of emotion on the recognition of children’s speech. As
opposed to previous work [21], we study the effect of each
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of four emotion-related states individually to answer the
main question: how does a particular affect affect speech
recognition?

In this paper, we avoid delving into the theoretical
debates on the definition of affect and emotion, and we use
both terms interchangeably. Furthermore, as the speakers’
states that can be observed in our data are more emotion-
related than pure emotions, we opted for the more generic
term emotion-related states.

The paper is structured as follows. In Section 2, we
introduce the FAU Aibo Emotion Corpus, which is a corpus
of spontaneous, emotionally coloured children’s speech, and
briefly describe the scenario to elicit emotional speech.
In Section 2.1, we describe the recording settings and the
amount of speech data, followed by Section 2.2 where the
annotation of the speech data with emotion categories
on the word level is described. In this paper, automatic
speech recognition is carried out on semantically meaningful
“chunk” units that are defined in Section 2.3. Emotion labels
for whole chunks are defined in Section 2.4; these labels
are based on the manual annotation on the word level.
In Section 3, we define subsets of the corpus of equal size
for the 4-class problem Motherese, Neutral, Emphatic, and
Anger. Furthermore, we define two ASR scenarios. In the
first scenario, which is described in Section 3.1, a speech
recogniser trained on neutral speech is compared to speech
recognisers that are exclusively trained on the same amount
of emotional speech data. In Section 3.2, the second scenario
is described, where a speech recogniser trained on large
amounts of neutral speech is adapted to emotional speech
by adding small amounts of emotional speech data to the
training data. For both scenarios, experimental ASR results
are presented for Emphatic, Angry, and Motherese speech
compared to Neutral speech; significant differences in terms
of the word accuracy can be observed. The significance
tests are described in Section 3.3. In Section 4, the higher
variability of emotional speech is illustrated by visualisation
of the acoustic feature space. Finally, the major findings of
the study are summarised in Section 5.

2. Emotionally Coloured Children’s Speech

The experiments described in this paper are based on the
FAU Aibo Emotion Corpus, a corpus of German sponta-
neous speech with recordings of children at the age of 10 to
13 years communicating with a pet robot; it is described in
detail in [22].

The general framework for this database of children’s
speech is child-robot communication and the elicitation of
emotion-related speaker states. The robot is Sony’s (dog-
like) robot Aibo. The basic idea has been to combine
children’s speech and naturally occurring emotional speech
within a Wizard-of-Oz task. The speech is “natural” because
children do not disguise their emotions to the same extent
as adults do. However, it is not as “natural” as it might
be in a nonsupervised setting. Furthermore, the speech is
spontaneous, because the children were not told to use
specific instructions but to talk to Aibo like they would talk

to a friend. In this experimental design, the child is led to
believe that Aibo is responding to his or her commands,
but the robot is actually being remote-controlled by a
human operator, using the “Aibo Navigator” software over a
wireless LAN. The existing Aibo speech recognition module
is turned off. The wizard causes Aibo to perform a fixed,
predetermined sequence of actions, which takes no account
of what the child is actually saying. For the sequence of
Aibo’s actions, we tried to find a good compromise between
obedient and disobedient behaviour: we wanted to provoke
the children in order to elicit emotional behaviour but of
course we did not want to run the risk that they discontinue
the experiment. The children believed that Aibo was reacting
to their orders—albeit often not immediately. In fact, it was
the other way round: Aibo was always strictly following the
same screen-plot, and the children had to align their orders
to its actions.

2.1. Speech Recordings. The data was collected from 51
children (21 male, 30 female) aged 10 to 13 years from two
different schools (“Mont” and “Ohm”); the recordings took
place in the respective class-rooms. Speech was transmitted
via a wireless head set (Shure UT 14/20 TP UHF series with
microphone WH20TQG) and recorded with a DAT-recorder
(sampling rate 48 kHz, quantisation 16 bit, down-sampled
to 16 kHz). Each recording session took around 30 minutes;
in total there are 27.5 hours of data. The recordings contain
large amounts of silence, which are due to the reaction time
of Aibo. After removing longer pauses, the total amount of
speech is equal to 9.2 hours.

2.2. Emotion Labelling on the Word Level. Five labellers
(advanced students of linguistics, German native speakers, 4
female, 1 male, 20–26 years old) listened to the recordings
in sequential order and annotated independently from each
other each word as neutral (default) or as belonging to
one of ten other emotion categories. In order to provide
context information, the labellers could listen to the whole
turn before labelling the single words. The set of emotion
categories was defined prior to the labelling process by
inspecting the data and the emotional states that can be
observed. We resort to majority voting (henceforth MV):
if three or more labellers agree, the label is attributed to
the word; in parentheses, the number of cases with MV is
given: joyful (101), surprised (0), emphatic (2528), helpless
(3), touchy, that is, irritated (225), angry (84), motherese
(1260), bored (11), reprimanding (310), and rest, that is,
nonneutral, but not belonging to the other categories (3),
neutral (39 169). 4707 words had no MV; all in all, the corpus
consists of 48 401 words.

The state emphatic has to be commented on especially:
based on our experience with other emotion databases [23],
any marked deviation from a neutral speaking style can (but
need not) be taken as a possible indication of some (starting)
trouble in communication. If a user gets the impression that
the machine does not understand him, he tries different
strategies—repetitions, reformulations, other wordings, or
simply the use of a pronounced, marked speaking style.
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Thus, such a style does not necessarily indicate any deviation
from a neutral user state but it means a higher probability
that the (neutral) user state will possibly be changing
soon. Of course, it can be something else as well: a user
idiosyncrasy, or a special style such as “computer talk” that
some people use while speaking to a computer, or speaking
to a nonnative, to a child, or to an elderly person who is
hard of hearing. Thus, it can only be found out by analysis
of the data whether emphatic has to be conceived of as more
positive or more negative (cf. the remarks on surprise in [24],
which can be either negative or positive, depending on the
context). In the FAU Aibo Emotion Corpus, emphatic can
be found between neutral and angry on the valence scale
in a two-dimensional arrangement of the emotional states
obtained by Nonmetric Dimensional Scaling (NMDS) [17].
There is also another practical argument for the annotation
of emphatic: if the labellers are allowed to label emphatic, it
might be less likely that they confuse it with other user states.
Note that all the states, especially emphatic, had only been
annotated if they differed from the (initial) baseline of the
speaker.

Some of the labels are very sparse. Therefore, we mapped
touchy and reprimanding, together with angry, onto Anger as
these states represent different but closely related kinds of
negative attitude. This mapping is corroborated by NMDS
analysis presented in [17]. In this paper, we focus on the
four-class problem Motherese, Neutral, Emphatic, and Anger
ranging from positive to negative valence. This order is kept
constant in all figures and tables of this paper.

Interlabeller agreement is dealt within [22, 25]. On
a balanced subset of the FAU Aibo Emotion Corpus,
containing only words of the cover classesMotherese,Neutral,
Emphatic, and Anger, weighted kappa values for multirater
kappa are reported to be 0.56. Confusion matrices, where
the decision of one labeller is compared to the majority
vote of all five labellers, allow to judge the similarity of
the different emotion categories. Figure 1 shows a graphical
representation of the similarity of the four cover classes
Motherese, Neutral, Emphatic, and Anger [17, 22]. The
arrangement of these classes in the two-dimensional space
is obtained by NMDS. The more likely the classes are to be
confused by the human labellers, the closer they are in this
arrangement. The quality of the NMDS result is given in
Figure 1; it is assessed using Kruskal’s stress function S and
the squared correlation RSQ [26]. The figure is translated
such that Neutral is located in the centre. The negative class
Anger and its prestage Emphatic are located on the left side,
whereas the positive state Motherese is on the right side. In
Section 4 it is shown that the Sammon transformation of the
acoustic features (average MFCC features per speaker and
emotion) leads to a similar arrangement of the four cover
classes; only the position of Anger is slightly different (closer
to Motherese than to Emphatic).

2.3. Definition of Chunks. Finding the best unit of analysis
has not posed a problem in studies involving acted speech
with different emotions, using segmentally identical utter-
ances, cf. for example, [27, 28]. In realistic data, a large
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Figure 1: NMDS arrangement of the four cover classes in the 2-
dimensional space based on the confusion matrix of the 5 human
labellers.

variety of utterances can be found, from short commands in
a well-defined dialogue setting, where the unit of analysis is
obvious and identical to a dialogue move, too much longer
utterances. In [23], it has been shown that in a Wizard-of-Oz
scenario (appointment scheduling dialogues), it is beneficial
not to model whole turns but to divide them into smaller,
syntactically and semantically meaningful chunks along the
lines of [29]. Our Aibo scenario differs in one pivotal aspect
from most of the other scenarios investigated so far: there
is no real dialogue between the two partners; only the child
is speaking, and Aibo is only acting. Thus, it is not a “tidy”
stimulus-response sequence that can be followed by tracking
the very same channel. Since we are using only the audio
channel of the children, we do not know what Aibo was
doing at the corresponding time, or shortly before or after the
child’s utterance. (This information could be obtained from
the video stream that has been recorded for control purposes.
However, this information has not been used for chunking.)
Moreover, the speaking style is rather special: there are not
many “well-formed” utterances but a mixture of some long
and many short sentences and one- or two-word utterances,
which are often commands.

A reasonable strategy could be to segment the data in
a preprocessing step into such units to be presented to
the annotators for labelling emotions. However, this would
require an a priori knowledge on how to define the optimal
unit—which we do not have yet. In order not to decide
beforehand on the units to be processed, we decided in
favour of a word-based labelling: each word had to be
annotated with one emotion label.

To better process the recordings of the children, the audio
files have been split automatically into “turns” at pauses that
are at least 1 second long. On average, these turns consist of
3.55 words. Based on the emotion labelling on the word level,
emotion labels for turns can be defined without relabelling
the whole corpus. A heuristic mapping algorithm is applied
which is described in [22]. These turns can certainly be used
for automatic speech recognition. Experimental results on
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the impact of emotion-related states on the ASR performance
using these automatically segmented turns are reported in
[30]. Yet, a high inhomogeneity of the emotion-related
states within one turn can be observed. The emotional
homogeneity is defined as the proportion of raw labels, that
is, the decisions of the five human labellers on the word level,
that match the emotion label for the whole turn. Whereas
the homogeneity is higher for short units and especially for
words, larger units of analysis allow to model the context
of the words within an utterance. Chunks—an intermediate
unit between the word level and the turn level—are a good
compromise between the length of the unit of analysis and
the homogeneity of the emotion-related state within the unit
and are an appropriate unit for ASR as well. For more details
on the distribution of the inhomogeneity within turns and
chunks, please see [22, Figure 5.18, page 106]. The emotional
homogeneity can be taken as a measure of the prototypicality
of the emotion. In [31] and [22, Table 7.20, page 172] it is
shown how the automatic emotion recognition performance
depends on the prototypicality of the chunks.

In our data, we observe neither “integrating” prosody
as in the case of reading nor “isolating” prosody as in the
case of TV reporters. Many pauses of varying length are
found, which can be hesitation pauses—the child produces
slowly while observing Aibo’s actions—or pauses segmenting
into different dialogue acts—the child waits until he/she
reacts to Aibo’s actions. Thus, there is much overlap between
two different channels: speech produced by the child and
vision based on Aibo’s actions, which is not used for our
annotation. Hence, we decided in favour of hybrid syntactic-
prosodic criteria: higher syntactic boundaries always trigger
chunking, whereas lower syntactic boundaries do so only if
the adjacent pause is ≥500 milliseconds. By that we try, for
example, to tell apart vocatives (“Aibo”) that simply function
as “relators”, from vocatives with specific illocutive functions
meaning, for example, “Aibo” in the meaning of “Hi, I’m
talking to you” or “Aibo!” in the meaning of “Now I’m getting
angry” (illocution “command”: “Listen to me!”).

Note that in earlier studies, we found out that there
is a rather strong correlation higher than 0.90 between
prosodic boundaries, syntactic boundaries, and dialogue
act boundaries (cf. [29]). Using only prosodic features to
automatically classify syntactic or dialogue act boundaries
results in a some 5% points lower classification performance
compared to a classification based on syntactic or dialogue
act information (e.g., information obtained from language
models) [29]. Moreover, from a practical point of view,
it would be more cumbersome to time-align the different
units—prosodic, that is, acoustic units, and linguistic, that
is, syntactic or dialogue units, based on automatic speech
recognition and higher level segmentation—at a later stage
in an end-to-end processing system, and to interpret the
combination of these two different types of units accordingly.

The syntactic and pause labels are explained in Table 1.
Chunk boundaries are triggered by higher syntactic bound-
aries after main clauses (s3) and after free phrases (p3) and
by boundaries between vocatives Aibo Aibo (v2v1) because,
here, the second Aibo is most likely not simply a relator but is
conveying specific illocutions (cf. above). Single instances of

Table 1: Syntactic and pause labels.

Label Description

eot End-of-turn, recoded as s3 (p3)

s3 Main clause/main clause

s2 Main/subord. clause or subord./subord. clause

s1 Sentence-initial particle or imperative “komm”

p3 Free phrases/particles

d2 Dislocations to the left/right

v2 Post-vocative

v1 Prevocative

v2v1 Between “Aibo” instances

0 Pause 0–249 ms

1 Pause 250–499 ms

2 Pause 500–749 ms

3 Pause 750–1000 ms

vocatives (v1, v2) are treated the same way as dislocations
(d2). If the pauses at those lower syntactic boundaries that
are given in Table 1, that is, s2, d2, v1, and v2, are at
least 500 milliseconds long, we insert a chunk boundary as
well. The syntactic boundaries s3 and s2 delimit “well-
formed” clauses containing a verb; p3 characterises not-well-
formed units, functioning like clauses but without a verb.
The boundary d2 is annotated between clauses and some
dislocated units to the left or to the right, which could
have been integrated into the clause as well. Any longer
pauses at words within all these units were defined as a
nontriggering hesitation pauses. Each end-of-turn was rede-
fined as triggering a clause/phrase boundary as well. Note
that our turn-triggering threshold of 1 second works well
because in the whole database, only 17 end-of-turn (eot)
triggers were found that obviously denote within clause word
boundaries. The boundary s1 had to be introduced because
the German word “komm” can function both as a sentence
initial particle (corresponding to English “Well, . . .”) and
an imperative (corresponding to English “Come here! . . .”);
only the imperative constitutes a clause. For more details
on the chunking procedure and the evaluation of different
chunking alternatives please see [32].

If all 13 642 turns of the FAU Aibo Emotion Corpus are
split into chunks, the chunk triggering procedure results in
a total of 18 216 chunks, which consist of 2.66 words on
average.

2.4. Definition of Emotion Labels for Chunks. A heuristic
algorithm is used to map the original (raw) labels of the five
human labellers on the word level onto one emotion label
for the whole chunk. By simple majority voting we would
not take into account two main characteristics of our data:
firstly, the emotional intensity of our data is rather low due to
the fact that we are not dealing with emotion portrayals but
with naturally occurring emotions. Secondly, as mentioned,
the user state Emphatic can be seen as some possible prestage
of the other user state Anger.

In the following, the principles of the algorithm are
explained. The details can be found in [22]. The algorithm



EURASIP Journal on Audio, Speech, and Music Processing 5

Table 2: Mapping of the emotion labels on the word level onto
emotion labels for chunks: distribution of the emotion categories
for the whole FAU Aibo Emotion Corpus.

Chunk level

Number of words M N E A1

Word
level

Motherese 1165 94 1 0

Neutral 298 37 841 806 224

Emphatic 1 674 1837 16

Angry 0 2 1 81

Reprimanding 1 25 8 201

Touchy 0 20 4 276

Joyful 3 91 7 0

b,h,s,r2 1 12 3 1

No MV3 254 1186 1487 1780

All 1723 39 945 4154 2579
1
M: Motherese; N: Neutral; E: Emphatic; A: Anger.

2Bored, helpless, surprised, rest.
3No majority vote (MV) since less than three labellers agree.

is based on the raw labels of the cover classes Motherese,
Neutral, Emphatic, and Anger. Any labels of the rare other
classes are omitted. A chunk is labelled as belonging to
Neutral if at least 60% of the raw labels are Neutral. If this
is not the case, the number of labels Motherese is compared
to the number of labels Emphatic and Anger. If Motherese
has the majority and at least 40% of all raw labels within
the chunk belong to Motherese, the chunk is labelled as
Motherese. Otherwise, if there are more Emphatic and Anger
labels than Motherese labels, the number of Emphatic labels
is compared to the number of Anger labels. If there are more
Emphatic labels and if at least 50% of all words within the
chunk belong either to Emphatic or to Anger, the chunk is
labelled as Emphatic. If it is the other way round, that is, if
there are more Anger labels than Emphatic labels, the chunk
is labelled as Anger. The different thresholds are defined
heuristically by examining the resulting chunk labels.

Table 2 shows which emotion labels on the word level
(majority vote of the five human labellers, 11 different user
states) are mapped onto which emotion labels on the chunk
level (the four cover classes Motherese, Neutral, Emphatic,
and Anger). Note that the chunks of the cover classes
Motherese, Emphatic, and Anger contain a considerable
proportion of neutral words: 17.3% for Motherese, 19.4% for
Emphatic, and 8.7% for Anger. Also the proportion of words
where no absolute majority vote exists is very high, especially
for Emphatic and Anger. Note that the number of words that
belong to the cover class Anger is higher than the sum of
the number of words that belong to angry, reprimanding, or
touchy/irritated.

3. Emotional Speech Recognition

In this study, we are not interested in maximum word
accuracy (WA) but in the impact of affect on the perfor-
mance of an ASR system. Therefore, we do not evaluate ASR
performance on large databases of children’s speech but focus

only on the FAU Aibo Emotion Corpus, which is rather small
but thoroughly annotated with emotion labels. We focus on
two scenarios.

(1) In the first scenario, we compare a standard speech
recogniser trained on neutral speech with speech
recognisers that are trained exclusively on speech of
one emotion/emotion-related state.

(2) In the second scenario, we investigate how a standard
speech recogniser trained on neutral speech can be
improved by adding emotionally coloured speech.

For both scenarios, we use data of one school (Ohm)
for training and the data of the other school (Mont) for
testing our system. By that, strict speaker independence is
guaranteed. To allow a fair comparison of different ASR
systems, it is crucial that an equal amount of data is used for
training. Therefore, we define the subsets Ohm N, Ohm M,
Ohm E, and Ohm A, which are balanced with respect to the
number of words: since the average number of words per
chunk varies for the four emotion-relates states, these four
subsets contain different numbers of chunks. The statistics
are given in Table 3. The “size” of the subsets are given in
terms of the number of chunks and the number of words.
Additionally, the average number of frames and the average
number of words per chunk is given. In general, emotional
chunks consist of less words than neutral ones.

In the following, the selection/balancing of the data is
described. The classes Emphatic and Anger are downsampled
by choosing the chunks with the highest emotional homo-
geneity. The homogeneity is defined as the proportion of raw
labels, that is, the decisions of the five human labellers on
the word level, that match the emotion label of the whole
chunk. There have been selected 772 (of 1289 available)
chunks for Emphatic and 666 (of 721) chunks for Anger.
Chunks of the classes Emphatic and Anger that are not
included in Ohm E and Ohm A, respectively, are discarded
for experiments presented in this paper. The samples of
the subset Ohm N (479 chunks) are chosen randomly from
the 7383 available neutral chunks. The subset Ohm base
consists of the remaining neutral chunks. All 566 Motherese
chunks fall into the Ohm M subset. The selection strategies
are different for the different emotional states because we
aim at almost identical average prototypicality for the three
subsets: Ohm M (0.61), Ohm E (0.62), and Ohm A (0.62).
Only for neutral speech, the average prototypicality is already
clearly higher (0.79) as there are many chunks where all
words can be clearly identified as neutral. Figure 2 shows the
distribution of the prototypicality of the chunks for the four
subsets Ohm M, Ohm N, Ohm E, and Ohm A.

The evaluation is carried out on the subset Mont.
The four classes Motherese, Neutral, Emphatic, and Anger
are highly unbalanced (cf. the subsets Mont M, Mont N,
Mont E, and Mont A in Table 3). Mont N makes up more
than 80% of the test set; consequently, almost all words of
Mont are contained in the vocabulary of Mont N. For the
evaluation, the unbalanced distribution is not a problem
since we evaluate the ASR performance separately for the
four states.
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Table 3: Statistics of the various subsets of the FAU Aibo Emotion Corpus: training on the balanced subsets of Ohm, testing on the
unbalanced subsets of Mont.

Ohm base Ohm M Ohm N Ohm E Ohm A

Number of chunks 6904 566 479 772 666

Avg. number of frames 179.5 174.5 184.9 161.9 185.4

Avg. number of words 2.81 2.39 2.82 1.75 2.03

Number of words 19 409 1354 1353 1354 1353

Mont Mont M Mont N Mont E Mont A

Number of chunks 8257 158 6719 848 532

Avg. number of frames 169.8 151.1 170.8 158.4 181.5

Avg. number of words 2.69 2.35 2.86 1.91 2.02

Number of words 22 244 369 19 183 1619 1073

Table 4: Size of the vocabulary for the different training and test subsets of the FAU Aibo Emotion Corpus; training on the balanced subsets
of Ohm, testing on the unbalanced subsets of Mont.

Ohm base Ohm M Ohm N Ohm E Ohm A

Number of word forms 653 111 180 93 111

Number of fragments 225 32 34 6 14

Total size 878 143 214 99 125

Mont Mont M Mont N Mont E Mont A

Number of word forms 383 69 375 90 72

Number of fragments 158 9 147 9 9

Total size 541 78 522 99 81

For our experiments, we use the ASR engine that has
been developed within the speech processing group at the
University Erlangen-Nuremberg. A recent overview is given
in [33]. The acoustic features are the first 12 standard MFCC
features (the first MFCC coefficient is replaced by the sum
of the energies of the 22 Mel filterbanks) and their first
derivatives. The features are computed every 10 milliseconds
over a Hamming window of 16 milliseconds. Our ASR
system is based on semicontinuous hidden Markov models
(SC-HMM) modelling polyphones, that is, an extension of
the well-known triphones to model larger context sizes. A
polyphone is modelled by its own HMM if it can be observed
at least 50 times in the training set. All HMM states share
the same set of Gaussian densities (codebook). By that, a
smaller number of densities can be used, which is beneficial
if—as in our case—only very little (emotional) training data
is available. Yet, full covariance matrices are used in contrast
to most systems based on continuous HMMs. We use Baum-
Welch reestimation for training and Viterbi decoding. As
language model we use back-off bi-grams.

Table 4 displays the size of the vocabulary across
emotion-related states and schools. The vocabulary contains
word forms as well as word fragments. Apparently, the
size of the vocabulary depends on the emotion: the largest
vocabulary is observed for Neutral speech, followed by
emotional speech with lower intervariability. Furthermore,
a higher vocabulary size is observed for school Ohm, which

is a higher education level school. For all experiments, the
vocabulary of the ASR systems is kept constant: it contains
all word forms (813) of the complete FAU Aibo Emotion
Corpus but no word fragments.

For the two scenarios outlined above, three types of
experiments are carried out to evaluate the impact of affect
on both the acoustic and the linguistic models. In the first
experiment, the acoustic models are adapted whereas the
linguistic models are kept fixed. In the second experiment, it
is the other way round: only the linguistic models are adapted
and the acoustic models are kept constant. Finally, both the
acoustic and linguistic models are adapted.

3.1. Evaluation of Scenario 1. For the first scenario—
comparing a “neutral” speech recogniser with “emotional”
speech recognisers—the acoustic and linguistic models of
the baseline system are trained on Ohm N only. Since this
subset is rather small, the size of the codebook had to be
reduced drastically compared to our standard configuration.
Setup experiments showed that a good ASR performance
is achieved with 50 Gaussian densities. If evaluated on the
different subsets of Mont—which contain only speech of
one particular emotion/emotion-related state—the results
shown in Table 5 (column “Ohm N” of the upper table)
demonstrate that speech produced in the state Motherese is
recognised clearly worse (43.6% WA) than Neutral speech
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Figure 2: Distribution of the prototypicality of the chunks in the four training sets Ohm N, Ohm M, Ohm E, and Ohm A. The average
level of prototypicality is 0.79 for Ohm N, 0.61 for Ohm M, and 0.62 for both Ohm E and Ohm A.

(60.3% WA). This is to be expected since the acoustic realisa-
tions as well as the linguistic content differ from the neutral
training conditions. In contrast, speech produced in the
states Emphatic and Anger is recognised even slightly better
than neutral speech: 61.3% WA and 64.9% WA for Emphatic
and Anger, respectively. This seems to derive from the fact
that Emphatic and Angry speech are articulated more clearly.
Emphatic speech deviates from neutral speech: the child
speaks in a pronounced, accentuated, and sometimes even
hyperarticulated way. In our scenario, it can be conceived
as a possible prestage of anger. Note that the cover class
Anger subsumes three different emotion categories: angry,
reprimanding, and touchy/irritated. The emotional intensity
is in general rather low and the state is often not comparable
to full-blown anger portrayed by actors. Hence, the acoustic
realisations seem to differ from Neutral not as much as the
ASR performance would suffer.

To adapt the acoustic models to emotional speech,
the acoustic models are trained on Ohm M, Ohm E, and
Ohm A, respectively. The linguistic models are trained on
Ohm N and are the same for all three emotion-related
states. The results are shown in the upper part of Table 5.

The performance for Emphatic speech increases significantly
(α = .001) from 61.3% to 74.8% WA if the system is trained
on Emphatic speech instead of neutral speech. Details on the
significance test are given in Section 3.3. Training on Ohm A
helps to improve the performance for Emphatic speech
as well albeit the improvement is lower: the performance
increases from 61.3% to 67.2%. If the system is trained
on Ohm M, the performance for Emphatic speech drops to
42.8% WA. Similar results are obtained for speech produced
in the state Anger: both Angry and Emphatic speech help
to improve the performance on Mont A significantly (from
64.9% WA to 75.5% WA and 73.5% WA, resp., α = .001),
whereas the performance drops to 51.2% WA if the system
is trained on Ohm M. The performance on Mont M cannot
be improved if the system is trained on speech produced in
the state Motherese. The reason might be that the speech in
subset Ohm M is too speaker specific since many instances
of Motherese are produced by only a few speakers. The
adapted system is probably more adapted to the acoustic
characteristics of these speakers than to the state Motherese
itself. Furthermore, it has to be noted that the test set
(Mont M) is rather small (see Table 3).
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Table 5: Scenario 1: adaptation of the acoustic and linguistic
models; results are given in terms ofword accuracy (%). The baseline
system (acoustic and linguistic models are trained on Ohm N) is
given in column “Ohm N” and is identical in all three tables. “∅”
denotes the arithmetic (unweighted) mean. The average of the four
subsets weighted by the prior probabilities of the four classes is given
in row “Mont.”

Acoustic models trained on

Test set Ohm M Ohm N Ohm E Ohm A

Mont M 43.1 43.6 34.2 32.8

Mont N 44.9 60.3 54.0 55.8

Mont E 42.8 61.3 74.8 67.2

Mont A 51.2 64.9 75.5 73.5

∅ 45.5 57.5 59.6 57.3

Mont 45.0 60.3 56.2 57.1

Linguistic bigrams trained on

Test set Ohm M Ohm N Ohm E Ohm A

Mont M 49.3 43.6 37.4 38.8

Mont N 56.0 60.3 58.0 59.9

Mont E 56.3 61.3 67.0 67.0

Mont A 60.1 64.9 68.0 68.5

∅ 55.4 57.5 57.6 58.6

Mont 56.1 60.3 58.8 60.5

Acoustic and linguistic models trained on

Test set Ohm M Ohm N Ohm E Ohm A

Mont M 47.4 43.6 32.0 30.6

Mont N 40.8 60.3 52.6 54.7

Mont E 35.7 61.3 76.5 70.2

Mont A 46.0 64.9 75.3 75.3

∅ 42.5 57.5 59.6 57.7

Mont 40.8 60.3 55.1 56.4

Table 6: Scenario 1: perplexities of the adapted linguistic models.
The baseline system (linguistic models are trained on Ohm N)
is given in column “Ohm N.” “∅” denotes the arithmetic
(unweighted) mean. The average of the four subsets weighted by
the prior probabilities of the four classes is given in row “Mont.”

Linguistic models trained on

Test set Ohm M Ohm N Ohm E Ohm A

Mont M 27.2 39.2 87.4 74.5

Mont N 38.4 20.7 35.8 30.3

Mont E 31.4 13.2 9.93 12.4

Mont A 24.7 12.6 12.3 9.05

∅ 30.4 21.4 36.4 31.6

Mont 36.7 19.7 31.0 26.9

The middle part of Table 5 shows the results of the
linguistic adaptation. The linguistic models are adapted by
training on Ohm M, Ohm E, and Ohm A, respectively,

whereas the acoustic models are always trained on Ohm N.
Again, the performance for Emphatic and Anger can be
improved by training the linguistic models on Ohm E and
Ohm A, respectively. Nevertheless, the improvements are
smaller than for the acoustic adaptation: the performance
increases from 61.3% to 67.0% WA for Emphatic and from
64.9% to 68.5% WA for Anger. The improvements are
significant at a significance level of 0.001 for Emphatic and
0.002 for Anger, respectively. The same improvement for
Emphatic can be obtained if the linguistic models are trained
on Ohm A instead of Ohm E. Vice versa, linguistic models
trained on Ohm E yield nearly the same improvement
for Anger compared to the models trained on Ohm A.
Obviously, the states Emphatic and Anger differ more with
respect to their acoustic realisations than with respect to
their language models. In contrast, language models trained
on Ohm M are not suited for the word recognition of
Emphatic and Anger but they are helpful to improve the
performance on Mont M: there, the word accuracy increases
from 43.6% to 49.3%. This improvement is significant at a
level of 0.05. The performance of an ASR system is always
a combination of the influence of the acoustic models and
the linguistic models. In order to show the pure impact of
the linguistic adaptation on the language models, the results
of the linguistic adaptation are reported in Table 6 in terms
of the perplexity of the language model. The perplexities
are evaluated on the test set Mont and its subsets. After
adaptation to the state Motherese, the perplexity on Mont M
falls from 39.2 to 27.2. If the linguistic models are adapted to
Emphatic, the perplexity on Mont E decreases from 13.2 to
9.93. If they are adapted to Anger, the perplexity on Mont A
decreases from 12.6 to 9.05. In terms of the perplexity, the
differences between Emphatic and Anger are more obvious
than in terms of the word accuracy: adaptation to the state
Anger also helps to reduce the perplexity on Mont E, but
the reduction is rather small (from 13.2 to 12.4). Adaptation
to the state Emphatic reduces to perplexity on Mont A only
from 12.6 to 12.3.

In the next experiments, both the acoustic and language
models are adapted. The results are reported in the lower part
of Table 5. They demonstrate that for Emphatic and Anger
the improvements of the acoustic adaptation can be further
increased by additionally adapting the language models. For
Emphatic the best result that could be obtained is 76.5%
WA compared to the baseline of 61.3% WA. For Anger,
the best result is 75.3% WA compared to 64.9% WA in
the baseline system. Both improvements are significant at
α = .001. However, Emphatic speech has obviously the
higher potential for improvements. For Motherese, the result
of the combination of the acoustic and linguistic adaptation
is worse than the result of the linguistic adaptation only.
This is not surprising since—as mentioned above—the
acoustic adaptation alone already resulted in a worse word
recognition performance.

The results of all three adaptation methods are sum-
marised in Table 9. They show that the adaptation to one
specific emotion yields higher word accuracies for this
particular emotion at the expense of higher word error rates
for the other emotions. The (unweighted) average word
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Table 7: Scenario 2: adaptation of the acoustic and linguistic models; results are given in terms of word accuracy (%). The baseline system
(acoustic and linguistic models trained on Ohm base) is given in column “Ohm base” and is identical in all three tables. “∅” denotes the
arithmetic (unweighted) mean. The average of the four subsets weighted by the prior probabilities of the four classes is given in row “Mont.”

Acoustic models trained on

Ohm base Ohm base + Ohm base + Ohm base + Ohm base +

Test set (baseline) 2x Ohm M 1x Ohm N 3x Ohm E 2x Ohm A

Mont M 65.0 64.5 61.5 59.9 61.3

Mont N 77.3 77.6 77.5 77.1 78.0

Mont E 81.0 81.3 80.5 83.1 81.2

Mont A 79.2 80.2 78.8 81.4 83.6

∅ 75.6 75.9 74.6 75.4 76.0

Mont 77.5 77.7 77.5 77.4 78.2

Linguistic models trained on

Ohm base Ohm base + Ohm base + Ohm base + Ohm base +

Test set (baseline) 28x Ohm M 1x Ohm N 28x Ohm E 28x Ohm A

Mont M 65.0 65.9 64.5 64.0 64.5

Mont N 77.3 77.0 77.4 77.7 77.7

Mont E 81.0 80.1 80.8 81.6 81.9

Mont A 79.2 78.9 79.0 79.9 81.6

∅ 75.6 75.5 75.4 75.8 76.4

Mont 77.5 77.1 77.5 77.8 78.0

Acoustic models trained on

Ohm base Ohm base + Ohm base + Ohm base + Ohm base +

(baseline) 0x Ohm M 1x Ohm N 3x Ohm E 2x Ohm A

Linguistic models trained on

Ohm base Ohm base + Ohm base + Ohm base + Ohm base +

Test set (baseline) 28x Ohm M 1x Ohm N 28x Ohm E 28x Ohm A

Mont M 65.0 65.9 61.5 60.4 59.1

Mont N 77.3 77.0 77.6 77.4 78.4

Mont E 81.0 80.1 80.4 84.4 83.1

Mont A 79.2 78.9 78.7 81.6 85.1

∅ 75.6 75.5 74.6 76.0 76.4

Mont 77.5 77.1 77.6 77.8 78.7

accuracy over all four emotion-related states (denoted as “∅”
in Table 5) remains nearly constant if the neutral acoustic
and/or linguistic models are adapted to speech produced
in the states Emphatic or Anger. If the acoustic models
are adapted to Motherese, the average word accuracy drops
clearly. If the a priori probabilities of the four different
emotion-related states are taken into account, that is, the
word accuracy is evaluated on the whole test set Mont, the
best results in terms of the weighted average word accuracy
are achieved if the acoustic models are trained on neutral
speech due to the high a priori probability of the state Neutral
(cf. Table 3).

3.2. Evaluation of Scenario 2. In the second scenario, the
ASR performance for emotionally coloured speech is tried
to be improved by adding emotionally coloured data to a

baseline speech recogniser that is trained on neutral speech.
For this purpose, the acoustic and linguistic models of
the baseline system are trained on Ohm base. Due to the
size of Ohm base, the codebook of the baseline system
now contains 500 Gaussian densities—ten times more than
the ASR systems trained for Scenario 1. The larger size
of Ohm base compared to Ohm N yields clearly higher
word accuracies on Mont as shown in Table 7 (column
“Ohm base” of the upper table). Neutral speech is now
recognised with 77.3% WA compared to 60.3% in Scenario
1. Speech produced in the state Emphatic is recognised best
(81.0% WA), followed closely by Anger (79.2%). Motherese
is still recognised clearly worse (65.0% WA) than Neutral
speech. Hence, the ranking—the negative states Emphatic
and Anger on the top, Neutral in the middle, and Motherese
on the bottom—is the same in both scenarios.
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Table 8: Scenario 2: perplexities of the adapted linguistic models. The baseline system (linguistic models are trained on Ohm base) is given
in column “Ohm base”. “∅” denotes the arithmetic (unweighted) mean. The average of the four subsets weighted by the prior probabilities
of the four classes is given in row “Mont.”

Linguistic models trained on

Ohm base Ohm base + Ohm base + Ohm base + Ohm base +

Test set (baseline) 2x Ohm M 1x Ohm N 3x Ohm E 2x Ohm A

Mont M 24.4 20.8 24.3 32.3 29.0

Mont N 14.9 18.5 14.8 17.2 16.8

Mont E 10.2 14.1 10.2 8.28 9.77

Mont A 9.87 12.7 9.86 9.64 7.66

∅ 14.8 16.5 14.8 16.9 15.8

Mont 14.2 17.8 14.2 15.9 15.6

Again, the acoustic models and the linguistic models are
adapted separately before their combination is evaluated.
The upper part of Table 7 shows the results of the adaptation
of the acoustic models. Certainly, there are different well-
known strategies such as MAP and MLLR to adapt the
acoustic models of a speech recogniser to new data. Due
to the small amounts of emotionally coloured data, we
preferred to adapt the acoustic models of the speech
recogniser by adding emotionally coloured data (Ohm M,
Ohm N, Ohm E, and Ohm A) to the training data of the
baseline system (Ohm base). Best results were not obtained
by adding the emotionally coloured data once, but several
times increasing the weight of the new data. In experiments
not reported here, the best factor has been optimised. For
Neutral, the optimal factor is 1. This makes sense since
the training data of the baseline system is already Neutral
speech. The optimal factor is 3 for Emphatic and 2 for
Anger. The ASR performance cannot be increased any further
by adding the new data more often. It actually decreases
if the factor is too high. By that, the performance on
Mont A can be increased significantly (α = .001) by adding
Ohm A twice from 79.2% to 83.6% WA. Adding Ohm E
also helps to improve the performance on Mont A albeit
the improvements are lower. The best improvement on
Mont A adding Ohm E (81.4% WA) is achieved if Ohm E
is added three times. The performance on Mont E can be
increased from 81.0% to 83.1% WA by adding Ohm E three
times. This improvement is significant at a level of 0.05.
Even better results (83.9% WA) are obtained by adding
Ohm A once to Ohm base (results not shown in Table 7).
The slight increase of the performance on Mont N by adding
Ohm N once is not significant. As for Scenario 1, the
adaptation of the acoustic models could not improve the
speech recognition results for Motherese. Instead, the word
accuracy slightly drops probably due to speaker adaptation
instead of the adaptation to the state Motherese itself. The
least (nonsignificant) decrease is obtained by adding Ohm M
twice.

The results of the linguistic adaptation are shown in
the middle part of Table 7. In contrast to the adaptation
of the acoustic models, the emotionally coloured data has
to be added much more often. Best results for Motherese,
Emphatic, and Anger are obtained, if twice as much (in
terms of the number of words) emotionally coloured data

is added to Ohm base, that is, a factor of 28. Naturally,
the optimal factor for Neutral is 1 since Ohm base already
consists of Neutral speech and (almost) no new information
about the state Neutral is added. However, the improvements
of the word accuracy are rather small and not significant:
on Mont M from 65.0% to 65.9% by adding Ohm M, on
Mont N from 77.3% to 77.4% by adding Ohm N, and on
Mont E from 81.0% to 81.6% by adding Ohm E. A bigger
and significant improvement (α = .001) is only achieved
on Mont A (from 79.2% to 81.6% WA) by adding Ohm A.
Again, the pure influence on the language models is given
in terms of the perplexity of the language models in Table 8.
Since the language models are trained on more data, the
perplexities are in general lower compared to the ones of
the first scenario. After adaptation to the state Motherese,
the perplexity on Mont M decreases from 24.4 to 20.8.
Adapting to Emphatic reduces the perplexity on Mont E
from 10.2 to 8.28. If the language models are adapted to
Anger, the perplexity on Mont A is 7.66 compared to 9.87
in the baseline system. As it could be observed in the first
scenario, the differences between Emphatic and Anger are
more obvious in terms of the perplexity than in terms of the
word accuracy. In terms of the perplexity, the best adaptation
results are always obtained, if data of the same state is used for
adaptation of the language models; that is, although Anger
also helps to reduce the perplexity on Mont E (from 10.2 to
9.77), the best adaptation results are obtained with Emphatic
speech (8.28). However, the improvements on Mont E in
terms of the word accuracy were not significant and the
adaptation to Anger even resulted in a better word accuracy
on Mont E (81.9%) than the adaptation to Emphatic (81.6).

In the last experiments shown in the bottom part of
Table 7, the combined adaptation of acoustic and linguistic
models is carried out. By that, the improvements obtained
by the acoustic adaptation can be increased further. After
the adaptation, Neutral is recognised with a word accuracy
of 77.6%. The recognition of speech produced in the states
Emphatic and Anger can profit significantly from the adapta-
tion of both the acoustic and linguistic models compared to
the baseline system: the word accuracy for Emphatic speech
is now 84.4% compared to 81.0% of the baseline system and
the one for Anger is now 85.1% compared to the baseline
of 79.2% WA. In this second scenario, the models for Angry
speech could profit more by the adaptation than the ones for
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Table 9: Summary of the performance gains by adaptation of
the baseline system to the three emotion-related states Motherese,
Emphatic, and Anger. The performance is given in terms of word
accuracy (WA) (%). The filled bullets indicate at which level the
improvements w.r.t. the baseline system are significant.

(a) Scenario 1: “neutral versus emotional ASR engine”

M E A

Baseline system 43.6 61.3 64.9

Adapted systems

Acoustic models 43.1 ◦ ◦ ◦ ◦ ◦ 74.8 • • • • • 73.5 • • • • •
Linguistic models 49.3 • ◦ ◦ ◦ ◦ 67.0 • • • • • 68.5 • • • • ◦
Both 47.4 ◦ ◦ ◦ ◦ ◦ 76.5 • • • • • 75.3 • • • • •

(b) Scenario 2: “adaptation of neutral ASR engine”

M E A

Baseline system 65.0 81.0 79.2

Adapted systems

Acoustic models 64.5 ◦ ◦ ◦ ◦ ◦ 83.1 • ◦ ◦ ◦ ◦ 83.6 • • • • •
Linguistic models 65.9 ◦ ◦ ◦ ◦ ◦ 81.6 ◦ ◦ ◦ ◦ ◦ 81.6 • • • • •
Both 65.9 ◦ ◦ ◦ ◦ ◦ 84.4 • • • • • 85.1 • • • • •

Levels of significance (adjusted according to [34]):
•◦◦◦◦ 0.05 ••◦◦◦ 0.01 •••◦◦ 0.005 ••••◦ 0.002 ••••• 0.001.

Emphatic speech. The gap between Emphatic and Anger on
the one hand and Neutral on the other hand has widened
clearly. The results of the adaptation are summarised in the
bottom part of Table 7.

3.3. Significance Tests for ASR. The significance between pairs
of ASR recognition scores has been investigated by applying
the matched-pairs t-test. According to [35], this statistical test
gives accurate results when (1) the recognition of pairs of
utterances is carried out under almost identical conditions,
(2) the errors made by the two ASR engines in different
utterances are independent, and (3) the number of utterances
is sufficiently large. All these conditions are certainly met.

The test can be briefly described as follows. For each
couple of utterances transcribed by two ASR systems, the
Levenshtein distance of each of them to the (same) reference
is computed. This step basically coincides to the alignment
needed for computing the word accuracies. Then, the
significance of the difference between these two sequences is
examined by applying a one tailed t-test: we want to see if
the proposed algorithm is better than the baseline one. The
test is eventually accomplished for all couples of experiments
sharing the same test segments. To cope with the multiplicity
effect, that is, the chances of getting an increased number of
significant results due to multiple tests, we adjusted the α
values as described in [34].

Table 9 summarises the performance gains obtained by
the adaptation of the baseline system to the speech of the
three emotion-related states Motherese, Emphatic, and Anger
and shows which of the improvements are significant at a
level of at least 0.05.

4. Feature Space Visualisation

To visualise the ASR feature space, the 12-dimensional static
MFCC feature vectors are averaged over all words produced
by one speaker in a particular emotion-related state. By
averaging over all MFCC feature vectors of all words, the
average MFCC feature vector contains not only acoustic
but also linguistic information to some degree. Based on
the Euclidean distances between the average MFCC feature
vectors, a Sammon transformation [36] is applied to map
the points from the original, 12-dimensional feature space to
a low-dimensional space with—in the presented case—only
two dimensions. The Sammon mapping performs a topology
preserving reduction of data dimension by minimising a
stress function between the topology of the low-dimensional
Sammon map and the high-dimensional original data. More
details can be found in [22, 37].

Thus, each point in Figure 3(a) represents one speaker
in a particular emotion. The four emotion-related states
form four different clusters in this two-dimensional space.
As can be seen, Neutral speech is found “in the middle” of
the projected MFCC space and is most compactly clustered
compared to emotional speech. The other three clusters are
located around the Neutral one. For a better visualisation, the
clusters are modelled by two-dimensional Gaussian proba-
bility density functions. These are illustrated in Figure 3(b)
by their mean vector and an ellipse representing their
covariance matrix. Emphatic speech also forms a rather
compact cluster with almost no overlap with the other three
clusters. In contrast, speech produced in the state Anger
shows a clearly higher acoustic variability resulting in a
large overlap between the cluster of Anger and the ones
of Motherese and Neutral. The overlap with Motherese is
partly due to the acoustic similarity of reprimanding, which is
mapped onto Anger, and motherese. The highest variability in
the MFCC space can be observed for Motherese speech; this
in turn explains why it is difficult to recognise it robustly.

5. Conclusion and Discussion

Our results demonstrate the difficulty of the automatic
recognition of children’s speech, especially in the case of
spontaneous and affective speech. The evaluation shows
clearly that affect does affect recognition of children’s speech.
Thereby, Emphatic and Angry speech is recognised best—
even better than Neutral speech, although the baseline ASR
system is trained on Neutral speech only. The reasons could
be that emphatic speech or speech produced in slight forms of
anger is articulated clearly and that the acoustic realisations
are obviously quite similar to those of neutral speech. This
does not hold for Motherese speech resulting in high word
error rates.

The ASR performance can be increased by adaptation of
the acoustic and linguistic models. Best results are obtained
for speech produced in the states Emphatic and Anger.
Training material consisting of Emphatic speech—emphatic
being a prestage of anger—does not only help to improve
the recognition of Emphatic but also helps to increase the
performance on Anger. Vice versa, speech produced in Anger
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Figure 3: Visualisation of the distribution of emotions in a high-to-low-dimensional Sammon transformation of the MFCC space: each
point (a) represents speech of one speaker in one particular emotion-related state. The four emotion-related states form clusters that are
modelled by Gaussian densities (b).

also helps to improve the ASR performance on Emphatic
speech. For speech produced in Motherese, the adaptation
of the acoustic models was not successful—probably due to
the high interspeaker variability and the dominance of one
single speaker. However, the results could be improved by
adaptation of the linguistic models.

Whereas the ASR performance on speech of a particular
emotion-related state could be improved by the adaptation
to this particular state, the performance on speech produced
in other states decreased in general. Hence, an emotion
classification module could be used to dynamically select
an emotion dependent speech recogniser such that matched
conditions between the training and the testing of the speech
recogniser are preserved.

ASR performance is influenced by many factors. For
this study, we have tried to keep as many factors as
possible constant. We have defined subsets of equal size
for each emotional state. The average prototypicality of
the emotional states is comparable for the three subsets
Ohm M, Ohm E, and Ohm A; only for Ohm N the average
prototypicality is higher. The experiments show that Neutral
speech is recognised worse than speech produced in the
states Emphatic and Anger. This is certainly not due to the
higher prototypicality of the Neutral chunks. However, the
influence of prototypicality on the ASR performance has not
been studied yet. For all experiments in this study, speech
recognisers have been trained that have the same vocabulary.
However, the four different subsets of the test set differ with
respect to the size of the vocabulary that is actually used in
the different emotional states. As this is spontaneous speech,
this factor cannot be controlled. It remains unclear how ASR

performance is affected by these different vocabularies. It
may be that words of the vocabulary that are acoustically
similar can be more often observed in the state Neutral than
in the other two states Emphatic and Anger. Furthermore, the
acoustic realisations of Motherese in the training set seemed
to be too different from those in the test set such that the
acoustic models could not be adapted successfully.
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