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Abstract

The perceptual attributes of timbre have inspired a considerable amount of multidisciplinary research, but because
of the complexity of the phenomena, the approach has traditionally been confined to laboratory conditions, much
to the detriment of its ecological validity. In this study, we present a purely bottom-up approach for mapping the
concepts that emerge from sound qualities. A social media (http://www.lastfm) is used to obtain a wide sample of
verbal descriptions of music (in the form of tags) that go beyond the commonly studied concept of genre, and
from this the underlying semantic structure of this sample is extracted. The structure that is thereby obtained is
then evaluated through a careful investigation of the acoustic features that characterize it. The results outline the
degree to which such structures in music (connected to affects, instrumentation and performance characteristics)
have particular timbral characteristics. Samples representing these semantic structures were then submitted to a
similarity rating experiment to validate the findings. The outcome of this experiment strengthened the discovered
links between the semantic structures and their perceived timbral qualities. The findings of both the computational
and behavioural parts of the experiment imply that it is therefore possible to derive useful and meaningful
structures from free verbal descriptions of music, that transcend musical genres, and that such descriptions can be
linked to a set of acoustic features. This approach not only provides insights into the definition of timbre from an
ecological perspective, but could also be implemented to develop applications in music information research that
organize music collections according to both semantic and sound qualities.
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1 Introduction

In this study, we have taken a purely bottom-up
approach for mapping sound qualities to the conceptual
meanings that emerge. We have used a social media
(http://www.last.fm) for obtaining as wide a sample of
music as possible, together with the free verbal descrip-
tions made of music in this sample, to determine an
underlying semantic structure. We then empirically eval-
uated the validity of the structure obtained, by investi-
gating the acoustic features that corresponded to the
semantic categories that had emerged. This was done
through an experiment where participants were asked to
rate the perceived similarity between acoustic examples
of prototypical semantic categories. In this way, we were
attempting to recover the correspondences between
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semantic and acoustic features that are ecologically rele-
vant in the perceptual domain. This aim also meant that
the study was designed to be more exploratory than
confirmative. We applied the appropriate and recom-
mended techniques for clustering, acoustic feature
extraction and comparisons of similarities; but this was
only after assessing the alternatives. But, the main focus
of this study has been to demonstrate the elusive link
that exists between the semantic, perceptual and physi-
cal properties of timbre.

1.1 The perception of timbre

Even short bursts of sound are enough to evoke mental
imagery, memories and emotions, and thus provoke
immediate reactions, such as the sensation of pleasure
or fear. Attempts to craft a bridge between such acous-
tic features and the subjective sensations they provoke
[1] have usually started with describing instrument
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sounds via adjectives on a bipolar scale (e.g. bright-dark,
static-dynamic) and matching these with more precise
acoustic descriptors (such as the envelope shape, or
high-frequency energy content) [2,3]. However, it has
been difficult to compare these studies when such differ-
ent patterns between acoustic features and listeners’ eva-
luations have emerged [4]. These differences may be
attributed to the cross-study variations in context
effects, as well as the choice of terms, stimuli and rating
scales used. It has also been challenging to link the find-
ings of such studies to the context of actual music [5],
when one considers that real music consists of a com-
plex combination of sound. A promising approach has
been obtained to evaluate short excerpts of recorded
music with a combination of bipolar scales and acoustic
analysis [6]. However, even this approach may well omit
certain sounds and concepts that are important for the
majority of people, since the music and scales have
usually been chosen by the researcher, not the listeners.

1.2 Social tagging

Social tagging is a way of labelling items of interest,
such as songs, images or links as a part of the normal
use of popular online services, so that the tags then
become a form of categorization in themselves. Tags are
usually semantic representations of abstract concepts
created essentially for mnemonic purposes and used
typically to organize items [7,8]. Within the theory of
information foraging [9], tagging behaviour is one exam-
ple of a transition from internalized to externalized
forms of knowledge where, using transactional memory,
people no longer have to know everything, but can use
other people’s knowledge [10]. What is most evident in
the social context is that what escapes one individual’s
perception can be captured by another, thus transform-
ing tags into memory or knowledge cues for the undi-
sclosed transaction [11].

Social tags are usually thought to have an underlying
ontology [12] defined simply by people interested in the
matter, but with no institutional or uniform direction.
These characteristics make the vocabulary and implicit
relations among the terms considerably richer and more
complex than in formal taxonomies where a hierarchical
structure and set of rules are designed apriori (cf. folks-
onomy versus taxonomy in [13]). When comparing
ontologies based on social tagging and the classification
by experts, it is presumed that there is an underlying
organization of musical knowledge hidden among the
tags. But, as raised by Celma and Serra [1]), this should
perhaps not to be taken for granted. For this reason,
Section 2 addresses the uncovering of an ontology from
the tags [14] in an unsupervised form, to investigate
whether such an ontology is not an imposed construc-
tion. Because a latent structure has been assumed, we
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use a technique called vector-based semantic analysis,
which is a generalization of Latent Semantic Analysis
[15] and similar to the methods used in latent semantic
mapping [16] and latent perceptual indexing [17]. Thus,
although some of the terminology is borrowed from
these areas, our method is also different in several cru-
cial respects. While ours is designed to explore emer-
gent structures in the semantic space (i.e. clusters of
musical descriptions), the other methods are designed
primarily to improve information retrieval by reducing
the dimensionality of the space [18]. In our method, the
reduction is not part of the analytical step, but rather
implemented as a pre-filtering stage (see Appendix sec-
tions A.1 and A.2). The indexing of documents (songs
in our case) is also treated separately in Section 2.2
which presents our solution based on the Euclidean dis-
tances of clusters profiles in a vector space. The reasons
outlined above show that tags, and the structures that
can be derived from them, impart crucial cues about
how people organize and make sense of their experi-
ences, which in this case is music and in particular its
timbre.

2 Emergent structure of timbre from social tags
To find a semantic structure for timbre analysis based
on social tags, a sample of music and its associated tags
were taken. The tags were then filtered, first in terms of
their statistical relevancy and then according to their
semantic categories. This filtering left us with five such
categories, namely adjectives, nouns, instruments, tem-
poral references and verbs (see Appendix A for a detailed
explanation of the filtering process). Finally, the rela-
tions between different combinations of tags were ana-
lysed by means of distance calculations and hybrid
clustering.

The initial database of music consisted of a collection
of 6372 songs [19], from a total of 15 musical genres
(with approximately 400 examples for each genre),
namely, Alternative, Blues, Classical, Electronic, Folk,
Gospel, Heavy, Hip-Hop, Iskelmd, Jazz, Pop, Rock, Soul,
Soundtrack and World. Except for some songs in the
Iskelmd and World genres (which were taken from
another corpus of music), all of the songs that were
eventually chosen in November 2008 from each of these
genres could already be found on the musical social net-
work (http://www.last.fm), and they were usually among
the “top tracks” for each genre (i.e. the most played
songs tagged with that genre on the Internet radio).
Although larger sample sizes exist in the literature (e.g.
[20,21]), this kind of sample ensured that (1) typicality
and diversity were optimized; while (2) the sample could
still be carefully examined and manually verified. These
musical genres were used to maximize musical variety
in the collection, and to ensure that the sample was
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compatible with a host of other music preference studies
(e.g. [22,23]), as these studies have also provided lists of
between 13 and 15 broad musical genres that are rele-
vant to most Western adult listeners.

All the tags related to each of the songs in the sample
were then retrieved in March 2009 from the millions of
users of the mentioned social media using a dedicated
application programming interface called Pylast (http://
code.google.com/p/pylast/). As expected, not quite all
(91.41%) of the songs in the collection could be found;
those not found were probably culturally less familiar
songs for the average Western listener (e.g., from the
Iskelmd and World music genres). The retrieved corpus
now consisted of 5825 lists of tags, with a mean length
of 62.27 tags. As each list referred to a particular song,
the song’s title was also used as a label, and together
these were considered as a document in the Natural
Language Processing (NLP) context (see the preproces-
sing section of Appendix A). In addition to this textual
data, numerical data for each list were obtained that
showed the number of times a tag had been used (index
of usage) up to the point when the tags were retrieved.
The corpus contained a total of 362,732 tags, of which
77,537 were distinct and distributed over 323 frequency
classes (in other words, the shape of the spectrum of
rank frequencies), and this is reported here to illustrate
the prevalence of hapax legomena-tags that appear only
once in the corpus—in Table 1 (cf. [24]). The tags
usually consisted of one or more words (M = 2.48, SD =
1.86), with only a small proportion containing long sen-
tences (6% with five words or more). Previous studies
have tokenized [20,25] and stemmed [26] the tags to
remove common words and normalize the data. In this
study however, a tag is considered as a holistic unit
representing an element of the vocabulary (cf. [27]), dis-
regarding the number of words that compose it. Treat-
ing tags as collocations (i.e. words that are frequently
placed together for a combined effect)—rather than as
separate, single keywords—has the advantage of keeping

Table 1 Frequency classes of tags

Class N Cumulative (%)
1 (hapaxes) 46 727 60.26
2 11 724 7538
3 5512 8249
4 2938 86.28
5 2020 88.89
6 1420 90.72
7 1055 92.08
8 838 93.16
9 674 94.03
10+ 4094 100
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the link between the music and its description a priority,
rather than the words themselves. This approach shifts
the focus from data processing to concept processing
[28], where the tags function as conceptual expressions
[29] instead of purely words or phrases. Furthermore,
this treatment (collocated versus separated) does not
distort the underlying nature of the corpus, given that
the distribution of the sorted frequencies of the vocabu-
lary still exhibits a Zipfian curve. Such a distribution
suggests that tagging behaviour is also governed by the
principle of least effort [30], which is an essential under-
lying feature of human languages in general [27].

2.1 Exposing the structure via cluster analysis
The tag structure was obtained via a vector-based
semantic analysis that consisted of three stages: (1) the
construction of a Term-Document Matrix, (2) the calcu-
lation of similarity coefficients and (3) cluster analysis.

The Term Document Matrix X = {x;;} was constructed
so that each song i corresponded to a “Document” and
each unique tag (or item of the vocabulary) j to a
“Term”. The result was a binary matrix X(0, 1) contain-
ing information about the presence or absence of a par-
ticular tag to describe a given song.

ifjei

1/
xﬁ‘{o, ifj¢i
The similarity matrix # x » D with elements d;where

d;;= 0 was created by computing similarity indices
between tag vectors x;;0f X with:

(1)

_ ad
J(@+b)(a+c)(d+Db)(d+c)

where 4 is the number of (1,1) matches, b = (1,0), ¢
= (0,1) and d = (0,0). A choice then had to be made
between the several methods available to compute
similarity coefficients between binary vectors [31]. The
coefficient (2) corresponding to the 13th coefficient of
Gower and Legendre was selected because of its sym-
metric quality. This effectively means that it considers
double absence (0,0) as equally important as double
presence (1,1), which is a feature that has been
observed to have a positive impact in ecological appli-
cations [31]. Using Walesiak and Dudek algorithm
[32], we then compared its performance with nine
alternative similarity measures used for binary vectors,
in conjunction with five distinct clustering methods.
The outcome of this comparison was that the coeffi-
cient we had originally chosen was indeed best suited
to create an intuitive and visually appealing result in
terms of dendrograms (i.e. visualizations of hierarchical
clustering).

(2)
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The last step was to find meaningful clusters of tags.
This was done using a hierarchical clustering algorithm
that transformed the similarity matrix into a sequence
of nested partitions. The aim was to find the most com-
pact, spherical clusters, hence Ward’s minimum variance
method [33] was chosen due to its advantages in general
[34], but also in this particular respect, when compared
to other methods (i.e. single, centroid, median,
McQuitty and complete linkage).

After obtaining a hierarchical structure in the form of
a dendrogram, the clusters were then extracted by
“pruning” the branches with another algorithm that
combines a “partitioning around medioids” clustering
method with the height of the branches [35]. The result
of this first hybrid operation can be seen in the 19 clus-
ters shown in Figure 1, shown as vertical-coloured
stripes in the top section of the bottom panel. In addi-
tion, the typical tags related to each of these cluster
medioids are shown in Table 2.

To increase the interpretability of these 19 clusters, a
second operation was performed, consisted of repeating
the hybrid pruning to increase the minimum amount of
items per cluster (from 5 to 25), which thereby
decreased the overall number of actual clusters. It
resulted in five meta-clusters, shown in the lower sec-
tion of stripes in Figure 1. These were labelled according
to their contents as Energetic (1), Intimate (1), Classical
(III), Mellow (IV) and Cheerful (V).

In both the above operations, the size of the clusters
varied considerably. This was most noticeable for the
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first cluster in both, which was significantly larger than
the rest. We interpreted this to be due to the fact that
these first clusters might be capturing tags with weak
relations. Indeed, for practical purposes, the first in both
solutions was not as well defined and clean-cut in the
semantic domain as the rest of the clusters. This was
probably due to the fact that the majority of tags used
in them was highly polysemic (i.e. using words that have
different, and sometimes unrelated senses).

2.2 From clustered tags to music
This section explains how the original database, of 6372
songs, was then reorganized according to their closeness
to each tag cluster in the semantic space. In other
words, the 19 clusters from the analysis were now con-
sidered as prototypical descriptions of 19 ways that
music shares similar characteristics. These prototypical
descriptions were referred to as “clusters profiles” in the
vector space, containing sets of between 5 and 334 tags
in common (to a particular concept). Songs were then
described in terms of a comparable ranked list of tags,
varying in length from 1 to 96. The aim was then to
measure (in terms of Euclidean distance) how close each
song’s ranked list of tags was to each prototypical
description’s set of tags. The result of this would tell us
how similar each song was to each prototypical
description.

An m x n Term Document Matrix Y = {y;} was
therefore constructed to define the cluster profiles in
the vector space. In this matrix, the lists of tags
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Figure 1 Hierarchical dendrogram and hybrld pruning showing 19 cluster solution (upper stripe) and 5 cluster solution (lower stripe).
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Table 2 Most representative tags and corresponding artists for each of the 19 clusters

ID Tags closest to cluster centroids Top artists in the cluster

1 energetic, powerful, hot Amy Adams, Fred Astaire, Kelly Clarkson

2 dreamy, chill out, sleep Nick Drake, Radiohead, Massive Attack

3 sardonic, sarcastic, cynical Alabama 3, Yann Tiersen, Tom Waits

4 awesome, amazing, great Guns N’ Roses, U2, Metallica

5 cello, piano, cello rock Camille Saint-Saéns, Tarja Turunen, Franz Schubert

6 00s, sexy, catchy Fergie, Lily Allen, Amy Winehouse

7 mellow, beautiful, sad Katie Melua, Phil Collins, Coldplay

8 hard, angry, aggressive System of a Down, Black Sabbath, Metallica

9 60s, 70s, legendary Simon & Garfunkel, Janis Joplin, The Four Tops

10 feelgood, summer, cheerful Mika, Goo Goo Dolls, Shekinah Glory Ministry

1 wistful, intimate, reflective Soulsavers, Feist, Leonard Cohen

12 high school, 90’s, essential Fool's Garden, The Cardigans, No Doubt

13 50s, saxophone, trumpet Miles Davis, Thelonious Monk, Charles Mingus

14 1980s, eighties, voci maschili Ray Parker Jr, Alphaville, Michael Jackson

15 affirming, lyricism, life song Lisa Stansfield, KT Tunstall, Katie Melua

16 choral, a capella, medieval Mediaeval Baebes, Alison Krauss, Blackmore’s Night

17 voce femminile, donna, bella topolina Avril Lavigne, The Cranberries, Diana Krall

18 tangy, coy, sleek Kylie Minogue, Ace of Base, Solange

19 rousing, exuberant, passionate James Brown, Does It Offend You, Yeah?, Tchaikovsky
attributed to a particular song (i.e. the song descrip- )

tions) are represented as m, and n represents the 618 d; = Z (vij — p1) 6)

tags left after the filtering stage (i.e. the preselected
tags). Each list of tags (i) is represented as a finite set
{1, .., k}, where 1 < k < 96 (with a mean of 29 tags per
song). Finally, each element of the matrix contains a
value of the normalized rank of a tag if found on a list,
and it is defined by:

where r;is the cardinal rank of the tag j if found in i,
and k is the total length of the list. Next, the mean rank
of the tag across Y is calculated with:

7o > Vi (4)

J m

And the cluster profile or mean ranks vector is defined
by:

P; = Tjec, (5)

Cidenotes a given cluster / where 1 </ <19, and p is a
vector {5, ..., k}, where 5 < k < 334 (5 is the minimum
number of tags in one cluster, and 334 is the maximum
in another).

The next step was to obtain, for each cluster profile, a
list of songs ranked in order according to their closeness
to the profile. This consisted in calculating the Eucli-
dean distance d,between each song’s rank vector Vijec
and each cluster profile p/ with:

jeC

Examples of the results can be seen in Table 2, where
top artists are displayed beside the central tags for each
cluster, while Figure 2 shows more graphically how the
closeness to cluster profiles was calculated for this rank-
ing scheme. In it are shown three artificial and partly
overlapping clusters (I, II and III). In each cluster, the
centroid p;has been calculated, together with the Eucli-
dean distance from it to each song, as formally
explained in Equations 3-6. This distance is graphically
represented by the length of each line from centroid to
the songs (a, b, ¢, ...), and the boxes next to each cluster

Cluster I

b

Cluster II ﬂ Sy _—
< /~  Cluster III
RI
\‘ i
. h

Figure 2 Visual example of the ranking of the songs based on

their closeness to each cluster profile.
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show their ranking (the boxes with R I, R II, R III)
accordingly. Furthermore, this method allows for sys-
tematic comparisons of the clusters to be made when
sampling and analysing the musical material in different
ways, which is the topic of the following section.

3 Determining the acoustic qualities of each
cluster

Previous research on explaining the semantic qualities of
music in terms of its acoustic features has taken many
forms: genre discrimination tasks [36,37], the description
of soundscapes [5], bipolar ratings encompassing a set of
musical examples [6] and the prediction of musical tags
from acoustic features [21,38-40]. A common approach
in these studies has been to extract a range of features,
often low-level ones such as timbre, dynamics, articula-
tion, Mel-frequency cepstral coefficients (MFCC) and
subject them to further analysis. The parameters of the
actual feature extraction are dependent on the goals of
the particular study; some focus on shorter musical ele-
ments, particularly the MFCC and its derivatives
[21,39,40]; while others utilize more high-level concepts,
such as harmonic progression [41-43].

In this study, the aim was to characterize the semantic
structures with a combined set of non-redundant, robust
low-level acoustic and musical features suitable for this
particular set of data. These requirements meant that
we employed various data reduction operations to pro-
vide a stable and compact list of acoustic features suita-
ble for this particular dataset [44]. Initially, we
considered a large number of acoustic and musical fea-
tures divided into the following categories: dynamics (e.
g. root mean square energy); rhythm (e.g. fluctuation
[45] and attack slope [46]); spectral (e.g. brightness, roll-
off [47,48], spectral regularity [49] and roughness [50]);
spectro-temporal (e.g. spectral flux [51]) and tonal fea-
tures (e.g. key clarity [52] and harmonic change [53]).
By considering the mean and variance of these features
across 5-s samples of the excerpts (details given in the
following section), we were initially presented with 50
possible features. However, these features contained sig-
nificant redundancy, which limits the feasibility of con-
structing predictive classification or regression models
and also hinders the interpretation of the results [54].
For this reason, we did not include MFCC, since they
are particularly problematic in terms of redundancy and
interpretation [6].

The features were extracted with the MIRtoolbox [52]
using a frame-based approach [55] with analysis frames
of 50-ms using a 50% overlap for the dynamic, rhythmic,
spectral and spectro-temporal features and 100-ms with
an overlap of 87.5% for the remaining tonal features.

The original list of 50 features was then reduced by
applying two criteria. Firstly, the most stable features
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were selected by computing the Pearson’s correlation
between two random sets taken from the 19 clusters.
For each set, 5-s sound examples were extracted ran-
domly from each one of the top 25 ranked songs repre-
senting each of the 19 clusters. More precisely: P(¢) for
0.25T < t < 0.75T, where T represents the total duration
of a song. This amounted to 475 samples in each set,
which were then tested for correlations between sets.
Those features correlating above r = 0.5 between two
sets were retained, leaving 36 features at this stage. Sec-
ondly, highly collinear features were discarded using a
variance inflation factor (B; < 10)[56]. This reduction

procedure resulted in a final list of 20 features, which
are listed in Table 3.

3.1 Classification of the clusters based on acoustic
features

To investigate whether they differed in their acoustic
qualities, four test sets were prepared to represent the
clusters. For each cluster, the 50 most representative
songs were selected using the ranking operation defined
in Section 2.2. This number was chosen because an ana-
lysis of the rankings within clusters showed that the top
50 songs per cluster remained predominantly within the
target cluster alone (89%), whereas this discriminative
property became less clear with larger sets (100 songs at
80%, 150 songs at 71% and so on). From these

Table 3 Selected 20 acoustic features

Domain Name x MDA
Rhythm Attack time M 0.23
SD 0.08

Fluctuation centr. M 0.63

Fluctuation peak M 0.58

Spectral Brightness SD 039
Entropy SD 0.66

Flatness SD 0.60

Regularity M 033

SD 0.26

Roll-off SD 0.06

Roughness M 0.75

Spread M 0.54

Spectro- Spectral flux M 1.20
Temporal SD 044
Tonal Chromagram centr. M 0.98
SD 0.35

Chromagram peak M 0.60

Harmonic change M 0.50

SD 061

Key clarity M 0.07

¥ stands for the summary measure, where M = mean and SD = standard
deviation. MDA is the Mean Decrease Accuracy in classification of the five
meta-clusters by the acoustic features using RF.
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candidates, two random 5-s excerpts were then
extracted to establish two sets, to train and test each
clustering, respectively. For 19 clusters, this resulted in
950 excerpts per set; and for the 5 meta-clusters, it
resulted in 250 excerpts per set. After this, classification
was carried out using Random Forest (RF) analysis [57].
RF is a recent variant of the regression tree approach,
which constructs classification rules by recursively parti-
tioning the observations into smaller groups based on a
single variable at a time. These splits are created to
maximize the between groups sum of squares. Being a
non-parametric method, regression trees are thereby
able to uncover structures in observations which are
hierarchical, and yet allow interactions and nonlinearity
between the predictors [58]. RF is designed to overcome
the problem of overfitting; bootstrapped samples are
drawn to construct multiple trees (typically 500 to
1000), which have randomized subsets of predictors.
Out-of-bag samples are used to estimate error rate and
variable importance, hence, eliminating the need for
cross-validation, although in this particular case we still
resorted to validation with a test set. Another advantage
of RF is that the output is dependent only on one input
variable, namely, the number of predictors chosen ran-
domly at each node, heuristically set to 4 in this study.
Most applications of RF have demonstrated that this
technique has improved accuracy in comparison to
other supervised learning methods.

For 19 clusters, a mere 9.1% of the test set could cor-
rectly be classified using all 20 acoustic features.
Although this is nearly twice the chance level (5.2%),
clearly the large number of target categories and their
apparent acoustic similarities degrade the classification
accuracy. For the meta-clusters however, the task was
more feasible and the classification accuracy was signifi-
cantly higher: 54.8% for the prediction per test set (with
a chance level of 20%). Interestingly, the meta-clusters
were found to differ quite widely in their classification
accuracy: Energetic (I, 34%), Intimate (II, 66%), Classical
(I, 52%), Mellow (IV, 50%) and Cheerful (V, 72%). As
mentioned in Section 2.1, the poor classification accu-
racy of meta-cluster I is understandable, since that clus-
ter contained the largest number of tags and was also
considered to contain the weakest links between the
tags (see Figure 1). However, the main confusions for
meta-cluster I were with clusters III and IV, suggesting
that labelling it as “Energetic” may have been premature
(see Table 4). The advantage of the RF approach is the
identification of critical features for classification using
the Mean Decrease Accuracy [59].

Another reason for RF classification chosen was that it
uses relatively unbiased estimates based on out-of-bag
samples and the permutation of classification trees. The
mean decrease in accuracy (MDA) is the average of
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Table 4 Confusion matrix for five meta-clusters (showing
54.8% success in RF classification)

Predicted
| ] 1 v \'
Energetic Intimate Classical Mellow Cheerful
I 17 5 3 2 5
Energetic
Il 9 33 10 " 2
Intimate
Actual Il 8 4 26 5 3
Classical
[\ 13 5 3 25 4
Mellow
v 3 3 8 7 36
Cheerful

such estimates (for equations and a fuller explanation,
see [57,60]). These are reported in Table 3, and the nor-
malized distributions of the three most critical features
are shown in Figure 3. Spectral flux clearly distinguishes
the meta-clusters II from III and IV from V, in terms of
the amount of change within the spectra of the sounds
used. Differences in the dominant registers also distin-
guish meta-clusters I from II and III from V, and these
are reflected in differences in the estimated mean cen-
troid of the chromagram for each, and roughness, the
remaining critical feature, partially isolates cluster IV
(Mellow, Awesome, Great) from the other clusters.

The classification results imply that the acoustic corre-
lates of the clusters can be established if we are looking
only at the broadest semantic level (meta-clusters). Even
then, however, some of the meta-clusters were not ade-
quately discriminated by their acoustical properties. This
and the analysis with all 19 clusters suggest that many
of the pairs of clusters have similar acoustic contents
and are thus indistinguishable in terms of classification
analysis. However, there remains the possibility that the
overall structure of the cluster solution is nevertheless
distributed in terms of the acoustic features along
dimensions of the cluster space. The cluster space itself
will therefore be explored in more detail next.

3.2 Acoustic characteristics of the cluster space

As classifying the clusters according to their acoustic
features was not hugely accurate at the most detailed
cluster level, another approach was taken to define the
differences between the clusters in terms of their mutual
distances. This approach examined in more detail their
underlying acoustic properties; in other words, whether
there were any salient acoustic markers delineating the
concepts of cluster 19 ("Rousing, Exuberant, Confident,
Playful, Passionate”) from the “Mellow, Beautiful, Chill-
out, Chill, Sad” tags of cluster 7, even though the actual
boundaries between the clusters were blurred.



Ferrer and Eerola EURASIP Journal on Audio, Speech, and Music Processing 2011, 2011:11 Page 8 of 16

http://asmp.eurasipjournals.com/content/2011/1/11

Critical Feature Distributions Across Meta—Clusters
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Figure 3 Normalized distribution of the three most important features for classification of the five meta-clusters by means of RF

Meta—cluster

To explore this idea fully, the intercluster distances
were first obtained by computing the closest Euclidean
distance between two tags belonging to two separate
clusters [61]:

dist(C;, Gj) = min{d(x,y) : x € C;,y € Cj} (7)

where Ciand Cjrepresent a pair of clusters and x and y
two different tags.

Nevertheless, before settling on this method of single
linkage, we checked three other intercluster distance

measures (Hausdorff, complete and average) for the pur-
poses of comparison. Single linkage was finally chosen
due to its intuitive and discriminative performance in
this material and in general (cf. [61]).

The resulting distance matrix was then processed with
classical metrical Multidimensional Scaling (MDS) ana-
lysis [62]. We then wanted to calculate the minimum
number of dimensions that were required to approxi-
mate the original distances in a lower dimensional
space. One way to do this is to estimate the proportion
of variation explained:
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p
iz1 M
> (positive eigenvalues)

(8)

where p is the number of dimensions and A;represents
the eigenvalues sorted in decreasing order [63].

However, the results of this procedure suggested that
considering only a reduced number of dimensions
would not satisfactorily reflect the original space, so
we instead opted for an exploratory approach (cf.
[64]). An exploration of the space meant that we could
investigate whether any of the 18 dimensions corre-
lated with the previously selected set of acoustic fea-
tures, which had been extracted from the top 25
ranked examples of the 19 clusters. This analysis
yielded statistically significant correlations for dimen-
sions 1, 3 and 14 of the MDS solution with the acous-
tic features that are shown in Table 5. For the purpose
of illustration, Figure 4 shows the relationship, in the
inter-cluster space, between four of these acoustic fea-
tures (shown in the labels for each axis) and two of
these dimensions (1 and 3 in this case). If we look at
clusters 14 and 16, we can see that they both contain
tags related with the human voice (Voci maschili and
Choral, respectively), and they are situated around the
mean of the X-axis. However, this is in spite of a large
difference in sound character, which can best be
described in terms of their perceptual dissonance (e.g.
spectral roughness), hence their positions at either end
of the Y -axis. Another example of tags relating to the
human voice, concerns clusters 17 and 4 (Voce femmi-
nile and Male Vocalist, respectively), but this time they
are situated around the mean of the Y -axis, and it is
in terms of the shape of the spectrum (e.g. spectral
spread) that they differ most, hence their positions at
the end of the X-axis. In sum, despite the modest clas-
sification accuracy of the clusters according to their
acoustic features, the underlying semantic structure
embedded into tags could nonetheless be more clearly
explained in terms of their relative positions to each
other within the cluster space. The dimensions yielded
intuitively interpretable patterns of correlation, which
seem to adequately pinpoint the essence of what
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musically characterize the concepts under investigation
in this study (i.e. adjectives, nouns, instruments, tem-
poral references and verbs). However, although these
semantic structures could be distinguished sufficiently
by their acoustic profiles at the generic, meta-cluster
level; this was not the case at the level of the 19 indivi-
dual clusters. Nevertheless, the organization of the
individual clusters across the semantic space could be
connected by their acoustic features. Whether the
acoustic substrates that musically characterize these
tags is what truly distinguishes them for a listener is
an open question that will be explored more fully next.

4 Similarity rating experiment

In order to explore whether the obtained clusters were
perceptually meaningful, and to further understand what
kinds of acoustic and musical attributes they actually
consisted of, new empirical data about the clusters
needed to be gathered. For this purpose, a similarity rat-
ing experiment was designed, which assessed the timbral
qualities of songs from each of the tag clusters. We
chose to focus on the low-level, non-structural qualities
of music, since we wanted to minimize the possible con-
founding factor of association, caused by recognition of
lyrics, songs or artists. The stimuli for the experiment
therefore consisted of semi-randomly spliced [37,65],
brief excerpts. These stimuli, together with other details
of the experiment, will be explained more fully in the
remaining parts of this section.

4.1 Experiment details

4.1.1 Stimuli

Five-second excerpts were randomly taken from a mid-
dle part (P(¢) for 0.25T < t <-0.75T, where T represents
the total duration of a song) of each of the 25 top
ranked songs from each cluster (see the ranking proce-
dure detailed in Section 2.2). However, when splicing
the excerpts together for similarity rating, we wanted to
minimize the confounds that were caused by disrupting
the onsets (i.e. bursts of energy). Therefore, the exact
temporal position of the onsets for each excerpt was
detected with the aid of the MIRToolbox [52]. This

Table 5 Correlations between acoustic features and the inter-item distances between the clusters

Dimension 1

Dimension 3

Dimension 14

Acoustic feature r Acoustic feature r Acoustic feature r

Fluctuation centroid (M) 0.53* Regularity (SD) -0.51% Chromagram centroid (M) 0.60**
Spread (M) 0.51% Harmonic change (SD) -0.50% Flatness (SD) 0.54*
Entropy (SD) 0.50% Roughness (M) 0.50% Attack time (M) -0.51*
Brightness (SD) 0.49* Harmonic change (M) -0.50*% Regularity (M) -0.51*
Flatness (SD) 0.49* Chromagram centroid (SD) -045% Attack time (SD) -048*
Flux (SD) 0.49* Flux (SD) -045% Chromagram peak (M) -046%

* p <0.05, ** p <0.01, df = 17
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Figure 4 MDS (dimensions 1, 3) of intercluster distances.
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process consisted of computing the spectral flux within
each excerpt by focussing on the increase in energy in
successive frames. It produced a temporal curve from
which the highest peak was selected as the reference
point for taking a slice, providing that this point was
not too close to the end of the signal (¢ < 4500 ms).
Slices of random length (150 < ¢ < 250 ms) were then
taken from a point that was 10 ms before the peak
onset for each excerpt that was being used to represent
a tag cluster. The slices were then equalized in loudness,
and finally mixed together using a fade in/out of 50 ms
and an overlap window of 100 ms. This resulted in 19
stimuli (examples of the spliced stimuli can be found at
http://www.jyu.fi/music/coe/materials/splicedstimuli) of

variable length, each corresponding to a cluster, and
each of which was finally trimmed to 1750 ms (with a
fade in/out of 100 ms). To finally prepare these 19 sti-
muli for a similarity rating experiment, the resulting 171
paired combinations were mixed with a silence of 600
ms between them.

4.1.2 Participants

Twelve females and nine males were participated in this
experiment (age M = 26.8, SD = 4.15). Nine of them
had at least 1 year of musical training. Twelve reported
listening to music attentively between 1 and 10 h/week,
and 19 of the subjects listened to music while doing
another activity (63% 1 < ¢ < 10, 26% 11.< t <20, 11% ¢
< 21 h/week).
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4.1.3 Procedure

Participants were presented with pairs of sound excerpts
in random order using a computer interface and high-
quality headphones. Their task was to rate the similarity
of sounds on a 9-level Likert scale, the extremes of
which were labelled as dissimilar and similar. Before the
actual experimental trials, the participants were also
given instructions and some practice to familiarize
themselves with the task.

4.2 Results of experiment

The level at which participants’ ratings agreed with each
other was estimated with Cronbach’s method (¢ = 0.94),
and the similarity matrices derived from their ratings
were used to make a representation of the perceptual
space. Individual responses were thus aggregated by
computing a mean similarity matrix, and this was sub-
jected to a classical metric MDS analysis. With Cox and
Cox’s [63] method (8) we estimated that four dimen-
sions were enough to represent the original space since
these can explain 70% of the variance.

4.2.1 Perceptual distances

As would be hoped, the arrangement of clusters, as
represented by their spliced acoustic samples, illustrates
a clear organization according to an underlying semantic
structure. This perceptual distance can be seen in Figure
5 where, for example, Aggressive and Chill out are in
opposite corners of the psychological space. There is
also a clear acoustical organization of the excerpts, as
cluster number 5 (Composer, Cello) is depicted as being
high in roughness and high in spectral regularity, with a
well-defined set of harmonics, and those clusters that
have similar overall descriptors, such as 15 (Affirming,
Lyricism), 7 (Mellow, Sad) and 11 (Autumnal, Wistful),
are located within proximity of each other. Noticeably,
cluster number 1 is located at the centre of the MDS
solution, which could be expected from a cluster that
worked as a trap for tags with weak relations.

4.2.2 Acoustic attributes of the similarities between stimuli
Acoustic features were extracted from the stimuli in a
similar fashion to that described in Section 3, but the
list of features was consolidated again by trimming it
down to a robust minimal set. Trimming consisted of
creating another random set of stimuli and correlating
their acoustic features with the stimuli used in the
experiment. Those features which performed poorly (r
<0.5, df = 17) were removed from the list. After this,
the coordinates of the resulting 4-dimensional space
were correlated with the set of acoustic features
extracted from the stimuli to show the perceptual dis-
tances of the stimuli from one another. Only dimensions
1 and 2 had statistically significant linear correlations
with the acoustic features, the other dimensions having
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only low correlations (|r] < 0.5, or p >0.05, df = 17).
The final selection of both acoustic features and dimen-
sions is displayed in Table 6.

The first dimension correlates with features related
to the organization of pitch and harmonics, as revealed
by the mean chromagram peaks (r = 0.82) and the
degree of variation between successive peaks in the
spectrum (mean spectral regularity » = 0.72). There is
also correlation with the variance of the energy distri-
bution (standard deviation of the spectral roll-off at
95% r = 0.7); the distance between the spectrum of
successive frames (mean spectral flux r = -0.7); and to
a lesser degree with the shape of the spectrum in
terms of its “width” (mean spectral spread r = -0.61).
The second dimension correlates significantly with the
perceived dissonance (mean roughness r = -0.74); pitch
salience (chromagram centroid r = -0.72); and also
captures the mean spectral spread (r = 0.65), although
in an inverse fashion. Table 6 provides a more detailed
summary of this.

4.2.3 Comparing a semantic structure based on social tags,
to one based on perceptual similarities

As we have now explored the emergent structure from
tags using a direct acoustic analysis of the best exem-
plars in each cluster, and probed this semantic space
further in a perceptual experiment, the question remains
as to whether the two approaches bear any similarities.
The most direct way to examine this is to look at the
pattern of correlations between both: i.e. to compare
tables 5 and 6. Although the lists of features vary
slightly, due to the difference in redundancy and robust-
ness criteria applied to each set of data, convergent pat-
terns can still be found. An important shared feature is
the variation in brightness, which is both present in
dimension 1 of the direct cluster analysis, and in the
perceptual space depicting the spliced stimuli (from the
same 19 clusters). In the first case, it takes the form of
“brigthenss SD”, and in the second, it is “roll-off SD”
(virtually identical). In addition, the second dimension
in both solutions is characterized by roughness,
although the underlying polarities of the space have
been flipped in each. Of course, one major reason for
differences between the two sets of data must be due to
the effects of splicing, conducted in the perceptual
experiment but not in the other. However, there were
nevertheless analogies between the two perspectives of
the semantic structure that could be detected in the
acoustic substrates. They have been used here to high-
light such features that are little affected by form, har-
mony, lyrics and other high-level musical (and extra-
musical) characteristics. From this perspective, a tenta-
tive convergence between the two approaches was suc-
cessfully obtained.
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Figure 5 MDS (dimensions 1, 2) of perceived distances of the stimulus material representing the 19 clusters using semi-randomly
spliced excerpts.

5 Discussion and conclusions

Semantic structures within music have been extracted
from the social media previously [20,25] but the main
difference between the prior genre-based studies and
this study is that we focussed more on the way people
describe music in terms of how it sounds in conceptual
expressions. We argue that these expressions are more
stable than musical genres, which have previously pro-
ven to be of a transient nature and a source of disagree-
ment (cf. [37]), despite important arguments vindicating
their value for classification systems [66]. Perhaps the
biggest problem with expert classifications (such as
genre) is that the result may not reach the same level of

ecological validity in describing how music sounds, as a
semantic structure derived from social tags. This is a
very important reason to examine tag-based semantic
structures further, in spite of their inherent weaknesses
as pointed out by Lamere [7].

A second way in which this study differs from those
previous lies in the careful filtering of the retrieved tags
using manual and automatic methods before the actual
analysis of the semantic structures was conducted. Not
only that, but a prudent trimming of the acoustic fea-
tures was done to avoid overfitting and any possible
increases in model complexity. Finally, a perceptual
exploration of the semantic structure found was carried
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Table 6 Correlations between MDS solutions (dimensions
1 and 2) and acoustic features for the experiment

Domain Name z Dim 1 Dim 2
Spectral Entropy SD 036 046*
Flatness SO -0.13 0.32
Regularity M 072%* 0.0
Roll-Off SD  0.70*** 0.14
Roughness M -035 -0.74%**
Spread M -061* 0.65**
Spectro-temporal  Spectral flux M -070%**  -0.16
Tonal Chromagram centroid M -0.23 -0.72%%%
Chromagram peak M 082%**  -0.28

* p <0.05, ** p <0.01, *** p <0.001, df = 17

out to assess whether the sound qualities alone would
be sufficient to uncover the tag-based structure.

The whole design of this study offers a preliminary
approach to the cognition of timbre in semantic terms.
In other words, it uses verbal descriptions of music,
expressed by the general population (in the form of
social tags), as a window to study how a critical feature
of music (timbre) is represented in the semantic memory
[67]. It is however evident that if each major step of this
study was treated separately, there would be plenty of
room for refining their respective methodologies,
namely, tag filtering, uncovering the semantic structure,
acoustic summarization and conducting a perceptual
experiment to examine the two empirical perspectives.
This being said, we did consider some of the alternatives
for these steps to avoid methodological pitfalls (particu-
larly in the clustering and the distance measures). But
even if each analytical step was optimized to enhance
the solution to an isolated part of the problem, this
would inevitably come at the expense of unbalancing
the overall picture. Since this study relies on an explora-
tory approach, we chose mainly conventional techniques
for each step, with the expectation that further research
will be conducted to corroborate the findings and
improve the techniques used here.

The usefulness of signal summarization based on the
random spliced method [37] has been assessed for audio
pattern recognition [65]. Our findings in the perceptual
domain seem to vindicate the method where listeners
rate sounds differing in timbral qualities, especially if
the scope is the long-term non-structural qualities of
music [68]. Such a focus is attained by cutting the slices
in a way that preserves important aspects of music
(onsets and sample lengths), while ensuring that they
are from a wide cross section of timbrically related
songs (i.e. belonging to the same semantic region or
timbral environment [69] in the perceptual space).

In conclusion, this study provided a bottom-up
approach for finding the semantic qualities of music
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descriptions, while capitalizing on the benefits of social
media, NLP, similarity ratings and acoustic analysis to
do so. We learned that when listeners are presented
with brief and spliced excerpts taken from the clusters
representing a tag-based categorization of the music,
they are able to form coherent distinctions between
them. Through an acoustic analysis of the excerpts,
clear correlations between the dimensional and timbral
qualities of music emerged. However, it should be
emphasized that the high relevance of many timbral fea-
tures is only natural since the timbral characteristics of
the excerpts were preserved and structural aspects were
masked by the semi-random splicing. Nevertheless, we
are positively surprised at the level of coherence in
regard to the listener ratings and their explanations in
terms of the acoustic features; in spite of the limitations
we imposed on the setting using a random splicing
method, and the fact that we tested a large number of
clusters.

The implications of the present findings relate to
several open issues. The first is whether structural
aspects of music are required to explain the semantic
structures or whether low-level, timbral characteristics
are sufficient, as was suggested by the present findings.
Secondly, what new semantic layers (as indicated by
the categories of tags) can meaningfully be connected
with the acoustic properties of the music? Finally, if
the timbral characteristics are indeed strongly con-
nected with such semantic layers as adjectives, nouns
and verbs, do these arise by means of learning and
associations or are the underlying regularities con-
nected with the emotional, functional and gestural
cues of the sounds?

A natural continuation of this study would be to go
deeper into the different layers of tags to explore which
layers are more amenable to direct mapping by acoustic
qualities, and which are mostly dependent on the func-
tional associations and cultural conventions of the
music.

A Preprocessing

Preprocessing is necessary in any text mining applica-
tion because the retrieved data do not follow any parti-
cular set of rules, and there are no standard steps to
follow [70]. Moreover, with the aid of Natural Language
Processing (NLP) [71,72] methods, it is possible to
explore the nature of the tags from statistical and lexico-
logical perspectives. In the following sections, the ratio-
nale and explanation for each preprocessing step is
given.

A.1 Filtering
Three filtering rules were applied to the corpus.
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Remove Hapax legomena (i.e. tags that appear only
once in the corpus), under the rationale of discarding
unrelated data (see Table 1).

Capture the most prevalent tags by eliminating from
the vocabulary those whose index of usage (see Section
2) is below the mean.

Discard tags composed by three or more words in
order to prune short sentence-like descriptions from the
corpus.

The subset resulting from such reductions represents
46.6% of the corpus (N = 169, 052, Vocabulary = 2029
tags).

A.2 Lexical categories for tags

At this point, the data had been de-noised but only in
the quantitative domain. To extract a meaningful ontol-
ogy from the tags, not only filtering, but semantic analy-
sis of the tags was necessary. To do so in an effective
fashion, a qualitative analysis was performed using a
number of sources: the Brown Corpus [73] to identify
parts of speech; the Wordnet database [74] to disambig-
uate words; and the online Urban Dictionary (http://
www.urbandictionary.com) and http://www.Last.fm data-
base for general reference. We were thus aiming for a
balanced set of references; two sources were technical
(the Brown and Wordnet), one vernacular (the Urban
Dictionary) and one highly specialized in musical jargon
(Last.fm’s wiki pages). An underlying motivation for
relying on this broad set of references, rather than
exclusively on an English dictionary, was to recognize
the multilingual nature of musical tags. Tag meanings
were thus looked up and the selection of a category was
decided case by case. The criteria applied in this process
favoured categories of meaning closely related to music
and the music industry, such as the genre, artist, instru-
ment, form of music, and commercial entity. The next

Table 7 Main categories of tags
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most important type of meaning looked for was adjecti-
val, and finally other types of descriptor were consid-
ered. For instance, “Acid” is well known to be a
corrosive substance, but it is also a term used exten-
sively to describe certain musical genres, so this latter
meaning took priority. Table 7 shows the aforemen-
tioned tag categories, examples of each, a definition of
each, and their percentage of distribution in the sample.

The greatest percentage of tags refer to musical gen-
res, but there are significant percentages in other cate-
gories. For instance, the second most commonly found
tags are adjectives, followed by nouns which except for
some particular contextual connotations, are used for
the most part adjectivally to describe the general sound
of a song (e.g. mellow, beautiful for adjectives and mem-
ories and melancholy for nouns).

The rest of the categories suggest that music is often
tagged in terms of association, whether it be to known
auditory objects (e.g. instruments and band names), spe-
cific circumstances (e.g. geographical locations and time
of the day or season) or idiosyncratic things that only
make sense at a personal level. This classification is
mainly consistent with past efforts [7], although the
vocabulary analysed is larger, and there are consequently
more categories.

The result allowed for a finer discrimination of tags to
be made, that might better uncover the semantic struc-
ture. Since one of the main motivations of this project
was to obtain prototypical timbral descriptions, we
focused on only a few of the categories: adjectives,
nouns, instruments, temporal references and verbs, and
this resulted in a vocabulary of 618 tags.

The rest of the tag categories were left for future ana-
lysis. Note that this meant discarding such commonly
used descriptors as musical genres, which on the one
hand provide an easy way to discriminate music [36] in

Categories % Definition Examples

Genre 36.72 Musical genre or style Rock, Alternative, Pop
Adjective 1217 General category of adjectives Beautiful, Mellow, Awesome
Noun 941 General category of nouns Love, Melancholy, Memories
Artist 8.67 Artists or group names Coldplay, Radiohead, Queen
Locale 803 Geographic situation or locality British, American, Finnish
Personal 6.80 Words used to manage personal collections Seen Live, Favourites, My Radio
Instrument 483 Sound source Female vocalists, Piano, Guitar
Unknown 3.79 Unclassifiable aitch, prda, < 3

Temporal 241 Temporal circumstance 80's, 2000, Late Romantic

Form 222 Musical form or compositional technique Ballad, Cover, Fusion
Commercial 1.72 Record label, radio station, etc. Motown, Guitar Hero, Disney
Verb 1.63 General category of verbs Chillout, Relax, Wake up
Content 1.03 Emphasis in the message or literary content Political, Great lyrics, Love song

Expression 0.54 Exclamations

Wow, Yeah, lol
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terms of fairly broad categories, but on the other hand
makes them hard to adequately define by virtue of this
very same quality [37]. This manuscript is devoted to
exploring timbre and by extension the way people
describe the general sound of a piece of music, hence
the idea has been to explore the concepts that lie under-
neath the genre descriptions. For this reason, genre was
utilized as the most significant semantic filter. The other
discarded categories had their own reasons, for instance
Personal and Locale contents are strongly centered in
the individual’s perspective, Artist contents are redun-
dantly referring to the creator/performer of the music.
The rest of the omissions concerned rare categories (e.g.
unknown terms, expressions, commercial branches or
recording companies) or not explicitly related with tim-
bre (e.g. musical form, description of the lyrics); these
were left out to simplify the results.
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