
Hindawi Publishing Corporation
EURASIP Journal on Audio, Speech, and Music Processing
Volume 2011, Article ID 426792, 17 pages
doi:10.1155/2011/426792

Research Article

Phoneme and Sentence-Level Ensembles for Speech Recognition

Christos Dimitrakakis1 and Samy Bengio2

1 FIAS, Ruth-Moufang-Strß 1, 60438 Frankfurt, Germany
2Google, 1600 Amphitheatre Parkway, B1350-138, Mountain View, CA 94043, USA

Correspondence should be addressed to Christos Dimitrakakis, christos.dimitrakakis@gmail.com

Received 17 September 2010; Accepted 20 January 2011

Academic Editor: Elmar Nöth

Copyright © 2011 C. Dimitrakakis and S. Bengio. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We address the question of whether and how boosting and bagging can be used for speech recognition. In order to do this, we
compare two different boosting schemes, one at the phoneme level and one at the utterance level, with a phoneme-level bagging
scheme. We control for many parameters and other choices, such as the state inference scheme used. In an unbiased experiment,
we clearly show that the gain of boosting methods compared to a single hidden Markov model is in all cases only marginal, while
bagging significantly outperforms all other methods. We thus conclude that bagging methods, which have so far been overlooked
in favour of boosting, should be examined more closely as a potentially useful ensemble learning technique for speech recognition.

1. Introduction

This paper examines the application of ensemble methods to
hidden Markov models (HMMs) for speech recognition. We
consider two methods: bagging and boosting. Both methods
feature a fixed mixing distribution between the ensemble
components, which simplifies the inference, though it does
not completely trivialise it.

This paper follows up on and consolidates previous
results [1–3] that focused on boosting. The main con-
tributions are the following. Firstly, we use an unbiased
model testing methodology to perform the experimental
comparison between the various different approaches. A
larger number of experiments, with additional experiments
on triphones, shed some further light on previous results
[2, 3]. Secondly, the results indicate that, in an unbiased
comparison, at least for the dataset and features considered,
bagging approaches enjoy a significant advantage to boosting
approaches. More specifically, bagging consistently exhibited
a significantly better performance than either any of the
boosting approaches examined. Furthermore, we were able
to obtain state-of-the art results on this dataset using a
simple bagging estimator on triphone models. This indicates
that perhaps a shift towards bagging and perhaps, more
generally, empirical Bayes methods may be advantageous for
any further advances in speech recognition.

Section 2 introduces notation and provides some back-
ground to speech recognition using hidden Markov models.
In addition, it discusses multistream methods for combining
multiple hidden Markov models to perform speech recogni-
tion. Finally, it introduces the ensemble methods used in the
paper, bagging and boosting, in their basic form.

Section 3 discusses related work and their relation to our
contributions, while Section 4 gives details about the data
and the experimental protocols followed.

In the speech model considered, words are hidden
Markov models composed of concatenations of phonetic
hidden Markov models. In this setting it is possible to employ
mixture models at any temporal level. Section 5 considers
mixtures at the phoneme model level, where data with a
phonetic segmentation is available. We can then restrict
ourselves to a sequence classification problem in order to
train a mixture model. Application of methods such as
bagging and boosting to the phoneme classification task
is then possible. However, using the resulting models for
continuous speech recognition poses some difficulties in
terms of complexity. Section 5.1 outlines how multistream
decoding can be used to perform approximate inference in
the resulting mixture model.

Section 6 discusses an algorithm, introduced in [3], for
word error rate minimisation using boosting techniques.

2 EURASIP Journal on Audio, Speech, and Music Processing

While it appears trivial to do so by minimising some form
of loss based on the word error rate, in practice successful
application additionally requires use of a probabilistic model
for inferring error probabilities in parts of misclassified
sequences. The concepts of expected label and expected loss
are introduced, of which the latter is used in place of the
conventional loss. This integration of probabilistic models
with boosting allows its use in problems where labels are not
available.

Sections 7 and 8 conclude the paper with an extensive
comparison between the proposed models. It is clearly shown
neither of the boosting approaches employed manage to
outperform a simple bagging model that is trained on
presegmented phonetic data. Furthermore, in a follow-up
experiment, we find that the performance of bagging when
using triphone models achieves state-of-the art results
for the dataset used. These are significant findings, since
most of the recent ensemble-based hidden Markov model
research on speech recognition has focused invariably on
boosting.

2. Background and Notation

Sequence learning and sequential decision making deal
with the problem of modelling the relationship between
sequential variables from a set of data and then using the
models to make decisions. In this paper, we examine two
types of sequence learning tasks: sequence classification and
sequence recognition.

The sequence classification task entails assigning a se-
quence to one or more of a set of categories. More formally,
we assume a finite label set Y and a possibly uncountably
infinite observation set X. We denote the set of sequences of
length n as Xn � ×nX and the null sequence set by X0 �∅.
Finally, we denote the set of all sequences by X∗ �

⋃∞
n=0 X

n.
We observe sequences x = x1, x2, . . ., with xi ∈ X and
x ∈ X∗, and we use |x| to denote the length of a sequence
x, while xt :T = xt , xt+1, . . . , xT denotes subsequences. In
sequence classification, each x ∈ X∗ is associated with a
label y ∈ Y. A sequence classifier f ∈ F , is a mapping
f : X∗ → Y, such that f (x) corresponds to the predicted
label, or classification decision, for the observed sequence x.

We focus on probabilistic classifiers, where the predicted
label is derived from the conditional probability of the
class given the observations, or posterior class probability
P(y | x), with x ∈ X∗, y ∈ Y, where we make no
distinction between random variables and their realisations.
More specifically, we consider a set of models M and an
associated set of observation densities and class probabilities
{p(x | y,μ),P(y | μ) : μ ∈M} indexed by μ. The posterior
class probability according to model μ can be obtained by
using Bayes’ theorem:

P
(
y | x,μ

) = p
(
x | y,μ

)
P
(
y | μ)

p
(
x | μ) . (1)

Any model μ can be used to define a classification rule.

st st+1

xt xt+1

Figure 1: Graphical representation of a hidden Markov model,
with arrows indicating dependencies between variables. The obser-
vations xt and the next state st+1 only depend on the current state
st .

Definition 1 (Bayes classifier). A classifier fμ : X∗ → Y that
employs (1) and makes classification decisions according to

fμ(x) = arg max
y∈Y

P
(
y | x,μ

)
(2)

is referred to as a Bayes classifier or a Bayes decision rule.

Formally, this task is exactly the same as nonsequential
classification. The only practical difference is that the obser-
vations are sequences. However, care should be taken as this
makes the implicit assumption that the costs of all incorrect
decisions are equal.

In sequence recognition, we attempt to determine a
sequence of events from a sequence of observations. More
formally, we are given a sequence of observations x and are
required to determine a sequence of labels y ∈ Y∗, that is,
the sequence y = y1, y2, . . . , yk , |y| ≤ |x|, with maximum
posterior probability P(y | x). In practice, models are used
for which it is not necessary to exhaustively evaluate the set of
possible label sequences. One such simple, yet natural, class
is that of hidden Markov models.

2.1. Speech Recognition with Hidden Markov Models

Definition 2 (hidden Markov model). A hidden Markov
model (HMM) is a discrete-time stochastic process, with
state variable st in some discrete space S, and an observation
variable xt ∈X, such that

P(st | st−1, st−2, . . .) = P(st | st−1),

P(xt | st , xt−1, st−1, xt−2, . . .) = P(xt | st).
(3)

The model is characterised by the observation distribution
P(xt | st), the transition distribution P(st | st−1), and
the initial state distribution P(s1) ≡ P(s1 | s0). These
dependencies are shown graphically in Figure 1.

Training consists of two steps. First, select a class of hid-
den Markov models M, with each model μ ∈M correspond-
ing to a pair of transition and observation densities P(st |
st−1,μ), P(xt | st,μ). The second step is to select a model from
M. By additionally defining a prior density p(μ) over M,

EURASIP Journal on Audio, Speech, and Music Processing 3

we can try to find the maximum a posteriori (MAP) model
μ∗ ∈M, given a set of observation sequences D

μ∗ = arg max
μ∈M

p
(
μ |D). (4)

The class M is restricted to models with a particular number
of states and allowed transitions between states. In this paper,
the optimisation is performed through expectation maximi-
sation.

The most common way to apply such models to speech
recognition is to associate each state s with phonological
units a ∈ A, such as phonemes, syllables, or words, through
a distribution P(a | s), which takes values in {0, 1} in usual
practice; thus, each state is mapped to only one phoneme.
This is done by modelling each phoneme as a small HMM
(Figure 2) and combining them into a larger HMM, such as
the one shown in Figure 3, with a set of parallel chains such
that each chain maps to one word; for example, given that
we are in the state s = 4 at some time t, then we are also
definitely (i.e., with probability 1) in Word A and Phoneme B
at time t. In general, if we can determine the probabilities for
sequences of states, we can also determine the most probable
sequence of words or phonemes; that is, given a sequence of
observations x1 :T , we calculate the state distribution P(s1 :T |
x1 :T) and subsequently a distribution over phonologies, to
wit the probabilities of possible word, syllable, or phoneme
sequences. Thus, the problem of recognising word sequences
is reduced to the problem of state estimation.

2.2. Multistream Decoding. When we wish to combine
evidence from n different models, state estimation is sig-
nificantly harder, as the number of effective states is |S|n.
However, multistream decoding techniques can be used
as an approximation to the full mixture model [4]. Such
techniques derive their name from the fact that they were
originally used to combine models which had been trained
on different streams of data or features [5]. In this paper, we
instead wish to combine evidence from models trained on
different samples of the same data.

In multistream decoding each subunit model corre-
sponding to a phonological unit a is comprised of n sub-
models a = {ai : i ∈ [1,n]} associated with the subunit
level at which the recombination of the input streams should
be performed. For any given a and a distribution over models
π(ai | a), the observation density conditioned on the unit a
can be written as

π(x | a) =
n∑

i=1

p(x | ai)π(ai | a), (5)

where π(ai | a) can be seen as a weight for expert i. This
may vary across a, but herein we consider the case where the
weight is fixed, that is, π(ai | a) = wi for all a. We consider
state-locked multistream decoding, where all submodels are
forced to be at the same state. This can be viewed as creating
another Markov model with emission distribution

π(xt | st ,a) =
n∑

i=1

p(xt | st ,ai)π(ai | a). (6)

s1 s2 s3

x1 x2 x3

Figure 2: Graphical representation of a phoneme model with 3
emitting states, as well as initial and terminal nonemitting states.
The arrows depict dependencies between specific states. All the
phoneme models used in this paper employed the above topology.

An alternative is the exponentially weighted product of
emission distributions:

π(xt | st,a) =
n∏

i=1

p(xt | st ,ai)π(ai|a). (7)

However, this approximation does not arise from (5) but
from assuming a factorisation of the observations p(xt |
st) =

∏n
i=1p(xit | st), which is useful when there is a different

model for different parts of the observation vector.
Multistream techniques are hardly limited to the above.

For example, Misra et al. [6] describe a system where π is
related to the entropy of each submodel, while Ketabdar et al.
[7] describe a multistream method utilising state posteriors.
We, however, shall concentrate on the two techniques
outlined above, as well as a single-stream technique to be
described in Section 5.1.

2.3. Ensemble Methods. We investigate the use of ensemble
methods in the class of static mixture models for speech
recognition. Such methods construct an aggregate model
from a set of base hypotheses M � {μi : i = 1, . . . ,N}.
Each hypothesis μi indexes a set of conditional distributions
{P(· | ·,μi) : i = 1, . . . ,N}. To complete the model, we
employ a set of weights W � {wi : i = 1, . . . ,N} corre-
sponding to the probability of each base hypothesis, so that
wi � P(μi). Thus, we can form a mixture model, assuming
P(μi | x) = P(μi) for all x ∈X∗:

P(· | ·,M,W) =
N∑

i=1

wiP
(· | ·,μi

)
. (8)

Two questions that arise when training such models are how
to select M and W . In this paper, we consider two different
approaches, bagging and boosting.

2.3.1. Bagging. Bagging [8] can be seen as a method for
sampling the model space M. We first require a learning
algorithm Λ : (X∗ ×Y)∗ → M that maps (While we
restrict ourselves to the deterministic case for simplicity,
bagging is applicable to stochastic learning algorithms as
well.) from a dataset D ∈ (X∗ ×Y)∗ of data pairs (x, y)

4 EURASIP Journal on Audio, Speech, and Music Processing

Phoneme A Phoneme B

Phoneme B Phoneme C

Word A

Word BB

1 2 3 4 5 6

7 8 9 10 11 12

Figure 3: A hidden Markov model for speech recognition. The figure depicts how models of three phonemes, A, B, C, are used to construct
a single hidden Markov model for distinguishing between two different words. The states are indexed uniquely. Black circles indicate non-
emitting states.

to models μ ∈ M. We then sample N datasets Di from a
distribution D , for i = 1, . . . ,N . For each Di, the learning
algorithm Λ generates a model μi � Λ(Di). The models
M � {μi : i = 1, . . . ,N} can be combined into a mixture
with wi = 1/N for all i:

P
(
y | x,M,W

) = 1
N

N∑

i=1

P
(
y | x,μi

)
. (9)

In Bagging, Di is generated by sampling with replacement
from the original dataset D, with |Di| = |D|. Thus, Di is a
bootstrap replicate of D.

2.3.2. Boosting. Boosting algorithms [9–11] are another fam-
ily of ensemble methods. The most commonly used boosting
algorithm for classification is AdaBoost [9]. Though many
variants of AdaBoost for multiclass classification problems
exist, in this paper we will use AdaBoost.M1.

An AdaBoost ensemble is a mixture model composed of
N models μi and weights wi, as in the previous section. The
models and weights are created in an iterative manner. At
iteration j, the model μj � Λ(Dj) is created from a weighted
bootstrap sample Dj of the training dataset D = {di : i ∈
[1,n]}, with di = (xi, yi). The probability of adding example
di to the bootstrap replicate Dj is denoted as pj(di), with∑

i p j (di) = 1. At the end of iteration j of AdaBoost.M1, βj is
calculated according to

βj = ln
1− εj
ε j

, (10)

where εj �
∑

i p j(di)�(di) is the empirical expected loss of

the jth, with �(di) � I{hi /= yi} being the sample loss of
example di, where I{·} is an indicator function. At the end of
each iteration, sampling probabilities are updated according
to

pj+1(di) =
pj(di) exp

(
βj�(di)

)

Zj
, (11)

where Zj �
∑

i p j(di) exp(βj�(di)) is a normalisation factor.
Thus, incorrectly classified examples are more likely to be
included in the next bootstrap data set. The final model is a
mixture with N components μi and weights wi � βi/

∑N
j=1 βj .

3. Contributions and RelatedWork

The original AdaBoost algorithm had been defined for
classification and regression tasks, with the regression case
receiving more attention recently (see [10] for an overview).
In addition, research in the application of boosting to
sequence learning and speech recognition has intensified
[12–15]. The application of other ensemble methods, how-
ever, has been limited to random decision trees [16, 17]. In
our view, bagging [8] is a method that has been somewhat
unfairly neglected, and we present results that show that it
can outperform boosting in an unbiased experiment.

One of the simplest ways to apply ensemble methods to
speech recognition is to employ them at the state level. For
example, Schwenk [18] proposed a HMM/artificial neural
network (ANN) system, with the ANNs used to compute
the posterior phoneme probabilities at each state. Boosting
itself was performed at the ANN level, using AdaBoost
with confidence-rated predictions, using the frame error rate
as the sample loss function. The resulting decoder system
differed from a normal HMM/ANN hybrid in that each ANN
was replaced by a mixture of ANNs that had been provided
via boosting. Thus, such a technique avoids the difficulties
of performing inference on mixtures, since the mixtures only
model instantaneous distributions. Zweig and Padmanabhan
[19] appear to be using a similar technique, based on
Gaussian mixtures. The authors additionally describe a few
boosting variants for large-scale systems with thousands of
phonetic units. Both papers report mild improvements in
recognition.

One of the first approaches to utterance-level boosting is
due to Cook and Robinson [20], who employed a boosting
scheme, where the sentences with the highest error rate were

EURASIP Journal on Audio, Speech, and Music Processing 5

classified as “incorrect” and the rest “correct,” irrespective of
the absolute word error rate of each sentences. The weights
of all frames constituting a sentence were adjusted equally
and boosting was applied at the frame level. This however
does not manage to produce as good results as the other
schemes described by the authors. In our view, which is
partially supported by the experimental results in Section 6,
this could have been partially due to the lack of a temporal
credit assignment mechanism such as the one we present. An
early example of a nonboosting approach for the reduction of
word error rate is [21], which employed a “corrective training
scheme.”

In related work on utterance-level boosting, Zhang and
Rudnicky [22] compared use of the posterior probability
of each possible utterance for adjusting the weights of each
utterance with a “nonboosting” method, where the same
weights are adjusted according to some function of the word
error rate. In either case, utterance posterior probabilities
are used for recombining the experts. Since the number of
possible utterances is very large, not all possible utterances
are used but an N-best list. For recombination, the authors
consider two methods: firstly, choosing the utterance with
maximal sum of weighted posterior (where the weights
have been determined by boosting). Secondly, they consider
combining via ROVER, a dynamic programming method
for combining multiple speech recognisers (see [23]). Since
the authors’ use of ROVER entails using just one hypothesis
from each expert to perform the combination, in [15]
they consider a scheme where the N-best hypotheses are
reordered according to their estimated word error rate. In
further work [24] the authors consider a boosting scheme
for assigning weights to frames, rather than just to complete
sentences. More specifically, they use the currently estimated
model to obtain the probability that the correct word has
been decoded at any particular time, that is, the posterior
probability that the word at time t is at given the model and
the sequence of observations. In our case we use a slightly
different formalism in that we calculate the expectation of
the loss according to an independent model.

Finally, Meyer and Schramm [13] propose an interesting
boosting scheme with a weighted sum model recombination.
More precisely, the authors employ AdaBoost.M2 at the
utterance level, utilising the posterior probability of each
utterance for the loss function. Since the algorithm requires
calculating the posterior of every possible class (in this case
an utterance) given the data, exact calculation is prohibitive.
The required calculation however can be approximated by
calculating the posterior only for the subset of the top N
utterances and assuming the rest are zero. Their model
recombination scheme relies upon treating each expert as
a different pronunciation model. This results in essentially
a mixture model in the form of (5), where the weight of
each expert is derived from the boosting algorithm. They
further robustify their approach through a language model.
Their results indicate a slight improvement (in the order of
0.5%) in a large vocabulary continuous speech recognition
experiment.

More recently, an entirely different and interesting class
of complementary models were proposed in [12, 16, 17].

The core idea is the use of randomised decision trees to create
multiple experts, which allows for more detailed modelling
of the strengths and weaknesses of each expert, while [12]
presents an extensive array of methods for recombination
during speech recognition. Other recent work has focused
on slightly different applications. For example, a boosting
approach for language identification was used in [14, 25],
which utilised an ensemble of Gaussian mixture models for
both the target class and the antimodel. In general, however,
bagging methods, though mentioned in the literature, do not
appear to be used, and recent surveys, such as [12, 26, 27] do
not include discussions of bagging.

3.1. Our Contribution. This paper presents methods and
results for the use of both boosting and bagging for phoneme
classification and speech recognition. Apart from synthe-
sising and extending our previous results [2, 3], the main
purpose of this paper is to present an unbiased experimental
comparison between a large number of methods, controlling
for the appropriate choice of hyperparameters and using a
principled statistical methodology for the evaluation of the
significance of the results. If this is not done, then it is
possible to draw incorrect conclusions.

Section 5 describes our approach for phoneme-level
training of ensemble methods (boosting and bagging). In
the phoneme classification case, the formulation of the
task is essentially the same as that of static classification;
the only difference is that the observations are sequences
rather than single values. As far as we know, our past
work [2] is the only one employing ensemble methods at
the phoneme level. In Section 5, we extend our previous
results by comparing boosting and bagging in terms of
both classification and recognition performance and show,
interestingly, that bagging achieves the same reduction in
recognition error rates as boosting, even though it cannot
match boosting classification error rate reduction. In addi-
tion, the section compares a number of different multistream
decoding techniques.

Another interesting way to apply boosting is to use it
at the sentence level, for the purposes of explicitly min-
imising the word error rate. Section 6 presents a boosting-
based approach to minimise the word error rate originally
introduced in [3].

Finally, Section 7 presents an extensive, unbiased exper-
imental comparison, with separate model selection and
model testing phase, between the proposed methods and
a number of baseline systems. This shows that the simple
phoneme-level bagging scheme outperforms all of the other
boosting schemes explored in this paper significantly. Finally,
further results using tri-phone models indicate that state-
of-the-art performance is achievable for this dataset using
bagging but not boosting.

4. Data andMethods

The phoneme data was based on a presegmented version
of the OGI Numbers 95 (N95) data set [28]. This data set
was converted from the original raw audio data into a set

6 EURASIP Journal on Audio, Speech, and Music Processing

of features based on Mel-Frequency Cepstrum Coefficients
(MFCC) [29] (with 39 components, consisting of three
groups of 13 coefficients, namely, the static coefficients and
their first and second derivatives) that were extracted from
each frame. The data contains 27 distinct phonemes (or 80
tri-phones in the tri-phone version of the dataset) that com-
pose 30 dictionary words. There are 3233 training utterances
and 1206 test utterances, containing 12510 and 4670 words,
respectively. The segmentation of the utterances into their
constituent phonemes resulted in 35562 training segments
and 12613 test segments, totalling 486537 training frames
and 180349 test frames, respectively. The feature extraction
and phonetic labelling are described in more detail in [30].

4.1. Performance Measures. The comparative performance
measure used depends on the task. For the phoneme
classification task, the classification error is used, which is the
percentage of misclassified examples in the training or testing
data set. For the speech recognition task, the following word
error rate is used:

WER = Nins + Nsub + Ndel

Nwords
, (12)

where Nins is the number of word insertions, Nsub the
number of word substitutions, and Ndel the number of word
deletions. These numbers are determined by finding the
minimum number of insertions, substitutions, or deletions
necessary to transform the target utterance into the emitted
utterance for each example and then summing them for all
the examples in the set.

4.2. Bootstrap Estimate for Speech Recognition. In order to
establish the significance of the reported results, we employ
a bootstrap method; (see [31]). More specifically, we use
the approach suggested by Bisani and Ney [32] for speech
recognition. It amounts to using the results of speech recog-
nition on a test set of sentences as an empirical distribution
of errors. Using this method, we obtain a bootstrap estimate
of the probability distribution of the difference in word error
rate ΔW between two systems, from B bootstrap samples
ΔWk of the word error rate difference:

P(ΔW > u) =
∫∞

u
p(ΔW)dΔW ≈ 1

B

B∑

k=1

I{ΔWk > u}, (13)

where I{·} is an indicator function. This approximates the
probability that system A is better than system B by more
than u. See [31] for more on the properties of the bootstrap
and [33] for the convergence of empirical processes and their
relation to the bootstrap.

4.3. Parameter Selection. The models employed have a num-
ber of hyperparameters. In order to perform unbiased
comparisons, we split the training data into a smaller training
set of 2000 utterances and a hold-out set of 1233 utterances.
For the preliminary experiments performed in Sections 5
and 6, we train all models on the small training set and
report the performance on both the training and the hold-
out set. For the experiments in Section 7, each model’s

hyperparameters are selected independently on the hold-out
set. Then the model is trained on the complete training set
and evaluated in the independent test set.

For the classification task (Section 5), we used preseg-
mented data. Thus, the classification could be performed
using a Bayes classifier composed of 27 hidden Markov
models, each one corresponding to one class. Each phonetic
HMM was composed of the same number of hidden states
(And an additional two nonemitting states: the initial and
final states.) , in a left-to-right topology, and the distributions
corresponding to each state were modelled with a Gaussian
mixture model, with each Gaussian having a diagonal covari-
ance matrix. In Section 5.2, we select the number of states
per phoneme from {1, 2, 3, 4, 5} and the mixture components
from {10, 20, 30, 40} in the hold-out set for a single HMM
and then examine whether bagging or boosting can improve
the classification or speech recognition performance.

In all cases, the diagonal covariance matrix elements
of each Gaussian were clamped to a lower limit of 0.2
times the global variance of the data. For continuous speech
recognition, transitions between word models incurred an
additional likelihood penalty of exp(−15) while calculating
the most likely sequence of states. Finally, in all continuous
speech recognition tasks, state sequences were constrained
to remain in the same phoneme for at least three acoustic
frames.

For phoneme-level training, the adaptation of each
phoneme model was performed in two steps. Firstly, the
acoustic frames belonging to each phonetic segment were
split into a number of equally sized intervals, where the
number of intervals was equal to the number of states
in the phonetic model. The Gaussian mixture components
corresponding to the data for each interval were initialised
via 25 iterations of the K-means algorithm (see, e.g., [34]).
After this initialisation was performed, a maximum of 25
iterations of the EM algorithm were run on each model, with
optimisation stopping earlier if, at any point in time t, the
likelihood Lt satisfied the stopping criterion (Lt − Lt−1)/Lt <
ε, with ε = 10−5 being used in all experiments that employed
EM for optimisation.

For the utterance-level training described in Section 6,
the same initialisation was performed. The inference of the
final model was done through expectation maximisation
(using the Viterbi approximation) on concatenated phonetic
models representing utterances. Note that performing the
full EM computation is costlier and does not result in
significantly better generalisation performance, at least in
this case. The stopping criterion and maximum iterations
were the same as those used for phoneme-level training.

Finally, the results in Section 7 present an unbiased
comparison between models. In order to do this, we selected
the parameters of each model, such as the number of
Gaussians and number of experts, using the performance in
the hold-out set. We then used the selected parameters to
train a model on the full training dataset. The models were
evaluated on the separate testing dataset and compared using
the bootstrap estimate described in Section 4.2.

EURASIP Journal on Audio, Speech, and Music Processing 7

5. Phoneme-Level Bagging and Boosting

A simple way to apply ensemble techniques such as bagging
and boosting is to cast the problem into the classification
framework. This is possible at the phoneme level, where each
class y ∈ Y corresponds to a phoneme. As long as the
available data are annotated so that subsequences containing
single phoneme data can be extracted, it is natural to adapt
each hidden Markov model μy to a single class y out of the
possible |Y|, where | · | denotes the cardinality of the set,
and combine the models into a Bayes classifier in the manner
described in Section 2. Such a Bayes classifier can then be
used as an expert in an ensemble.

In both cases, each example d in the training dataset
D is a sequence segment corresponding to data from a
single phoneme. Consequently, each example d has the form
d = (x, y), with x ∈ X∗ being a subsequence of features
corresponding to single phoneme data and y ∈ Y being a
phoneme label.

Both methods iteratively construct an ensemble of N
models. At each iteration j, a new classifier hj is created,
consisting of a set of hidden Markov models: hj =
{μj

1,μ
j
2, . . . ,μ

j
|Y|}. Each model μ

j
y is adapted to the set of

examples {dk ∈ D j | yk = y}, where D j is a bootstrap
replicate of D . In order to make decisions, the experts are
weighted by the mixture coefficients wi � π(hi). The only
difference between the two methods is the distribution that
D j is sampled from and the definition of the coefficients.

For “bagging”, D j is sampled uniformly from D , and the
probability over the mixture components is also uniform,
that is, π(hi) = N−1.

For “boosting”, D j is sampled from D using the distri-
bution defined in (11), while the expert weights are defined
as π(hi) = βi/

∑
j βj , where β is given by (10). The AdaBoost

method used was AdaBoost.M1.
Since previous studies in nonsequential classification

problems had shown that an increase in generalisation
performance may be obtained through the use of those two
ensemble methods, it was expected that they would have
a similar effect on performance in phoneme classification
tasks. This is tested in Section 5.2. While using the resulting
phoneme classification models for continuous speech recog-
nition is not straightforward, we describe some techniques
for combining the ensembles resulting from this training in
order to perform sequence recognition in Section 5.1.

5.1. Continuous Speech Recognition with Mixtures. The ap-
proach described is easily suitable for phoneme classifica-
tion, since each phonetic model is now a mixture model
(Figure 4), which can be used to classify phonemes given
presegmented data. However, the phoneme mixtures can
also be combined into a speech recognition mixture. Thus,
we can still employ ensemble methods for the full speech
recognition problem by training with segmented data to
produce a number of expert models which can then be
recombined during decoding on unsegmented data.

s11 s12 s13

x1 x2 x3

s21 s22 s23

h

Figure 4: A phoneme mixture model. The generating model
depends on the hidden variable h, which determines the mixing
coefficients between model 1 and 2. The random variable h may
in general depend on other variables. The distribution of the
observation is a mixture between the two distributions predicted
by the two hidden models, mixed according to the mixture model
h.

The first technique employed for sequence decoding uses
an HMM comprising all phoneme models created during
the boosting process, connected in the manner shown in
Figure 5. Each phase of the boosting process creates a sub-
model i, which we will refer to as expert for disambiguation
purposes. Each expert is a classification model that employs
one hidden Markov model for each phoneme. For some
sequence of observations, each expert calculates the posterior
probability of each phonetic class given the observation
and its model. Two types of techniques are considered for
employing the models for inferring a sequence of words.

In the single-stream case, decoding is performed using
the Viterbi algorithm in order to find a sequence of states
maximising the posterior probability of the sequence. A
normal hidden Markov model is constructed in the way
shown in Figure 5, with each phoneme being modelled as a
mixture of expert models. In this case we are trying to find

the sequence of states {st = s
j
i } with maximum likelihood.

The transition probabilities leading from anchor states (black
circles in the figure) to each model are set to wi = π(hi).

This type of decoding would have been appropriate
if the original mixture had been inferred as a type of
switching model, where only one submodel is responsible for
generating the data at each point in time and where switching
between models can occur at anchor states.

The models may also be combined using multistream
decoding (see Section 2.2). The advantage of such a method
is that it uses information from all models. The disadvantage
is that there are simply too many states to be considered.
In order to simplify this, we consider multistream decoding
synchronised at the state level, that is, with the constraint

that P(sit /= s
j
t) = 0 if j /= i. This corresponds to (5), where

the weight of stream i is again wi.

8 EURASIP Journal on Audio, Speech, and Music Processing

Expert A

Expert B

Expert C

Component of
state-locked path

Phoneme 1 Phoneme 2

wA

wB

wC

wA

wB

wC

Word 1

Phoneme 1 Phoneme 2

Expert A

Expert B

Expert C

wA

wB

wC

wA

wB

wC

Word 2

Component of
unconstrained path

Figure 5: Single-path multistream decoding for two vocabulary words consisting of two phonemes each. When there is only one expert, the
decoding process is done normally. In the multiple-expert case, phoneme models from each expert are connected in parallel. The transition
probabilities leading from the anchor states to the hidden Markov model corresponding to each experts are the weights wi of each expert.

54321

Number of states

8

9

10

11

12

13

14

15

16

W
or

d
er

ro
r

ra
te

(%
)

(a) Hold-out set, 10 Gaussians/state

8070605040302010

Number of Gaussians/state

5

6

7

8

9

10

W
or

d
er

ro
r

ra
te

(%
)

(b) Hold-out set, 3 states/phoneme

Figure 6: In the experiments reported in Section 5.2, the number of states and number of Gaussian mixtures per state were tuned on a
hold-out set prior to the analysis. (a) displays the word error rate performance of an HMM with 10 Gaussians per state when the number of
emitting states per phoneme is varied, with rather dramatic effects. (b) displays the word error rate performance of an HMM with 3 emitting
states as the number of Gaussians per state varies. In this case, the effect on generalisation is markedly lower.

5.2. Experiments with Boosting and Bagging Phoneme-Level
Models. The experiments described in this section were
performed with a fixed number of states for all phonemes,
as well as with a fixed number of Gaussians per state.
The selection of these hyperparameters was performed on
a hold-out set, as described in Section 4. The hold-out

set results are shown in Figure 6. After selecting those
hyperparameters, we perform an exploratory comparison
(An experiment that uses an unbiased procedure to select the
number of experts independently for boosting and bagging is
described in Section 7.) of the performance of boosting and
bagging as the number of mixture components are increased,

EURASIP Journal on Audio, Speech, and Music Processing 9

161412108642

Number of iterations

Training comparison 10 Gaussians

8

9

10

11

12

13

14

15

16

C
la

ss
ifi

ca
ti

on
er

ro
r

(%
)

Bayes
Bagging
Boosting

(a) Training

161412108642

Number of iterations

Training comparison 10 Gaussians

8

9

10

11

12

13

14

15

16

C
la

ss
ifi

ca
ti

on
er

ro
r

(%
)

Bayes
Bagging
Boosting

(b) Holdout

Figure 7: Classification errors for a bagged and a boosted ensemble of Bayes Classifiers as the number of experts is increased. For reference,
the corresponding errors for a single Bayes Classifier trained on the complete training set are also included. There were 10 Gaussians per
state and 3 states per phoneme for all models.

for the tasks of phoneme classification and speech recog-
nition. For the latter problem, we also examine the relative
merits of different decoding techniques.

Since the available data includes segmentation informa-
tion, it makes sense to first limit the task to training for
phoneme classification. This enables the direct application of
ensemble training algorithms by simply using each segment
as a training example.

Two methods were examined for this task: bagging and
boosting. At each iteration of either method, a sample from
the training set was made according to the distribution
defined by either algorithm and then a Bayes classifier
composed of |Y| hidden Markov models, one for each
phonetic class y ∈ Y, was trained.

It then becomes possible to apply the boosting and
bagging algorithms by using Bayes Classifiers as the experts.
The N95 data was presegmented into training examples, so
that each one was a segment containing a single phoneme.
Bootstrapping was performed by sampling through these
examples. The classification error of each classifier was used
to calculate the boosting weights. The test data was also
segmented in subsequences consisting of single phoneme
data, so that the models could be tested on the phoneme
classification tasks.

Figure 7 compares the classification performance of
bagging and boosting as the number of experts increases with
that of the Bayes classifier trained on the full training data.
As can be seen in Figure 7(a), both bagging and boosting
manage to reduce the phoneme classification error consid-
erably in the training, with boosting continuing to make
improvements until the maximum number of iterations.
For bagging, the improvement in classification was limited
to the first 4 iterations, after which performance remained

constant. The situation was similar when comparing the
models in the hold-out set, shown in Figure 7(b). There,
however, bagging failed to improve upon the baseline sys-
tem.

Finally, an exploratory comparison between the models
on the task of continuous speech recognition was made. This
was necessary, in order to decide on a method for performing
decoding when dealing with multiple models. The three
relatively simple methods of single-stream and multistream
decoding (the latter employing either weighted product or
weighted sum) were evaluated on the hold-out set. As can
be seen in Figure 8, the weighted sum method consistently
performed the best for both bagging and boosting. This was
expected since it was the only method with some justification
in our particular case, as it arises out of constraining the
full state inference problem on the mixture. The multistream
product method is not justified here, since each model had
exactly the same observation variables. The single-stream
model could perhaps be justified under the assumption of a
switching model, where a different expert can be responsible
for the observations in each phoneme. That might explain
the fact that its performance is not degrading in the case of
bagging, as the components of each mixture should be quite
similar to each other, something which is definitely not the
case with boosting, where each model is trained on a different
distribution of the data.

A fuller comparison between bagging and boosting at
the phoneme level will be given in Section 7, where the
number of Gaussian units per state and the number of
experts will be independently tuned on the hold-out set and
evaluated on a separate test set. There, it will be seen that
with an unbiased hyperparameter selection, bagging actually
outperforms boosting.

10 EURASIP Journal on Audio, Speech, and Music Processing

161412108642

Number of experts

Boosting

5

6

7

8

9

10

W
E

R
(%

)

Bayes
Single

wsum
wprod

(a)

161412108642

Number of experts

Bagging

5

6

7

8

9

10

W
E

R
(%

)

Bayes
Single

wsum
wprod

(b)

Figure 8: Generalisation performance on the hold-out set in terms of word error rate after training with segmentation information. Results
are shown for both boosting and bagging, using three different methods for decoding. Single-path and multistream. Results are shown
for three different methods single-stream (single), and state-locked multistream using either a weighted product (wprod) or weighted sum
(wsum) combination.

6. Expectation Boosting forWERMinimisation

It is also possible to apply ensemble training techniques
at the utterance level. As before, the basic models used
are HMMs that employ Gaussian mixtures to represent
the state observation distributions. Attention is restricted
to boosting algorithms in this case. In particular, we shall
develop a method that uses boosting to simultaneously utilise
information about the complete utterance, together with
an estimate about the phonetic segmentation. Since this
estimate will be derived from bootstrapping our own model,
it is unreliable. The method developed will take into account
this uncertainty.

More specifically, similarly to [20], sentence-level labels
(sequences of words without time indications) are used to
define the error measure that we wish to minimise. The
measure used is related to the word error rate, as defined
in (12). In addition to a loss function at the sentence level,
a probabilistic model is used to define a distribution for the
loss at the frame level. Combined, the two can be used for the
greedy selection of the next base hypothesis. This is further
discussed in the following section.

6.1. Boosting for Word Error Rate Minimisation. In the
previous section (and [2]) we have applied boosting to
speech recognition at the phoneme level. In that framework,
the aim was to reduce the phoneme classification error in
presegmented examples. The resulting boosted phoneme
models were combined into a single speech recognition
model using multistream techniques. It was hoped that
we could reduce the word error rate as a side effect of
performing better phoneme classification, and three different
approaches were examined for combining the models in
order to perform continuous speech recognition. However,

since the measure that we are trying to improve is the word
error rate and since we did not want to rely on the existence
of segmentation information, minimising the word error rate
directly would be desirable. This section describes such a
scheme using boosting techniques.

We describe a training method that we introduced in [3],
specific to boosting and hidden Markov models (HMMs),
for word error rate reduction. We employ a score that is
exponentially related to the word error rate of a sentence
example. The weights of the frames constituting a sentence
are adjusted depending on our expectation of how much
they contribute to the error. Finally, boosting is applied at
the sentence and frame level simultaneously. This method
has arisen from a twofold consideration: firstly, we need
to directly minimise the relevant measure of performance,
which is the word error rate. Secondly, we need a way to more
exactly specify which parts of an example most probably have
contributed to errors in the final decision. Using boosting,
it is possible to focus training on parts of the data which
are most likely to give rise to errors while at the same time
doing it in such a manner as take into account the actual
performance measure. We find that both aspects of training
have an important effect.

Section 6.1.1 describes word error rate-related loss func-
tions that can be used for boosting. Section 6.1.2 introduces
the concept of expected error, for the case when no labels are
given for the examples. This is important for the task of word
error rate minimisation. Previous sections on HMMs and
multistream decoding described how the boosted models
are combined for performing the speech recognition task.
Experimental results are outlined in Section 6.2. We conclude
with an experimental comparison between different methods
in Section 7, followed by a discussion.

EURASIP Journal on Audio, Speech, and Music Processing 11

6.1.1. Sentence Loss Function. A commonly used measure of
optimality for speech recognition tasks is the word error rate
(12). We would like to minimise this quantity using boosting
techniques. In order to do this, a dataset is considered, where
each example is a complete sentence and where the loss �(d)
for each example d is given by some function of the word
error rate for the sentence.

The word error rate for any particular sentence can
take values in [0,∞), while the AdaBoost algorithm that is
employed herein requires a sample loss function with range
[−1, 1]. For this reason we employ the ad hoc, but reasonable,
mapping � : [0,∞) → [−1, 1)

�(x) = 1− 2e−ηx, (14)

where x is the word error rate. When �(x) = −1, an example
is considered as classified correctly, and, when �(x) = 1,
the example is considered to be classified incorrectly. This
mapping includes a free parameter η > 0. Increasing the
parameter η increases the sharpness of the transition, as
shown in Figure 9. This function is used for �(·) in (11).

While this scheme may well result in some improvement
in word recognition with boosting, while avoiding relying
on potentially erroneous phonetic labels, there is some
information that is not utilised. Knowledge of the required
sequence of words, together with the obtained sequence of
words for each decoded sentence results in a set of errors that
are fairly localised in time. The following sections discuss
how it is possible to use a model that capitalises on such
knowledge in order to define a distribution of errors over
time.

6.1.2. Error Expectation for Boosting. In traditional super-
vised settings we are provided with a set of examples and
labels, which constitute our training set, and thus it is
possible to apply algorithms such as boosting. However,
this becomes problematic when labels are noisy; (see, e.g.,
[35]). Such an example is a typical speech recognition data
set. Most of the time such a data set is composed of a
set of sentences, with a corresponding set of transcriptions.
However, while the transcriptions may be accurate as far as
the intention of the speakers or the hearing of the transcriber
is concerned, subsequent translation of the transcription into
phonetic labels is bound to be error prone, as it is quite
possible for either the speaker to mispronounce words, or
for the model that performs the automatic segmentation
to make mistakes. In such a situation, adapting a model
so that it minimises the errors made on the segmented
transcriptions might not automatically lead into a model that
minimises the word error rate, which is the real goal of a
speech recognition system.

For this purpose, the concept of error expectation
is introduced. Thus, rather than declaring with absolute
certainty that an example is incorrect or not, we simply
define �(di) = P(yi /=hi), so that the sample loss is now the
probability that a mistake was made on example i and we
consider yi to be a random variable. Since boosting can admit
any sample loss function [9], this is perfectly reasonable, and
it is possible to use this loss as a sample loss in a boosting

100806040200

Word error rate (%)

Sentence loss function

−1

−0.5

0

0.5

1

�(
x)

η = 1
η = 2

η = 5
η = 10

Figure 9: The sentence loss function (14) for η ∈ {1, 2, 5, 10}.

context. The following section discusses some cases for the
distribution of y which are of relevance to the problem of
speech recognition.

6.1.3. Error Distributions in Sequential Decision Making. In
sequential decision-making problems, the knowledge about
the correctness of decisions is delayed. Furthermore, it fre-
quently lacks detailed information concerning the temporal
location of errors. A common such case is knowing that we
have made one or more errors in the time interval [1,T].
This form occurs in a number of settings. In the setting
of individual sentence recognition, a sequence of decisions
is made which corresponds to an inferred utterance. When
this is incorrect, there is little information to indicate, where
mistakes were made.

In such cases it is necessary to define a model (Even if
no model is explicitly defined, there is always one implied.)
for the probability of having made an erroneous decision at
different points in times t, given that there has been at least
one error in the interval [1,T]. Let us denote the probability
of having made an error at time t ∈ [1,T] by P(yt /=ht |
y1 :T /= h1 :T). A trivial example of such a model is to assume
that the error probability is uniformly distributed. This can
be expressed via the flat prior

P
(
yt /= ht | y1 :T /=h1 :T

) ∝ 1
T
. (15)

Another useful model is to assume an exponential prior such
that

P
(
yt /=ht | y1 :T /= h1 :T

)∝ λt−T , λ ∈ [0, 1), (16)

such that the expectation of an error near the end of the
decision sequence is much higher. This is useful in tasks
where it is expected that the decision error will be temporally
close to the information that an error has been made.
Ultimately, such models incorporate very little knowledge
about the task, apart from this simple temporal structure.

12 EURASIP Journal on Audio, Speech, and Music Processing

In this case we focus on the application of speech recogni-
tion, which has some special characteristics that can be used
to more accurately estimate possible locations of errors. For
the case of labelled sentence examples, it is possible to have
a procedure that can infer the location of an error in time.
This is because correctly recognised words offer an indication
of where possible errors lie. Assume some procedure that
creates an indicator function It such that It = 1 for instances
in time, where an error could have been made. We can
then estimate the probability of having an error at time t as
follows:

P
(
yt /=ht | y1 :T /= h1 :T

) = γIt
∑T

k=1 γIk
, (17)

where the parameter γ ∈ [1,∞) expresses our confidence in
the accuracy of It . A value of 1 will cause the probability of
an error to be the same for all moments in time, irrespective
of the value of It, while, when γ approaches infinity, we
have absolute confidence in the inferred locations. Similar
relations can be defined for an exponential prior, and they
can be obtained through the convolution of (16) and (17).

In order to apply boosting to temporal data, where
classification decisions are made at the end of each sequence,

we use a set of weights {ψ(i)
t }i corresponding to the set of

frames in an example sentence. At each boosting iteration j
the weights are adjusted through the use of (17), resulting in
the following recursive relation:

ψ
(j+1)
t = ψ

(j)
t γIt

∑T
k=1 ψ

(j)
k γIk

. (18)

In this manner, the loss incurred by the whole sentence
is distributed to its constituent frames, although the choice
is rather ad hoc. A different approach was investigated by
Zhang and Rudnicky [24], where the loss on the frames
was related to the probability of the relevant word being
uttered at time t, but their results do not indicate that this
is a better choice compared to the simpler utterance-level
training scheme that they also propose in that paper.

6.2. Experiments with Expectation Boosting. We experi-
mented on the OGI Numbers 95 (N95) data set [28] (details
about the setup and dataset are given in Section 4). The
experiment was performed as follows: firstly, a set of HMMs
μ0, composed of one model per phoneme, was trained using
the available phonetic labels. This has the role of a starting
point for the subsequent expert models. At each boosting
iteration t we take the following steps: firstly, we sample
with replacement from the distribution of training sentences
given by the AdaBoost algorithm. We create a new expert μt ,
initialised with the parameters of μ0. The expert is trained on
the sentence data using EM with the Viterbi approximation
in the expectation step to calculate the expectation. The
frames of each sequence carry an importance weight ψt ,
computed via (18), which is factored into the training
algorithm by incorporating it in the posterior probability of

the model h given the data x and time t, which, if we assume
independence of x and t, can be written as

p(h | x, t) ∝ p(h | x)p(h | t)p(h). (19)

In this case, p(h | t) will correspond to our importance
weight ψt .

After training, all sequences are decoded with the new
expert. The weights of each sentence is increased according
to (14), with η = 10. This value was chosen so that any
sentence decodings with more than 50% error rate would
be considered nearly completely erroneous (see Figure 9).
For each erroneously decoded sentence we calculate the edit
distance using a shortest path algorithm. All frames for
which the inferred state belonged to one of the words that
corresponded to a substitution, insertion, or deletion are
then marked. The weights of marked frames are adjusted
according to (17). The parameter γ corresponds to how
smooth we want the temporal credit assignment to be.

In order to evaluate the combined models we use the
multistream method described in (6), where the weight wi

of each stream i is wi � π(hi) = βi/
∑

j βj .

Experimental results comparing the performance of the
above techniques to that of an HMM using segmentation
information for training are shown in Figure 10(a) for the
training data and Figure 10(b) for the test data. The figures
include results for our previous results with boosting at
the phoneme level. We have included results for values of
γ ∈ {1, 2, 4, 8, 16}. Although we do not improve significantly
upon our previous work with respect to the generalisation
error, we found that on the training set, while boosting with
presegmented phoneme examples had previously resulted
in a reduction of the error to 3% after approximately 30
iterations (not shown), the sentence example training, com-
bined with the error probability distribution over frames,
converged to the same error after approximately 6 iterations.
The situation was similar in the hold-out set, with the
new approach converging to a good generalisation error
at 10 iterations, while the previous approach required 16
iterations to reach the same performance. A drawback of
the new approach, however, is the need to specify two new
hyperparameters: (a) the shape of the cost function and (b)
the shape of the expected error distribution. As mentioned
previously, for (a) we are using (14) with η = 10 and for (b)
we have chosen a mix between a uniform distribution and an
indicator function, with γ being a free parameter. Choosing
γ is not trivial (i.e., it cannot be chosen in the training set),
since large values can lead to overfitting, while values that are
too small seem to provide no benefit. For the experiments
described in Section 7 we will be holding out part of the
training set in order to select an appropriate value for γ.

The main interesting feature of the utterance-level
approach is that we are minimising the word error rate
directly, which is the real objective. Secondly, we do not
require segmentation information during training. Lastly,
the temporal probability distribution, derived from the word
errors and the state inference, provides us with a method to
assign weights to parts of the decoded sequence. Its impor-
tance becomes obvious when we compare the performance

EURASIP Journal on Audio, Speech, and Music Processing 13

1098765432

Boosting iterations

2

3

4

5

6

7
W

E
R

(%
)

Phoneme
γ = 1
γ = 2

γ = 4
γ = 8
γ = 16

(a) Training

1098765432

Boosting iterations

5

6

7

8

9

10

W
E

R
(%

)

Phoneme
γ = 1
γ = 2

γ = 4
γ = 8
γ = 16

(b) Holdout

Figure 10: Word error rates for various values of γ, compared with the phoneme boosting approach, for the training and the holdout set.

of the method for various values of γ. When the distribution
is flat (i.e., when γ = 1), the performance of the model drops
significantly. This supports the idea of using a probabilistic
model for the errors over training sentences.

7. Generalisation Performance Comparison

In a real-world application one would have to use the
training set for selecting hyperparameters to use in unknown
data. To perform such a comparison between methods,
the training data set was split in two parts, holding out
1/3rd of it for validation. For each training method, we
selected the hyperparameters θ having the best performance
on the hold-out set. In our case, the hyperparameters are
a tuple θ = (k,n, γ), where k ∈ {10, 20, 30, 40, 50} is
the number of Gaussians in the Gaussian mixture model,
n ∈ {1, 2, 3, . . . , 16} is the number of experts, and γ ∈
{1, 2, 4, 8, 16} is the temporal credit assignment coefficient
for the expectation-boosting method. The number of states
was fixed to 3, since our exploratory experiment, described
in Section 5, indicated that it was the optimal value by a
large margin. For each method, the hyperparameters θ which
provided the best performance in the hold-out set were used
to train the model on the full training set. We then evaluated
the resulting model on the independent test set. Full details
on the data and methods setup are given in Section 4.

We compared the following approaches: firstly, a Gaus-
sian mixture model (GMM), where the same observation
distribution was used for all three states of the underlying
phoneme hidden Markov model. This model was trained
on the segmented data only; secondly, a standard hidden
Markov model (HMM) with three states per phoneme, also
trained on the segmented data only. We also considered
the same models trained on complete utterances, using

embedded training after initialisation on the segmented
data. The question we wanted to address was whether
(and which) ensemble methods could improve upon these
baseline results in an unbiased setting. We first considered
ensemble methods trained using segmented data, using the
phoneme-level bagging and boosting described in Section 5.
This included both bagging and boosting of HMMs, as well
as boosting of GMMs, for completeness. In all cases the
experimental setup was identical, and the only difference
between the boosting and the bagging algorithms was that
bagging used a uniform distribution for each bootstrap
sample of the data and uniform weights on the expert
models. Finally, at the utterance level, we used expectation
boosting, which is described in Section 6.

Table 1 summarises the results obtained, indicating the
number of Gaussians per phoneme and the word error rate
obtained for each model. If one considers only those models
that were created strictly using the classification task, that is,
without adapting word models, ensemble methods perform
significantly better. Against the baseline HMM embed model,
which is trained on full utterances, however, not all ensemble
methods perform so well.

This can be seen clearly in Figures 11 and 12 which
show the probability (Calculated via the bootstrap estimate,
detailed in Section 4.2.) that one model will be better than
the other by a given amount. In particular, the estimated
probability that Boost is better than HMM embed, shown
in Figure 12(a), is merely 51%, and the mean difference in
performance is just 0.23% while, against the simple HMM
the result, shown in Figure 11(a), is statistically significant
with a confidence of 91%. Slightly better performance
is offered by E-Boost, with significance with respect to
the HMM and HMM embed models at 98% and 65%,
respectively. Overall bagging works best, performing better

14 EURASIP Journal on Audio, Speech, and Music Processing

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

Histogram

5%
2.5%

0.5%

95%

WERdiff

(a) Bag versus HMM

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

1800

Histogram

5%
2.5%

0.5%

95%
97.5%

99.5%WERdiff

(b) Boost versus HMM

Figure 11: Significance levels of word error rate difference between the phoneme-level bagging and boosting and HMM. The histograms
are created from 10,000 bootstrap samples of the test data, as described in Section 4.2. WERdiff displays the average difference in word error
rate performance between the two methods. Positive values indicate that the first method has lower error than the second. The percentage
values indicate the tail mass of the histogram to that point.

than other methods with a confidence of at least 99% in
all cases, while approximately 97.5% of the probability mass
lying above the 0.5% differential word error rate compared
to the baseline model, as can be seen in Figure 12(a).

However, these results are not quite near the state of
the art on this database. Other researchers (see, e.g., [36–
40]) have achieved word error rates 5.0 ± 0.3%, mainly
through the use of different phonetic models. Accordingly,
some further experiments were performed with Markov
models using a more complex phonetic model (composed of
80 triphones, i.e., phonemes with contextual information).
After performing the same model selection procedure as
above, a single such model achieved word error rates of
4.8 ± 0.1% (not shown in the table) which is in agreement
with published state-of-the-art results. This suggests that
using a more complex model could be better than using
mixtures of simpler models. Corresponding results for
ensembles of triphone models indicated that the boosting-
based approaches could not increase generalisation perfor-
mance, achieving a word error rate of 5.1%. However, the
simpler bagging approach managed to reach a performance
of 4.5%. However, the performance differences are not really
significant in this case.

Nevertheless, it appears that, in all cases, phoneme bag-
ging is the most robust approach. The reasons for this are not
apparent, but it is tempting to conclude that the label noise
combined with the variance-reducing properties of bagging
is at least partially responsible. Although it should be kept in
mind that the aforementioned triphone results are limited
in significance due to the small difference in performance
between methods, they nevertheless indicate that in certain
situations ensemble methods and especially bagging may be
of some use to the speech recognition community.

Table 1: Test set performance comparison of models selected on
a validation set. The second column indicates the number of Gaus-
sians per phoneme. For ensemble methods, n×m denotes n models,
each having m Gaussian components per state. GMM indicates a
model consisting of a single Gaussian mixture for each phoneme.
HMM indicates a model consisting of three Gaussian mixtures per
phoneme. Thus, for HMMs, the total number of Gaussians is three
times that of the GMMs with an equal number of components
per state. Boost and Bag models indicate models trained using
the standard boosting and bagging algorithm, respectively, on the
phoneme classification task, while E-boost indicates the expectation
boosting algorithm for word error rate minimisation. Finally embed
indicates that embedded training was performed subsequently to
initialisation of the model.

Model Gaussians Word error rate (%)

GMM 30 8.31

GMM embed 40 8.12

Boost GMM 10× 30 7.41

HMM 10 7.52

HMM embed 10 7.04

Boost HMM 10× 10 6.81

E-Boost HMM 7 × 10 (γ = 8) 6.75

Bag HMM 16 × 20 5.97

8. Discussion

We presented some techniques for the application of
ensemble methods to HMMs. The ensemble training was
performed for complete HMMs at either the phoneme or
the utterance level, rather than at the frame level. Using
boosting techniques at the utterance level was thought to lead

EURASIP Journal on Audio, Speech, and Music Processing 15

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

1800

5%
2.5%

0.5%

95%
97.5%

99.5%WERdiff

(a) Boost versus HMM embed

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

5%
2.5%

0.5%

95%
97.5%

99.5%WERdiff

(b) E-Boost versus HMM embed

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

5%
2.5%

0.5%

95%
97.5%

99.5%WERdiff

(c) Bag versus HMM embed

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

5%
2.5%

0.5%

95%
97.5%

99.5%WERdiff

(d) E-Boost versus Boost

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

1800

Histogram

5%
2.5%

0.5%

95%
97.5%

99.5%WERdiff

(e) Bag versus Boost

21.510.50−0.5−1−1.5−2
0

200

400

600

800

1000

1200

1400

1600

Histogram

5%
2.5%

0.5%

95%
97.5%

99.5%WERdiff

(f) Bag versus E-Boost

Figure 12: Significance levels of word error rate difference between the top four models. The histograms are created from 10,000 bootstrap
samples of the test data, as described in Section 4.2. WERdiff displays the average difference in word error rate performance between the two
methods. Positive values indicate that the first method has lower error than the second. The percentage values indicate the tail mass of the
histogram to that point.

16 EURASIP Journal on Audio, Speech, and Music Processing

to a method for reducing the word error rate. Interestingly,
this word error rate reduction scheme did not improve
generalisation performance for boosting, while the simplest
approach of all, bagging, performed the best.

There are a number of probable causes. The first one is
that the amount of data is sufficiently large for ensemble
techniques to have little impact on performance; that is, there
is enough data to train sufficiently good base models. The
second is that the state-locked multistream decoding tech-
niques that were investigated for model recombination led to
an increase in generalisation error as the inference performed
is very approximate. The third is that the boosting approach
used is simply inappropriate. The first case must not be
true, since bagging does achieve considerable improvements
over the other methods. There is some evidence for the
second case, since the GMM ensembles are the only ones that
should not be affected by the multistream approximations
and, while a more substantial performance difference can
be observed, it nevertheless is not much greater. The fact
that bagging’s phoneme mixture components are all trained
on samples from the same distribution of data and that it
outperforms boosting is also in agreement with this hypoth-
esis. This leaves the possibility that the type of boosting
training used is inappropriate, at least in conjunction with
the decoding method used, open.

Future research in this direction might include the use
of other approximations for decoding than constrained
multistream methods. Such an approach was investigated by
Meyer and Schramm [13], where the authors additionally
consider the harder problem of large vocabulary speech
recognition (for which even inferring the most probable
sequence of states in a single model may be computationally
prohibitive). It could thus be also possible to use the methods
developed herein for large vocabulary problems by borrow-
ing some of their techniques. The first technique, also used
in [22], relies on finding an n-best list of possible utterances,
assuming that there are no other possible utterances and
then fully estimating the posterior probability of the n
alternatives. The second technique, developed by Schramm
and Aubert [41], combines multiple pronunciation models.
In this case each model arising from boosting could be used
in lieu of different pronunciation models. Another possible
future direction is to consider different algorithms. Both
AdaBoost.M1, which was employed here, and AdaBoost.M2,
are using greedy optimisation for the mixture coefficients.
Perhaps better optimisation procedures, such as those pro-
posed by Mason et al. [42], may result in an additional
advantage.

Acknowledgments

This work was supported in part by the IST program of
the European Community, under the PASCAL Network of
Excellence, IST-2002-506778, and funded in part by the Swiss
Federal Office for Education and Science (OFES) and the
Swiss NSF through the NCCR on IM2, and the EU-FP7
project IM-CLeVeR.

References

[1] C. Dimitrakakis, Ensembles for sequence learning, Ph.D. thesis,
École Polytechnique Fédérale de Lausanne, 2006.

[2] C. Dimitrakakis and S. Bengio, “Boosting HMMs with an
application to speech recognition,” in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal
Processing, pp. 621–624, May 2004.

[3] C. Dimitrakakis and S. Bengio, “Boosting word error rates,”
in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’05), vol. 5, pp. 501–504,
2005.

[4] A. Morris, A. Hagen, H. Glotin, and H. Bourlard, “Multi-
stream adaptive evidence combination for noise robust ASR,”
Speech Communication, vol. 34, no. 1-2, pp. 25–40, 2001.

[5] H. Misra and H. Bourlard, “Spectral entropy feature in full-
combination multi-stream for robust ASR,” in Proceedings of
the 9th European Conference on Speech Communication and
Technology, pp. 2633–2636, Lisbon, Portugal, 2005.

[6] H. Misra, H. Bourlard, and V. Tyagi, “New entropy based
combination rules in HMM/ANN multi-stream ASR,” in
Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’03), vol. 2, pp. 741–744,
Hong Kong, 2003.

[7] H. Ketabdar, H. Bourlard, and S. Bengio, “Hierarchical
multistream posterior based speech recognition system,” 2005,
IDIAP-RR 25, IDIAP.

[8] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[9] Y. Freund and R. E. Schapire, “A decision-theoretic general-
ization of on-line learning and an application to boosting,”
Journal of Computer and System Sciences, vol. 55, no. 1,
pp. 119–139, 1997.

[10] R. Meir and G. Rätsch, “An introduction to boosting and lever-
aging,” in Advanced Lectures on Machine Learning, vol. 2600 of
Lecture Notes in Computer Science, pp. 118–183, 2003.

[11] R. E. Schapire and Y. Singer, “Improved boosting algo-
rithms using confidence-rated predictions,” Machine Learning,
vol. 37, no. 3, pp. 297–336, 1999.

[12] C. Breslin, Generation and combination of complementary sys-
tems for automatic speech recognition, Ph.D. thesis, Cambridge
University Endingeering Department and Darwin College,
2008.

[13] C. Meyer and H. Schramm, “Boosting HMM acoustic models
in large vocabulary speech recognition,” Speech Communica-
tion, vol. 48, no. 5, pp. 532–548, 2006.

[14] X. Yang, M.-h. Siu, H. Gish, and B. Mak, “Boosting with
antimodels for automatic language identification,” in Proceed-
ings of the 8th Annual Conference of the International Speech
Communication Association (Inter-Speech ’07), pp. 342–345,
2007.

[15] R. Zhang and A. I. Rudnicky, “Apply n-best list re-ranking
to acoustic model combinations of boosting training,” in
Proceedings of the 8th International Conference on Spoken
Language Processing (ICSLP ’04), pp. 1949–1952, 2004.

[16] C. Breslin and M. J. F. Gales, “Directed decision trees for
generating complementary systems,” Speech Communication,
vol. 51, no. 3, pp. 284–295, 2009.

[17] O. Siohan, B. Ramabhadran, and B. Kingsbury, “Constructing
ensembles of asr systems using randomized decision trees,”
in Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’05), pp. 197–200, 2005.

EURASIP Journal on Audio, Speech, and Music Processing 17

[18] H. Schwenk, “Using boosting to improve a hybrid HMM/
neural network speech recognizer,” in Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP ’99), vol. 2, pp. 1009–1012, 1999.

[19] G. Zweig and M. Padmanabhan, “Boosting Gaussian mixtures
in an LVCSR system,” in Proceedings of IEEE Interntional Con-
ference on Acoustics, Speech, and Signal Processing, pp. 1527–
1530, June 2000.

[20] G. Cook and A. Robinson, “Boosting the performance of con-
nectionist large vocabulary speech recognition,” in Proceedings
of the International Conference on Spoken Language Processing
(ICSLP ’96), vol. 3, pp. 1305–1308, Philadelphia, Pa, USA,
October 1996.

[21] L. Bahl, P. Brown, P. de Souza, and R. Mercer, “A new
algorithm for the estimation of hidden Markov model param-
eters,” in Proceedings of the IEEE Inernational Conference on
Acoustics, Speech and Signal Processig (ICASSP ’88), pp. 493–
496, 1988.

[22] R. Zhang and A. I. Rudnicky, “Comparative study of boosting
and non-boosting training for constructing ensembles of
acoustic models,” in Proceedings of the 8th European Conference
on Speech Communication and Technology (Eurospeech ’03),
pp. 1885–1888, 2003.

[23] J. G. Fiscus, “Post-processing system to yield reduced word
error rates: Recognizer Output Voting Error Reduction
(ROVER),” in Proceedings of IEEE Workshop on Automatic
Speech Recognition and Understanding, pp. 347–354, Decem-
ber 1997.

[24] R. Zhang and A. I. Rudnicky, “A frame level boosting
training scheme for acoustic modeling,” in Proceedings of the
8th International Conference on Spoken Language Processing
(ICSLP ’04), pp. 417–420, 2004.

[25] M. H. Siu, X. Yang, and H. Gish, “Discriminatively trained
GMMs for language classification using boosting methods,”
IEEE Transactions on Audio, Speech and Language Processing,
vol. 17, no. 1, Article ID 4740154, pp. 187–197, 2009.

[26] M. Gales and S. Young, “The application of hidden Markov
models in speech recognition,” Foundations and Trends R in
Signal Processing, vol. 1, no. 3, pp. 195–304, 2007.

[27] R. Zhang, Making an Effective Use of Speech Data for Acoustic
Modeling, Ph.D. thesis, Carnegie Mellon University, 2007.

[28] R. A. Cole, K. Roginski, and M. Fanty, “The OGI numbers
database,” Tech. Rep., Oregon Graduate Institute, 1995.

[29] L. R. Rabiner and B.-H. Juang, Fundamentals of Speech
Recognition, PTR Prentice-Hall, 1993.

[30] J. Mariéthoz and S. Bengio, “A new speech recognition baseline
system for Numbers 95 version 1.3 based on Torch,” 2004,
IDIAP-RR 04-16, IDIAP.

[31] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap,
vol. 57 of Monographs on Statistics & Applied Probability,
Chapmann & Hall, 1993.

[32] M. Bisani and H. Ney, “Bootstrap estimates for confidence
intervals in ASR performance evaluation,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP ’04), vol. 1, pp. 409–412, May 2004.

[33] A. Van der Vaart and J. Wellner, Weak Convergence and
Empirical Processes: With Applications to Statistics, Springer,
Berlin, Germany, 1996.

[34] C. M. Bishop, Neural Networks for Pattern Recognition, Claren-
don Press, Oxford, UK, 1995.

[35] G. Rätsch, T. Onoda, and K. R. Müller, “Soft margins for
AdaBoost,” Machine Learning, vol. 42, no. 3, pp. 287–320,
2001.

[36] M. Athineos, H. Hermansky, and D. P. Ellis, “LP-TRAP:
linear predictive temporal patterns,” in Proceedings of the
8th International Conference on Spoken Language Processing
(ICSLP ’04), pp. 949–952, 2004.

[37] M. M. Doss, Using auxiliary sources of knowledge for automatic
speech recognition, Ph.D. thesis, École Polytechnique Fédérale
de Lausanne, Computer Science Department, Lausanne,
Switzerland, 2005, Thesis no. 3263.

[38] H. Hermansky and S. Sharma, “TRAPs—classifiers of tempo-
ral patterns,” in Proceedings of the 5th International Conference
on Speech and Language Processing (ICSLP ’98), pp. 1003–
1006, 1998.

[39] H. Ketabdar, J. Vepa, S. Bengio, and H. Bourlard, “Developing
and enhancing posterior based speech recognition systems,”
in Proceedings of the 9th European Conference on Speech Com-
munication and Technology, pp. 1461–1464, Lisbon, Portugal,
September 2005.

[40] G. Lathoud, M. Magimai.-Doss, B. Mesot, and H. Bourlard,
“Unsupervised spectral subtraction for noise-robust ASR,”
in Proceedings of IEEE Automatic Speech Recognition and
Understanding Workshop (ASRU ’05), pp. 189–194, December
2005.

[41] H. Schramm and X. L. Aubert, “Efficient integration of
multiple pronunciations in a large vocabulary decoder,” in
Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’00), vol. 3, pp. 1659–
1662, 2000.

[42] L. Mason, P. L. Bartlett, and J. Baxter, “Improved general-
ization through explicit optimization of margins,” Machine
Learning, vol. 38, no. 3, pp. 243–255, 2000.

	1. Introduction
	2. Background and Notation
	3. Contributions and Related Work
	3.1. Our Contribution

	4. Data and Methods
	4.1. Performance Measures.
	4.2. Bootstrap Estimate for Speech Recognition
	4.3. Parameter Selection

	5. Phoneme-Level Bagging and Boosting
	5.1. Continuous Speech Recognition with Mixtures
	5.2. Experiments with Boosting and Bagging Phoneme-Level Models

	6. Expectation Boosting for WER Minimisation
	6.1. Boosting for Word Error Rate Minimisation
	6.1.1. Sentence Loss Function
	6.1.2. Error Expectation for Boosting
	6.1.3. Error Distributions in Sequential Decision Making

	6.2. Experiments with Expectation Boosting

	7. Generalisation Performance Comparison
	8. Discussion
	Acknowledgments
	References

