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Abstract

Nonnegative matrix factorization (NMF) is developed for parts-based representation of nonnegative signals with the
sparseness constraint. The signals are adequately represented by a set of basis vectors and the corresponding weight
parameters. NMF has been successfully applied for blind source separation and many other signal processing systems.
Typically, controlling the degree of sparseness and characterizing the uncertainty of model parameters are two critical
issues for model regularization using NMF. This paper presents the Bayesian group sparse learning for NMF and applies

factorization; Single-channel source separation

it for single-channel music source separation. This method reconstructs the rhythmic or repetitive signal from a
common subspace spanned by the shared bases for the whole signal and simultaneously decodes the harmonic or
residual signal from an individual subspace consisting of separate bases for different signal segments. A Laplacian scale
mixture distribution is introduced for sparse coding given a sparseness control parameter. The relevance of basis
vectors for reconstructing two groups of music signals is automatically determined. A Markov chain Monte Carlo
procedure is presented to infer two sets of model parameters and hyperparameters through a sampling procedure
based on the conditional posterior distributions. Experiments on separating single-channel audio signals into
rhythmic and harmonic source signals show that the proposed method outperforms baseline NMF, Bayesian NMF,
and other group-based NMF in terms of signal-to-interference ratio.

Keywords: Bayesian sparse learning; Signal reconstruction; Subspace approach; Group sparsity; Nonnegative matrix

1 Introduction

Many problems in audio, speech and music processing
can be tackled through matrix factorization. Different cost
functions and constraints may lead to different factorized
matrices. This procedure can identify underlying sources
from the mixed signals through blind source separation
[1]. Nonnegative matrix factorization (NMF) is designed
to find an approximate factorization X =~ AS for a data
matrix X into a basis matrix A and a weight matrix S which
are all nonnegative [2]. Some divergence measures have
been proposed to derive solutions to NMF [3,4]. NMF
provides a useful learning tool for clustering as well as for
classification. When a portion of labeled data are available,
the semi-supervised NMF was developed for an improved
classification system [5]. Different from standard principal
component analysis (PCA) and independent component
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analysis (ICA), NMF only allows additive combination due
to the nonnegative constraints on matrices A and S. Nev-
ertheless, nonnegative PCA and nonnegative ICA were
proposed for blind source separation in the presence of
nonnegative image and music sources [6].

On the other hand, NMF conducts a parts-based sparse
representation where only a few components or bases are
relevant for representation of input nonnegative matrix X.
The sparseness constraint is imposed in objective func-
tion [2]. An automatic relevance determination (ARD)
scheme [7-9] is developed to determine relevant bases for
sparse representation. Such sparse coding is efficient and
robust. However, controlling the sparseness or smooth-
ness is influential for system performance. Bayesian learn-
ing is beneficial to deal with sparse representation [9] and
model regularization [7]. In [10], Bayesian learning was
performed for sparse representation of image data where
Laplacian distribution was used as prior density. The ¢;-
regularized optimization was comparably performed. In
addition, the group-based NMF [11] was proposed to
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capture the intra-subject variations and the inter-subject
variations in EEG signals. In [12], the group sparse NMF
was proposed by minimizing the Itakura-Saito divergence
between X and AS. In [13], NMF was applied for drum
source separation where the factorized components were
partitioned into rhythmic sources and harmonic sources.
No Bayesian learning was performed in [11-13].

More recently, a Bayesian NMF approach [14] was pro-
posed for model selection and image reconstruction. This
approach inferred NMF model by a variational Bayes
method and a Markov chain Monte Carlo (MCMC) algo-
rithm. In [15], a Bayesian NMF with gamma priors for
source signals and mixture weights was implemented
through a MCMC algorithm. In [16], the Bayesian NMF
with Gaussian likelihood and exponential prior was con-
structed for image feature extraction where the posterior
distribution was approximated by Gibbs sampling proce-
dure. In [17], a Bayesian approach for blind separation
of linear mixtures of sources was developed. The Stu-
dent ¢ distribution for mixture weights was introduced
to achieve sparse basis representation. The underde-
termined noisy mixtures were separated. However, the
case of nonnegative source was not applied. Besides,
single-channel source separation is known as an underde-
termined problem. In [18], the harmonic structure infor-
mation was adopted to estimate the demixed instrumental
sources. In [19], the NMF was applied for single-channel
speech separation where the speech of target speaker over
that of masking speaker was enhanced by using sparse
dictionaries learned on a phoneme level for individual
speakers.

This paper addresses the problem of underdetermined
source separation based on NMF for an application to
music source separation [20]. The uses of NMF and
Bayesian theory to source separation are not new since
they have been many papers [11-13,15]. But, to our
best knowledge, the novelty of this paper is to propose
Bayesian group sparse (BGS) learning using Laplacian
distribution and Laplacian scale mixture (LSM) distribu-
tion and apply it for single-channel music signal separa-
tion. We present a group-based NMF where the groups
of common bases and individual bases are estimated
for blind separation of rhythmic sources and harmonic
sources, respectively. Bayesian sparse learning is devel-
oped by introducing LSM distributions as the priors
for two groups of reconstruction weights. Gamma pri-
ors are used to represent two groups of nonnegative
basis components. The BGS-NMF algorithm is accord-
ingly established. A MCMC algorithm is derived to infer
BGS-NMF parameters and hyperparameters according to
full Bayesian theory. The rhythmic sources and harmonic
sources are reconstructed through the relevant bases in
common subspace and individual subspace, respectively.
In the experiments, the proposed BGS-NMF is evaluated
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and compared with the other NMF methods for single-
channel separation of audio signals into rhythmic signals
and harmonic signals. From comparative study, we find
that the improvement of separation performance bene-
fits from Bayesian modeling, group basis representation,
and sparse signal reconstruction. Sparser priors identify
fewer but more relevant bases and correspondingly lead
to a better performance in terms of signal-to-interference
ratio.

The remaining of this paper is organized as follows. In
the next section, the related studies on NMF and group
basis representation are surveyed. Some Bayesian learn-
ing approaches are addressed. Section 3 highlights on the
construction of BGS-NMF model as well as the infer-
ence procedure based on MCMC algorithm. The condi-
tional posterior distributions of different parameters and
hyperparameters are derived in the sampling procedure.
Section 4 reports a series of experiments on underde-
termined music source separation with different music
sources. The convergence condition in MCMC sampling
is investigated. The evaluation of demixed signals in terms
of signal-to-interference ratio is reported. Finally, the con-
clusions drawn by this study are provided in Section 5.

2 Background survey

In what follows, nonnegative matrix factorization (NMF)
and its extensions to different regularization functions are
introduced. Several approaches to group basis representa-
tion are addressed. Group sparse coding is surveyed. Then
Bayesian learning methods for matrix factorization and
other related tasks are introduced.

2.1 Nonnegative matrix factorization

NMEF is a linear model where the observed signals, fac-
torized signals, and source signals are all assumed to be
nonnegative. Given a data matrix X = {Xj}, NMF esti-
mates two factorized matrices A = {A;} and § = {Si}
by minimizing the reconstruction error between X and
AS. In [2], the sparseness constraint was imposed on min-
imization of an objective function F which is based on a
regularized error function

IX—ASIP +na Y ) fAD+nsy_ Y fSp) (1)
i j ok

where 7, > 0 and ns > 0 are regularization parame-
ters and different sparseness measures could be used, e.g.,
FSi) = Sl fSr) = S f(Si) = SikIn(Spp), ete.
Several extensions of NMF have been proposed. In [21],
the nonnegative matrix partial co-factorization (NMPCF)
was proposed for rhythmic source separation. Given the
magnitude spectrogram as input data matrix X, NMPCF
decomposes the music signal into a drum or rhythmic
part and a residual or harmonic part X ~ A.S; + ArSh
with the factorized matrices including basis matrix and
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weight matrix for rhythmic source {A,,S;} and for har-
monic source {Ap, Sp}. The prior knowledge from drum-
only signal Y ~ A.S; given the same rhythmic bases A; is
incorporated in joint minimization of two Euclidean error
functions

X — ArSy — ApSull®> + 1Y — A.S,||? (2)

where 7 is a trade-off between the first and the second
reconstruction errors due to X and Y, respectively. In [22],
the mixed signals were divided into L segments. Each seg-
ment X® is decomposed into common and individual
parts which reflect the rhythmic and harmonic sources,
respectively. The common bases A, are shared for differ-
ent segments due to high temporal repeatability in rhyth-
mic sources. The individual bases A}(ll) are separate for
individual segment / due to the changing frequency and
low temporal repeatability. The resulting objective func-
tion consists of a weighted Euclidean error function and
the regularization terms due to bases A, and Afll) which
are expressed by

L L
U l
Y 01X -4, 8P —ADSY 1P 4nLIAN 40 D 1AL

=1 =1

(3)

where {w(l),Sgl),Sff)} denotes the segment-dependent
weights and weight matrices for common basis and indi-
vidual basis, respectively. This is a NMPCF for L seg-
ments. The solutions to these NMFs are derived and
implemented by the multiplicative update rules so that
nonnegative constraints are met for individual model
parameters. For example, the terms in gradient of objec-
tive function F with respect to nonnegative parameter A

are divided into positive terms and negative terms % =
[%’—]Jr — [34] where [%—fr > 0and [2%] > 0. The
multiplicative update rule is yielded by
OF " _[oF7"
A< A — — 4
« ®[8A} @[M} (4)

where ® and @ denote element-wise multiplication and
division, respectively.

2.2 Group basis representation

The signal reconstruction methods in (2) and (3) cor-
respond to the group basis representation where two
groups of bases A, and Ag) are applied. The separation
of single-channel mixed signal into two source signals is
achieved. The issue of underdetermined source separation
is resolved. In [11], the group-based NMF (GNMF) was
developed by conducting group analysis and construct-
ing two groups of bases. The intra-subject variations for a
subject in different trials and the inter-subject variations
for different subjects could be compensated. Given the
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L subjects or segments, the /th segment is generated by
X0 ~ Aﬁl)Sﬁl) + AEII)S](P where Ay) denotes the common
bases which capture the intra and inter-subject variations
and Afll) denotes the individual bases which reflect the
residual information. In general, different common bases
A should be close together since these bases represent
the shared information in mixed signal. Contrarily, indi-
vidual bases A}(f) characterize individual features which
should be discriminated and mutually far apart [11]. The
object function of GNMF is formed by

L

L
DI
DoIx® —APSY —ADSOI +na Y 1P
=1 =1

L
l
+na Y IAY |2
I=1

L L
+ 0 Y Y AP — A

l=1 m=1
L L
1)
— ey 3 3 A — AP,
=1 m=1

In (5), the second and third terms are seen as the ¢, regu-
larization functions, the fourth term enforces the distance
between different common bases to be small, and the fifth
term enforces the distance between different individual
bases to be large. Regularization parameters {7, a,, Nay, }
are used. The NMPCFs in [21,22] and GNMF in [11] did
not consider sparsity in group basis representation.

More generally, a group sparse coding algorithm [23]
was proposed for basis representation of group instances
{Xx, k € G} where objective function is defined by

2
|D| |D|

SoXe =D st +0d sl ©6)

kegG j=1 =1

All the instances within a group G share the same
dictionary D with basis vectors {A;} ,"j'l The weight matrix
{S,}]'.Z‘l consists of nonnegative vectors S; :[Sl-l, . ,S}gl]T.
The weight parameters {S¥} are estimated for different
group instances kK € G using different bases j € D.
In (6), £1 regularization term is incorporated to carry
out group sparse coding. The group sparsity was fur-
ther extended to structural sparsity for dictionary learning
and basis representation. Nevertheless, nonnegative con-
straints were not imposed on bases {A4;} and observed
signals {Xj}. Basically, all the above-mentioned methods
[2,11,21-24] did not apply probabilistic framework. No
Bayesian learning was considered.
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2.3 Bayesian learning approaches

Model regularization is critical for improving the gener-
alization of a learning machine to new data [7]. Conduct-
ing Bayesian learning shall compensate the variations of
the estimated parameters and accordingly improve model
regularization. Typically, NMF and group basis represen-
tation are viewed as learning machine which is based on
a set of bases. Following the perspective of relevance vec-
tor machines [8,9], Bayesian sparse learning is beneficial
to identify relevant bases for regularized basis represen-
tation. To do so, sparse priors based on Student ¢ distri-
bution [17] and Laplacian distribution [10,25] could act as
regularization functions and merged with likelihood func-
tion to come up with a posteriori probability. Maximizing
the logarithm of a posteriori probability is equivalent to
minimizing the ¢;-regularized error function if Laplacian
prior is applied. Hyperparameters of sparse priors are then
used as the regularization parameter which controls the
trade-off between a reconstruction error function and a
sparsity-favorable penalty function.

In the literature, a probabilistic matrix factorization
(PMF) [26] for X = ATS was proposed by assuming Gaus-
sian noise for each independent entry of data matrix X =
{Xi) by p(X|4, S, @) = [T, TTaL, N (X lATSp, @~ 1) and
assuming Gaussian priors p(A|a,) = ]_[f\il N (4]0, aa’ll)
and p(Slas) = [TaL; N (S0, a5 1) where {a, aa, s} is a
set of precision parameters of Gaussians. Here, A; denotes
the ith column of A and S; denotes the kth column of
S. Learning for PMF is equivalent to maximizing the log
posterior likelihood

Inp(A, S|X, o, o, 5) = In p(X|A, S, )
+Inp(Alaa) + Inp(Slas) + C
@)

with respect to A and S. In (7), C is a constant. This
optimization turns out to minimizing the sum-of-squares
error function with quadratic regularization terms

N M N M
DO Ka—ATSO> 4 na Y Al +ns Y ISkl> (8)
i=1 k=1

i=1 k=1

The regularization terms are determined from hyperpa-
rameters by 7, = @,/ and ns = o/« Bayesian learning
of PMF was performed through MCMC algorithm where
Gaussian-Wishart priors for Gaussian mean vectors and
precision matrices were assumed. There was no constraint
on nonnegative matrices by using PMF. No sparse learning
was considered.

In [27], a full Bayesian NMF was implemented to deter-
mine the number of bases according to the marginal like-
lihood. Furthermore, Bayesian nonparametric approach
to NMF was proposed in [28] where model structure
was determined through Gamma process NMF. This
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method was applied to find both latent sources in spectro-
grams and their number. In [25], the group sparse coding
[23] was upgraded with Bayesian interpretation. Bayesian
sparse learning was only developed for single-sample basis
representation. In [29], the group sparse priors were pre-
sented for maximum a posteriori estimation of covari-
ance matrix which was used in Gaussian graphical model.
More recently, the group sparse hidden Markov mod-
els (HMMs) [30] were proposed to represent a sequence
of observations and have been successfully applied for
speech recognition. A set of common bases were shared
for representation of speech samples across HMM states,
while a set of individual bases were employed to represent
speech samples within individual HMM states. Bayesian
group sparse learning was performed for speech recog-
nition [30] and signal separation [20] by using Laplacian
scale mixture distribution.

3 Bayesian group sparse matrix factorization
Previous NMF methods [11,13,21] were developed to
extract task-specific nonnegative factors, but they did
not simultaneously consider the uncertainty of model
parameters and control the sparsity of weight parame-
ters. In [23,25], the group sparse coding and its Bayesian
extension did not impose nonnegative constraints in data
matrix X and factorized matrices A and S. This paper
presents a new Bayesian group sparse learning for NMF
(denoted by BGS-NMF) and applied it for single-channel
music source separation.

3.1 Model construction

In this study, magnitude spectrogram X = {X?} of a
mixed audio signal is calculated and chopped into L seg-
ments for implementation of BGS-NMF algorithm. The
audio signal is assumed to be mixed from two kinds of
source signals. One is rhythmic or repetitive source sig-
nal and the other is harmonic or residual source signal.
As illustrated in Figure 1, BGS-NMF aims to decompose a
nonnegative matrix X e Rf *M of the Ith segment into
a product of two nonnegative matrices AOS®. A linear
decomposition model is constructed in a form of

where A, € R]XXD‘ denotes the shared basis matrix for
1,...,L} A;ll) € R{XXD’“ and
E? denotes the individual matrix and the noise matrix
for a given segment [/, respectively. Typically, common
bases capture the repetitive patterns which continuously
happen in different segments of a whole signal. Individ-
ual bases are used to compensate the residual information
that common bases could not handle. Without loss of gen-
erality, common bases and individual bases are applied

all segments (X, =



Chien and Hsieh EURASIP Journal on Audio, Speech, and Music Processing 2013,2013:18 Page 5 of 15
http://asmp.eurasipjournals.com/content/2013/1/18
D,_j1 SO
r
X0 14 4P| x b . "
T [ 0 E
Dh-1 S
‘ | D, +D,=|D|
\—’y\ﬂﬁ
D/‘ Dh
Figure 1 lllustration for group basis representation. There are |D| bases in the dictionary.
to recover the rhythmic signal and the harmonic signal, N D
respectively, from a mixed audio signal. Such a signal pAr) = Hng([Ar]if levrj, Bry) (11)
recovery problem could be interpreted from a perspec- i=1j=1
tive of subspace approach. Namely, an observed signal is
demixed into one signal from principal subspace spanned
i J - ) 1) 1) )
by common bases and the other signal from minor sub p(A( ) = 1_[ l_[ g([A() Jij I () ,3( ) (12)

space spanned by individual bases [31]. Moreover, the
sparseness constraint is imposed on two groups of recon-
struction weights S € R E’XM and Sl(j) € Rﬁ”XM.
It is assumed that the reconstruction weights of rhyth-
mic sources S,(al) and harmonic sources S;ll) are inde-
pendent, but the dependencies between reconstruction
weights within each group are allowed. Assuming that
the kth noise vector E,((l) is Gaussian distributed with zero
mean and N x N diagonal covariance matrix £ =
diag{[ = (D1, Y which is shared for all samples within a seg-
ment /, the likelihood function of an audio signal segment
X is expressed by

N M
px 10D = TTTTN L 11ASP 1

i=1 k=1
DU
LAY Lo [5VTi)

BGS-NMF model is therefore constructed with parame-
ters OO = (4,4 s, 5 50},

3.2 Priors for Bayesian group sparse learning

From Bayesian perspective, the uncertainties of BGS-
NMF parameters, expressed by prior densities, are con-
sidered to assure model regularization. Using BGS-NMF
model, the common bases A, are constructed to represent
the characteristics of repetitive patterns for different data
segments, while the individual bases Aﬁl) are estimated
to reflect unique information in each segment /. Sparsity
control is enforced in the corresponding reconstruction
weights s and Sy () 5o that relevant bases are retrieved for
group basis representation. In accordance with [15], the
nonnegative basis parameters are assumed to be gamma
distributed by

i=1j=1

where CDgl) = {{ay, Byj}s {a(l), ﬁ;ll)}} denotes the hyperpa-
rameters of gamma dlStI’lbl.lthl‘lS and {D;, Dy} denote the
numbers of common bases and individual bases, respec-
tively. Gamma distribution is an exponential family distri-
bution for nonnegative data. Its two parameters {«, 8} can
be adjusted to fit different shapes of distributions. In (11)
and (12), all entries in matrices A, and A}(II)
be independent.

Importantly, we control the sparsity of reconstruction
weights by using prior density based on the Laplacian
scale mixture (LSM) distribution [25]. The LSM of a
reconstruction weight of common basis is constructed by
(5
(1)) —

are assumed to

(A(l)) lu(l) where u(/l) is a Laplacian distribution

p(u, 2 exp{—|u(l) |} with scale 1 and k() is an inverse

scale parameter. Accordingly, the parameter St )] ik has a
Laplacian distribution

O]

)\

l [
pAS Y13y = - expl=a 1)) (13)
which is controlled by a positive continuous mixture

parameter )»,(,]l) > 0. Considering a gamma distribution for
inverse scale parameter, i.e., p()»(l)) =g (A(l)|y(l) 8(1)), the
marginal distribution of a reconstructlon welght can be
calculated by [25]

p(U5OT) = / pASO APy
0

)/r/ 0)) (5 (1)))’,, (14')

= l v .
260+57)0)7
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In (13) and (14), the constraint [ £’)] ik > 0 has been con-
sidered. This LSM distribution is obtained by adopting the
property that gamma distribution is the conjugate prior
for Laplacian distribution. In application of image cod-
ing, LSM distribution was estimated and measured to be
sparser than Laplacian distribution by approximately a
factor of 2 [25]. Figure 2 compares Gaussian, Laplacian,
and LSM distributions with specific parameters. In this
example, LSM is the sharpest distribution among these
distributions. In addition, a truncated LSM prior for
nonnegative parameter [Sy) lik € R+ is adopted, namely,
the distribution of negative parameter is forced to be
zero. The sparse prior for reconstruction weight for
individual basis [S(l)]jk is also expressed by LSM distri-

bution with hyperparameter {Vh;) 5(1) }. The hyperparam-

eters of BGS-NMF is formed by CD(I) = {CID(Z) db(l) =
{y(l) 8(1), Vh/) 8(1)}} Figure 3 displays a graphical repre-
sentatlon for constructlon of BGS-NMF with different
parameters ©) and hyperparameters &®,

By combining the likelihood function in (10) and the
prior densities in (11) to (13), the negative logarithm
of posterior distribution —In p(Ar,A(l) 51) 0 |X) can
be calculated and arranged as a new objectlve function
expressed by

L N M
ZZZ( (l) —[A, S(l) —[A ff)Sff)]ikf

I=1 i=1 k=1
N D
+1aL Y Y (= o) In[ ALy
i=1 j=1
+ BrilAcly)
SRR ! I (15)
+na Y 3y (=) In[A];
=1 i=1 j=1
L D
b 4
'B()A()ll)+nsrzzz (l)
=1 j=1 k=1
L Dn M
+%.ZZZSU)
=1 j=1 k=1

where {n,, ns,, 115, } denote the regularization parameters
for two groups of bases and reconstruction weights.
Some BGS-NMF parameters or hyperparameters have
been absorbed in these regularization parameters. Com-
paring with the objective functions (3) for NMPCE, (5)
for GNME, and (8) for PMF, the optimization of (15)
for BGS-NMF shall lead to two groups of signals which
are reconstructed from the sparse common bases A, and
sparse individual bases Afll). The regularization terms due
to two gamma bases are additionally considered. Different
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Figure 2 Comparison of Gaussian, Laplacian, and LSM
distributions.

from the Bayesian NMF (BNMF) [15], BGS-NMF con-
ducts group sparse learning which does not only charac-
terize the within-segment harmonic information but also
represent the across-segment rhythmic regularity. Sparse
sets of basis vectors are further determined for sparse rep-
resentation. Basically, BGS-NMEF follows a general objec-
tive function. By applying different hyperparameter values

{arj, Brjs 0‘1(1?’ ﬂ;ﬁ)}, probability structures, and prior distri-

butions for {A r,A}(f), Y) (l)} BGS-NMEF can be realized
to find solutions to NMF [2], NMPCF [21], GNMF [11],
PMEF [26], and BNMEF [15]. Notably, the objective function
in (15) is written for comparative study among differ-
ent methods. This function only considers BGS-NMF

Figure 3 A graphical representation for BGS-NMF.
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based on Laplacian prior. BGS-NMF algorithms with
Laplacian prior and LSM prior shall be both implemented
in the experiments. Nevertheless, in what follows, we
address the model inference procedure for BGS-NMF with
LSM prior.

3.3 Model inference

The full Bayesian framework for BGS-NMF model based
on the posterior distribution of parameters and hyper-
parameters p(®, ®|X) is not analytically tractable. A
stochastic optimization scheme is adopted. We develop
a MCMC sampling algorithm for approximate inference
through iteratively generating samples of parameters ©
and hyperparameters ® according to the posterior distri-
bution. This algorithm converges by those samples. The
key idea of MCMC sampling is to simulate a stationary
ergodic Markov chain whose samples asymptotically fol-
low the posterior distribution p(®, ®|X). The estimates of
parameters ® and hyperparameters ® are then computed
via Monte Carlo integrations on the simulated Markov
chains. For simplicity, the segment index / is neglected in
derivation of MCMC algorithm for BGS-NMF. At each
new iteration ¢ + 1, the BGS-NMF parameters ©®“+1) and
hyperparameters ®¢*1 are sequentially sampled in an
order of {Ay, S, A, Shy Z, 0trs Brs @y Bhys Ars Ahs Ves 815 Vi Oh}
according to their corresponding conditional pos-
terior distributions. In this subsection, we describe
the calculation of conditional posterior distributions
under BGS-NMF parameters {A;, Sy, Ap, Sh, X}. The
conditional posterior distributions for hyperparame-
ters {&r, Br» @h, Bhs Ars Ahy Vs 01 Yhy S} are derived in the
Appendix.

1. Sampling of [A.];. First of all, the common basis

parameter [A(t+1)]

rior distribution

i is sampled by the conditional poste-

p((Ad; 1X], 04, @0 ) o pX 104 p((Ad 19 )

(16)

where 0 = {[A" P )iay-1), [A Nigi1ny . SI7, A, Y,
> ®} and q’ﬁff,.,. = {a g)’ﬂ,(jt)}. Here, X; denotes the ith
row vector of X. Notably, for each sampling, we use the
preceding bases [A(Hl)],(l, 1) at new iteration ¢ + 1
and subsequent bases [ A, ] i+1:p, At current iteration t.

The likelihood function can be arranged as a Gaussian
distribution of [ A];;

([ Ay —ieeh?
2[ O.hkel] ]

rij

p(XiT|®‘(‘3ij) X exp :—
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where thel =[o hk/el —2 Zk 1([S§t)]1k 8( }))’ ( - _ = Xy —

(L (AL V] [59] 4 30 1| Aﬁ”],-m[sﬁf)]mk) -
2?,;;1 [AY Vin [Sy 1k and [ofXP =[O (L,
[ Et)] k)~ 1, By combining likelihood function of (17) and
gamma prior p([A;]; |<I>1(Lf2ii) of (11), the conditional pos-
terior distribution in (16) is derived in a form of

ilt) 1 ([Ar]l} Mi(::t)z
[A’]l/ €xp _W Ijo,+00[ ([ Ar]3)
rl/
(18)
where MPOS" — lllj:l /3('5)[ 111<e1]2 [o POSt] [O_liﬁe]]z’

and I[[O,+oo (z) denotes an 1nd1cator functlon which has
value either 1 if z €[0,+o0[ or 0 for the other case. In
(18), the posterior distribution for negative [ A,]; is forced
to be zero. Derivations of (17) and (18) are detailed in
the Appendix. However, (18) is not an usual distribution,
therefore its sampling requires the use of a rejection sam-
pling method, such as the Metropolis-Hastings algorithm
[32]. Using this algorithm, an instrumental distribution
q([A;];j) is chosen to fit at best the target distribution
(18) so that high rejection condition is avoided or equiv-
alently rapid convergence toward true parameter could
be achieved. In case of rejection, the previous parame-
ter sample is used, namely, [Aﬁtﬂ) 1y <—[A£t)] ij» Generally,
the shape of target distribution is characterized by its
mode and width. The instrumental distribution is con-
structed as a truncated Gaussian distribution which is
calculated by

q([A; ]z/) —N+([Ar]zj |Mj«{lrslt [o X:ls/t]z)

In (19), the mode /Lj;‘:}t is obtained by finding the roots

(19)

of a quadratic equation of [A,]; which appears in the
exponent of the posterior distribution in (18). Derivation
for the mode um“ is detailed in the Appendix. In case of
complex-valued root or negative-valued root, the mode is
forced by ,ui“St = 0. The width of instrumental distribu-

ost
P ]2'

inst12 __
[ 1> =[ 0}

tion is controlled by [o

2. Sampling of [ Siljx. The sampling of reconstruction

weight of common basis [ Sy (t+1 )] jx depends on the condi-
tional posterior distribution

P Seljx 1 Xk, ®«(92k’ Cng?k) op(Xe [ Seljk » ®§2k)

P19
_ {A(f+1) [S(t+1)]

(20)

where ®(t) (1j—1)k » [Sl(*t)](j+1:Dr)k ,Af,t),
S(t) ¥®} and CD(t) = A(t) Xy is the kth column of X.
Again, the preceding welghts [Sg”l)](l:,'_l)k at new itera-
tion £+ 1 and subsequent weights [Sﬁt) lj+1:00)k at current
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iteration tx are used. The likelihood function is rewritten
as a Gaussian distribution of [ S;]; given by

([ Sl —ngieh?

PO IS ©5),) o exp Ao [ (21)
The Gaussian parameters are obtained by Ml'o%(,-:l =
[o élé(kel] Z ([Z(t)] I[A(H—l)]l] l(k]))’ (1) - Xy—

ot LAY [ S it o ,H[A“*”Lm[s“)]mk)—
Z [A(t)]zm[s(t)]mk and [ohkel — (ZN 2(1,‘)];1

([A§t+1)]ij) )~1. Given the Gaussian likelihood and
Laplacian prior, the conditional posterior distribution is
calculated by

([Seljk —15%H?

® Sk
Ay exp 2T [0 400 ([Se]jk)  (22)
r/k
P ost likel ®r _likel12 POSt likel12
where I, = MSI;E — Ay [o Sl ¢l]2 and [og P=lo Slr](ke]

Notably, the hyperparameters {yr ¢+1) S(HI)} in LSM
prior are also sampled and used to sample LSM param-
eter )»,(fH) based on a gamma distribution. Here,
Metropolis-Hastings algorithm is applied again. The best
instrumental distribution g([S,]jx ) is selected to fit (22).
This distribution is derived as a truncated Gaussian dis-
tribution Ny ([ Sy]jx Ip."‘St [agnit] ) where the mode umSt
is derived by finding the root of a quadratic equation of
[Si]jx and the width is obtained by [oy "‘St 2=[o pOSt]2
In addition, the conditional posterior dlstrlbutlons for
sampling the individual basis parameter [Affﬂ)] jj and its
reconstruction weight [S(Hl)] i are similar to those for
sampling [A(H'D],} and [S(Hl)]]k, respectively. We do not
address these two distributions.

%];'. The sampling of the inverse of
(t+1)) 1

3. Sampling of |
noise variance ([ X] is performed according to the
conditional posterior distribution

p(21;1X0% ,00) apxT I =17, 08 p( =15 10F)
(23)

where ®(t) = Al gD, A(t+1) S(t+1)} and p(
[Z]; |<I>(2tl) = g([z]ﬂ les;» Bx;)- The resulting pos-

terior distribution can be derived as a new gamma

distribution with updated hyperparameters ag‘,’ft =
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M post
5 + ax; and By,

M Dy t+1
32 (X — Zmzl[A§ Nim
t+1 D t+1 t+1
S5 ke = S (A i [, 1k )? +Bse In the
experiments, we conduct MCMC sampling procedure
for tmax iterations. However, the first t,;, iterations are
not stable. These burn-in samples are abandoned. The

marginal posterior estimates of common basis [Ar] ij» indi-
vidual basis [Ah] i and their reconstruction weights [§r] ik

and [ ] ik are calculated by finding the following sample
means, e.g.,

1 tmax

(AP

; 24)

[Ar]ij:

tmax — Lmin

t=tmin+1

With these posterior estimates, the rhythmic source
and the harmonic source are calculated by A:S; and
AnSh, respectively. The BGS-NMF algorithm is com-
pleted. Different from BNMF [15], the proposed BGS-
NMF conducts a group sparse learning based on
LSM distribution. Common bases A, are shared for
different data segments /. The group sparse learning per-
forms well in our experiments.

4 Experiments

In this study, BGS-NMF is implemented to estimate two
audio source signals from a single-channel mixed signal.
One source signal contains rhythmic pattern which is con-
structed by the bases shared for all audio segments while
the other source contains harmonic information which is
represented via bases from individual segments. Bayesian
sparse learning is performed to conduct probabilistic
reconstruction based on the relevant group bases. Some
experiments are reported to evaluate the performance of
model inference and signal reconstruction.

4.1 Experimental setup

In the experiments, we sampled six rhythmic signals
and six harmonic signals from http://www.free-scores.
com/index_uk.php3 and http://www.freesound.org/.
Six mixed music signals were collected as follows:
‘music 1, bass+piano; ‘music 2, drum+guitar; ‘music
3, drum+violin; ‘music 4, cymbal+organ; ‘music 5,
drum+saxophone; and ‘music 6, cymbal+singing, which
contained combinations of different rhythmic and har-
monic source signals. Three different drum signals and
two different cymbal signals were included. For each set
of experimental data, we applied a different mixing matrix
music 1 (1.2667 — 1.9136), music 2 (1.1667 — 1.9136),
music 3 (—1.2667 1.6136), music 4 (1.8667 1.1136), music
5 (—1.1667 2.8136), and music 6 (1.9617 1.1510) to simu-
late the corresponding single-channel mixed signal. Each
audio signal was 21 s long. Readers may access http://
chien.cm.nctu.edu.tw/bgs-nmf to listen to the twelve
source signals and the corresponding six mixed signals.


http://www.free-scores.com/index_uk.php3
http://www.free-scores.com/index_uk.php3
http://www.freesound.org/
http://chien.cm.nctu.edu.tw/bgs-nmf
http://chien.cm.nctu.edu.tw/bgs-nmf
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The specification of 44,100-Hz sampling rate and 16-bit
resolution was used in the collected audio signals. In our
implementation, the magnitude of fast Fourier transform
of audio signal was extracted every 1,024 samples with
512 samples in frame overlapping. Each mixed signal
was equally chopped into L segments for music source
separation. Each segment had a length of 3 s. Sufficient
rhythmic signal existed within a segment. The numbers of
common bases and individual bases were empirically set
to be 15 and 10, respectively, i.e., D, = 15 and D, = 10.
The common bases were sufficiently allocated so as to
capture the shared base information from different seg-
ments. The initial common bases Aﬁo) and individual
bases AI(IO) were estimated by applying k-means clustering
using the automatically detected rhythmic and har-
monic segments, respectively. The detection was based
on a classifier using Gaussian mixture model. We per-
formed 1,000 Gibbs sampling iterations (¢max = 1,000).
The separation performance was evaluated according to
the signal-to-interference ratio (SIR) in decibels

L M 02
YM ix
SIR(dB):lOIog10|: L1 2 1% }

L M (1l [
Y Yl XY - x 2
(25)

The interference was measured by the Euclidean distance
between original signal {X ,El)} and reconstructed signal
{)A(]El)} for different samples k in different segments /. These

signals include rhythmic signals {[Aﬁﬁ”]  } and harmonic
signals {[Ag)gﬁh]k }.

For system initialization at ¢ = 0, we detected
two short segments with only rhythmic signal and
harmonic signal and applied them for finding rhyth-
mic parameters {Ago), §°)} and harmonic parameters
{Al(10),Sl(10) }, respectively. This prior information was used
to implement five NMF methods for single-channel
source separation. We carried out baseline NMF [2],
Bayesian NMF (BNMF) [15], group-based NMF (GNMEF)
[11] (or NMPCF [22]), and the proposed BGS-NMF
under consistent experimental conditions. To evaluate
the effect of sparse priors in BGS-NMF for music
source separation, we additionally realized BGS-NMF
by applying Laplacian distribution. For this realization,
the sampling steps of LSM parameters {Vry» 81> V> Oy}
were ignored. The BGS-NMFs with Laplacian distri-
bution (denoted by BGS-NMF-LP) and LSM distribu-
tion (BGS-NMF-LSM) were compared. All these NMFs
were implemented for different segments /. Basically,
the NMF model [2] was realized by using multiplica-
tive updating algorithm in (4). The BNMF [15] con-
ducted Bayesian learning of NMF model where MCMC
sampling was performed, and gamma distributions were

Page 9 of 15

assumed for bases and reconstruction weights. No group
sparse learning was considered in NMF and BNMEF. Using
NMPCF [22] or GNMF [11], the common bases and
individual bases were constructed by applying multiplica-
tive updating algorithm. No probabilistic framework was
involved. The ¢5-norm regularization for basis parameters

Ay and Afll) was considered. There was no sparseness con-
straint imposed on reconstruction weight parameters Sﬁl)

and S}(IZ). Only the result of GNMF method was reported.
Using GNME, the regularization parameters in (5) were
empirically determined as {n, = 0.35,7,, = 0.2,7,, =
0.2}. Nevertheless, the Bayesian group sparse learning is
presented in BGS-NMF-LP and BGS-NMF-LSM algo-
rithms. Using this algorithm, the uncertainties of bases
and reconstruction weights are represented by gamma
distributions and LSM distributions, respectively. MCMC
algorithm is developed to sample BGS-NMF parameters
O@*D and hyperparameters ®**1, The groups of com-
mon bases A, and individual bases Ay, are estimated to
capture between-segment repetitive patterns and within-
segment residual information, respectively. The relevant
bases are detected via sparse priors in accordance with
Laplacian or LSM distributions. Using BGS-NMEF-LP, we
sampled the parameters and hyperparameters by using
different frames from six music signals and automat-
ically calculated the averaged values of regularization
parameters in (15) as {n, = 041,n, = 0.31,n, =
0.26}. The regularization parameters in (5) and (15)
reflect different physical meanings in objective function.
The computational cost and the model size are also exam-
ined. The computation times of running MATLAB codes
were measured by a personal computer with Intel Core
2 Duo 2.4-GHz CPU and 4-GB RAM. In our investiga-
tion, the computation times of demixing an audio signal
with 21 s long were measured as 3.1, 12.1, 16.2, 20.9,
and 21.2 min by using NMF, BNMF, GNME, and the pro-
posed BGS-NMF-LP and BGS-NMF-LSM respectively. In
addition, BNMF, GNMF, BGS-NMF-LP, and BGS-NMF-
LSM were measured to be 2.5, 4.5, 5.2, and 5.3 times the
model size of the baseline NMF respectively.

4.2 Evaluation for MCMC iterative procedure

In this set of experiments, the sampling process of
BGS-NMF algorithm is evaluated. The control param-
eter of sparsity A,; and its hyperparameters y,; and &,
for common basis are investigated. Figure 4 displays
an example of MCMC iterative sampling process for
LSM parameter A£;+l). The value of samples converges
after 200 iterations. Also, Figure 5 shows an example
of iterative sampling process for LSM hyperparameters
yr;tﬂ) and 85&1). Convergence condition is good in these
examples. MCMC samples converge after 200 iterations.
Empirically, the parameter £, is specified as 200 when
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Figure 4 An example of iterative sampling process for LSM

(t+1)
parameter Ar]. .

calculating posterior estimates of BGS-NMF parameters
as given in (24). In addition, Figure 6 shows an estimated
distribution of reconstruction weight of common basis
P Sr)jk lvvj» 817) where only nonnegative [S,]j is valid in
the distribution. This distribution is shaped as a LSM
distribution which is estimated from the 2"¢ segment
of “music 2.

4.3 Evaluation for single-channel music source separation
A quantitative comparison over different NMFs is con-
ducted by measuring SIRs of reconstructed rhythmic sig-
nal and reconstructed harmonic signal. Table 1 shows the
experimental results on six mixed music signals. These
six signals come from twelve different source signals.

07
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number of iteration

Figure 5 An example of iterative sampling process for LSM

hyperparameters Vr(,‘Hl) (green curve) and Sgﬂ) (blue curve).
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Figure 6 An estimated distribution of reconstruction weight of
common basis p([ Stljk |7y rj)-

The averaged SIRs are reported in the last row. Compar-
ing NMF and BNMF, we find that BNMF obtains higher
SIRs on the reconstructed signals. Further, BNMF is more
robust to different combination of rhythmic signals and
harmonic signals. The variation of SIRs using NMF is
relatively high. Bayesian learning provides model regular-
ization for NMF. On the other hand, GNMF (or NMPCF)
performs better than BNMF in terms of averaged SIR
of the reconstructed signals. The key difference between
BNMEF and GNMEF is the reconstruction of rhythmic sig-
nal. BNMF estimates the rhythmic bases for individual
segments while GNMF (or NMPCF) calculates the shared
rhythmic bases for different segments. Prior information
{A£0), ,(ﬂo),A;lo),S;lO)} is applied for these methods. From
these results, we confirm the importance of basis group-
ing in signal reconstruction based on NMF. In particular,
BGS-NMF-LP and BGS-NMF-LSM perform better than
other NMF methods. BGS-NMF-LSM even outperforms
BGS-NMEF-LP in terms of SIRs. Reconstruction weights
modeled by LSM distributions are better than those by
Laplacian distributions. Sparser reconstruction weights
identify fewer but more relevant basis vectors for signal
separation. Nevertheless, among these five related NMFs,
the highest SIRs of reconstructed signals are achieved by
using BGS-NMF-LSM. The SIRs of reconstructed rhyth-
mic and harmonic signals are measured as 8.13 dB and
8.40 dB which are higher than 3.71 dB and 3.38 dB by
using NMF, 4.87 dB and 4.61 dB by using BNMF, 5.63 dB
and 5.71 dB by using GNMF and 7.91 dB and 8.11 dB
by using BGS-NME-LP, respectively. Basically, the superi-
ority of BGS-NMF-LSM to other NMFs is three-fold, i.e.
Bayesian probabilistic modeling, group basis representa-
tion and sparse reconstruction weight. Again, compared to
GNMEF, the proposed BGS-NMF-LP and BGS-NMF-LSM
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Table 1 Comparison of SIR (in dB) of the reconstructed rhythmic signal and harmonic signal based on NMF, BNMF, GNMF,

BGS-NMF-LP and BGS-NMF-LSM

NMF BNMF GNMF BGS-NMF-LP BGS-NMF-LSM
Rhythmic  Harmonic  Rhythmic Harmonic  Rhythmic Harmonic Rhythmic Harmonic Rhythmic  Harmonic
Music 1 6.47 4.17 6.33 4.29 9.19 6.10 9.61 8.32 9.86 8.63
Music 2 6.30 1.10 8.08 5.18 822 3.03 8.33 7.3 8.55 745
Music 3 3.89 -1.17 5.16 3.80 6.01 322 844 852 8.63 879
Music 4 2.66 6.03 328 6.28 3.59 836 7.97 9.52 8.20 9.78
Music 5 1.85 371 3.03 2.55 397 6.44 8.11 822 835 850
Music 6 1.06 6.37 3.34 5.56 2.78 7.10 5.00 6.93 5.19 7.23
Average 3.71 3.38 4.87 4.61 5.63 571 791 811 813 840

Six mixed music signals are investigated.

obtain a more robust performance in SIRs against differ-
ent music source signals. Figure 7 shows the waveforms
of a drum signal, a saxophone signal and the resulting
mixed signal in “music 5” Figure 8 displays the spectro-
grams of these three signals. Figure 9 demonstrates the
spectrograms of the reconstructed drum signal and sax-
ophone signal using BGS-NMF-LSM. For the other five
mixed signals, the performance of reconstructed signals
in single-channel music source separation is shown at
http://chien.cm.nctu.edu.tw/bgs-nmf.

5 Conclusions

This paper has presented the Bayesian group sparse learn-
ing and applied it for single-channel nonnegative source
separation. The basis vectors in NMF were grouped into

two partitions. The first group was the common bases
which were used to explore the inter-segment repetitive
characteristics, while the second was the individual bases
which were applied to represent the intra-segment har-
monic information. The LSM distribution was introduced
to express sparse reconstruction weights for two groups
of basis vectors. Bayesian learning was incorporated into
group basis representation with model regularization. The
MCMC algorithm or the Metropolis-Hastings algorithm
was developed to conduct approximate inference of model
parameters and hyperparameters. Model parameters were
used to find the decomposed rhythmic signals and har-
monic signals. Hyperparameters were used to control the
sparsity of reconstructed weights and the generation of
basis parameters. In the experiments, we implemented the

drum signal

saxophone signal

mixed signal

time (sec)

Figure 7 Waveforms of music 5 containing a drum signal, a saxophone signal, and their mixed signal.
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Figure 8 Spectrograms of music 5 containing a drum signal, a saxophone signal, and their mixed signal.

proposed BGS-NMFs for underdetermined source sepa-
ration. The convergence condition of sampling procedure
for approximate inference was investigated. The perfor-
mance of BGS-NMF-LP and BGS-NMF-LSM was shown
to be robust to the different kinds of rhythmic and har-
monic sources and mixing conditions. BGS-NMF-LSM
outperformed the other NMFs in terms of SIRs. The
BGS-NMF controlled by LSM distribution performed bet-
ter than that controlled by Laplacian distribution. In the
future, the system performance of BGS-NMF may be fur-
ther improved by some other considerations. For example,
the numbers of common bases and individual bases could
be automatically selected according to Bayesian frame-
work by using marginal likelihood. The group sparse
learning could be extended for constructing hierarchi-
cal NMF where hierarchical grouping of basis vectors is

examined. The underdetermined separation under dif-
ferent number of sources and sensors could be tackled.
Also, the online learning could be involved to update
segment-based parameters and hyperparameters [33,34].
The evolutionary BGS-NMFs shall work for nonstation-
ary single-channel blind source separation. In addition,
more evaluations shall be conducted by using realistic data
with larger amount of mixed speech signals from different
application domains, such as meetings and call centers.

Appendix

Derivations for inference of BGS-NMF parameters and
hyperparameters

We address some derivations for model inference of
BGS-NMF parameters and hyperparameters. First, the

fi

Figure 9 Spectrograms of the demixed drum signal (upper) and the demixed saxophone signal (lower).
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exponent of the likelihood function p(XiT| [AEtH)] (Lj—1) »

(A9, iG+1:Dy) 5 S0, A(t) S(t) ~®) in (16) is expressed by

M j—1
1
230 D | Xie = QLA D Lin (S
i —
Dy
LA SOl = 3 LA i [Pk
m=j+1

Dy, 2

= > 1A Lim [sff)]mk}
m=1

(26)

which can be manipulated as a quadratic function
of parameter [A;]; and leads to (17). The con-

ditional posterior distribution p([A;]; |XiT, ®f£ , X:l )
is then derived by combining (17) and (11) and turns out

to be

i t
LA 2G4 — 5 Lo (AL + 1))

likel12
2[o4]

exp
o, +oo[ ([Arlij)
(27)

which is proportional to (18). In addition, when finding
the mode of (18), we take logarithm of (18) and solve a
corresponding quadratic equation of [ A,];; as

([Ar]l] Mi(::t)z

@
(a,) —DIn[A)j——————F— 1 =0
AL |7 T e
rij
post (t) post
S AL 15 Ay~ @ — DS P = 0.
(28)
By defining A = (n p‘)St)z + 4(a(t) )[op‘:;'t]z, the mode
is determined by
0 ifA <0

inst

Ran; = max{3 (MPOSt+\/_) 0}, else. (29)

On the other hand, following the model inference in
Section 3.3, we continue to describe the MCMC sampling
algorithm and the calculation of conditional posterior
distributions for the remaining BGS-NMF hyperparame-
ters {ctr, Brs 0th, Bhs Ars Ahs Vs 815 Vi O J-

4. Sampling of oyj. The hyperparameter a( g sampled

according to a conditional posterior dlstrlbution which is
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obtained by combining a likelihood function of [ A,];; and
an exponential prior density of a,; with parameter A
The resulting distribution is written by

O[r]"

1 Dr
Pplag LAY D], B19) oc [ ———exp{aby o} ) Tio oo (@)
T ()

(30)
where 257 = g + (1/Dy) Y7 In[AfTV]; -
(1 /Dr)kar].. This distribution does not belong to a known

family, so the Metropolis-Hastings algorithm is applied.
An instrumental distribution g(o;;) is obtained by fitting
the term within the brackets of (30) through a gamma
distribution as detailed in [15].

5. Sampling of B,;. The hyperparameter ﬁ( U s sam-
pled according to a conditional posterior dlstribution
which is obtained by combining a likelihood function of
[A:]; and a gamma prior density of B,; with parameters

{aﬂrj, ,3/3,]. }, ie.,

PByj LAY, 07 o (By Py
(31)

X exp

—B Z[AY*“L, G(Brjlag,, Bp,)-
=1

The resulting distribution is arranged as a new
gamma distribution g(,6,1|o(1’05t ’3?0“ post

) where ag =
rj
1+ D 4 ap ﬂp"“ = Z’ﬁ (A1 +8g,-

(t+1)

Bri and
Here, we do not describe the sampling of @, and

,B(HD since the conditional posterior dlstrlbuuons for

sampling these two hyperparameters are similar to those
for sampling of a(tH) and ,B(HI).

6. Sampling of Ay or Ap. For sampling of scaling
parameter )\xﬂ) , the conditional posterior distribution is
obtained by

M
0t v S o[ [ USE il i) p ol s 850
k=1

M
®
x ()\rj)MVri exp {—M)wj (85;) + Z[Sﬁ”l)]jk) } .
k=1

p()\rj|

(32)

7. Sampling of y,;. The sampling of LSM param-

eter yr§+) is performed by using the conditional

posterior distribution which is derived by combining a
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likelihood function of 1,; and an exponential prior den-
sity of y;; with parameter 1,, . The resulting distribution is
expressed as

1

+1 t t

p()’rjp\i]t' ): 551*)) o8 Tm)exp{x%s Vrj}H[0,+oo[(Vrj)x
(33)

where )»5:;“ = In 85;) + y%;llnkg-ﬂ) — Ay Again, we

need to find an instrumental distribution g(y,;) which
optimally fits the conditional posterior distribution
p(y,jMSH),Sg)). An approximate gamma distribution is
found accordingly. The Metropolis-Hastings algorithm is

then applied.

8. Sampling of §,;. The sampling of the other LSM
parameter 85;“) is performed by using the conditional
posterior distribution which is derived from a likelihood
function of 1,; and a gamma prior density of §,; with
parameters {0‘64: ﬁ(;rj}

(t+1)

1 1 ;
PG,y ) o (8,7

(t+1) (34)
exp{_‘srj)tr,‘ }g(5rj|a6rp lgérj)~

This distribution can be arranged as a new gamma
c e . ost ost ost t+1

distribution G (8rj|a§r/, ,ﬂ§’, ;) where Olf;’r}. = Dr)’;;‘ '+

= A£;+1) + Bs,;- Similarly, the conditional

posterior distributions for sampling y}fjﬁl) (SZH)

post
o, and 8 5

and

could be formulated by referring those for sampling yrg.tﬂ)

and (Sﬁfﬂ) , respectively.
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