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Abstract

This paper proposes a novel and robust voice activity detection (VAD) algorithm utilizing long-term spectral flatness
measure (LSFM) which is capable of working at 10 dB and lower signal-to-noise ratios(SNRs). This new LSFM-based
VAD improves speech detection robustness in various noisy environments by employing a low-variance spectrum
estimate and an adaptive threshold. The discriminative power of the new LSFM feature is shown by conducting an
analysis of the speech/non-speech LSFM distributions. The proposed algorithm was evaluated under 12 types of
noises (11 from NOISEX-92 and speech-shaped noise) and five types of SNR in core TIMIT test corpus. Comparisons
with three modern standardized algorithms (ETSI adaptive multi-rate (AMR) options AMR1 and AMR2 and ITU-T G.729)
demonstrate that our proposed LSFM-based VAD scheme achieved the best average accuracy rate. A long-term signal
variability (LTSV)-based VAD scheme is also compared with our proposed method. The results show that our
proposed algorithm outperforms the LTSV-based VAD scheme for most of the noises considered including difficult
noises like machine gun noise and speech babble noise.

1 Introduction
Voice activity detection (VAD) is amethod to discriminate
speech segments from input noisy speech. It is an integral
part to many speech and audio processing applications
and is widely used within the field of speech communica-
tion for achieving high coding efficiency and low bit rate
transmission. Examples include noise reduction for digi-
tal hearing aid devices [1],mobile communication services
[2], voice recognition systems [3], compression [4], and
speech coding [5].
A typical VAD system consists of two core parts: feature

extraction and speech/non-speech decision mechanism.
Researchers have proposed a variety of features exploit-
ing different properties of speech and noise to achieve
better VAD performance. In early VAD algorithms, short-
term energy [6] and zero-crossing rate [7] were widely
used features because of their simplicity. However, the
performance degrades easily when faced with low signal-
to-noise ratio (SNR) or non-stationary background noise.
To solve this problem, robust acoustic features such as
spectrum [8], autocorrelation [9], power in the band-
limited region [10], and higher-order statistics [11] have
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been proposed for VAD. Most of those methods assume
the background noise to be stationary during a certain
period; thus, they are sensitive to changes in SNR of the
observed signal. Some works [12,13] proposed noise esti-
mation and adaptation for improving VAD robustness,
but thosemethods are computationally expensive. Most of
those features mentioned work sufficiently well in station-
ary noise and higher than 10-dB SNR cases. When facing
with lower SNR cases or when the background noise con-
tains complex audible events appearing occasionally, such
as babble noise in a cafeteria and machinery noise in a
factory, there will be cases when most of the speech spec-
trum is corrupted, which destroys the overall statistical as
well as structural properties of the speech signal [14]. In
general, VAD algorithms based on a particular feature or
specific set of features are still far from efficient especially
when they are operating in adverse acoustic conditions.
Therefore, the VAD algorithm in low SNRs and some spe-
cific noises such as speech babble noise and machine gun
noise still remains challenging and requires the design of
further robust features and algorithms.
All VAD features mentioned are extracted from the

short-term analysis frames (usually 20 to 40 ms), and
decisions are made at each frame. In contrast with the
use of frame level features, Ramirez et al. [12] proposed
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the use of a long-term spectral divergence feature to dis-
criminate speech from noise. It requires average noise
spectrum magnitude information which is not accurately
available in practice. Moreover, Ghosh et al. [15] proposed
a long-term signal variability (LTSV)-based VAD which
uses a very long window to estimate the averaged spec-
trogram as well as for computing long-term entropies of
each frequency band. This LTSV-based VAD yields a great
improvement for SNRs smaller than 5 dB but becomes
saturated when SNRs are higher than 5 dB.
Spectral flatness is a measure of the width, uniformity,

and noisiness of the power spectrum. A high spectral flat-
ness indicates that the spectrum has a similar amount
of power in all spectral bands, and the graph of the
spectrum would appear relatively flat and smooth; this
would sound similar to white noise. A low spectral flat-
ness indicates that the spectral power is less uniform
in frequency structure, and this would typically sound
like speech. Therefore, the analysis over a long window
for exploiting the spectral flatness of the signal will be
beneficial for distinguishing speech from noise. In this
paper, we propose a novel VAD algorithm based on long-

term spectral flatness measure (LSFM). The discrimina-
tive power of the proposed LSFM feature will be veri-
fied by researching the distribution of LSFM measure for
speech and non-speech in terms of their misclassification
rate for various noises. We have experimentally evaluated
its performance under a variety of noise types and SNR
conditions.
The structure of the rest of this article is arranged as

follows. Section 2 discusses the LSFM feature and its
discriminative ability. Section 3 presents the proposed
LSFM-based VAD algorithm including the choice for
proper parameters and the design of an adaptive thresh-
old. Section 4 contains the speech and noise database and
metrics used in the evaluation. Section 5 provides the
experimental results. Finally, a conclusion of this work and
the discussion are given in Section 6.

2 Long-term spectral flatness measure and its
discriminative power

Speech is a highly non-stationary signal, while back-
ground noise can be considered to be stationary over
relatively long periods. The rationale behind the LSFM
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Figure 1 LSFMmeasure as a function of long-term window length (R) in additive white noise (SNR =−10 dB).
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feature is that the observed signal spectrum evinces
more structure when the signal of interests is present
compared to when it is absent. This increase in
the structure of the signal may be characterized by
a reduction in the flatness of the magnitude spec-
trum of the short-time Fourier representation of the
signal [16].

2.1 Long-term spectral flatness measure
The LSFM feature is computed using the spectra of the
last R frames of the input signal x(n). The LSFM fea-
ture, Lx(m), at the mth frame and across all the chosen
frequency is then calculated by dividing the geometric
mean of the power spectrum by the arithmetic mean of
the power spectrum. To expand the dynamic range, it is
measured on a logarithmic scale, ranging from zero to
minus infinity as:

Lx(m) =
∑
k

log10
GM(m,ωk)

AM(m,ωk)
, (1)

where the geometric mean GM(m,ωk) and arithmetic
mean AM(m,ωk) of the power spectrum is calculated as:

GM(m,ωk) = R

√√√√
m∏

n=m−R+1
S(n,ωk), (2)

AM(m,ωk) = 1
R

m∑
n=m−R+1

S(n,ωk). (3)

The short-time spectrum S(n,ωk) used in this research
is estimated using theWelch-Bartlett method which aver-
ages the spectral estimates of M consecutive frames. The
expressions are

S(n,ωk) = 1
M

n∑
p=n−M+1

|X(p,ωk)|2, (4)

X(p,ωk) =
Nw+(p−1)Nsh∑
l=(p−1)Nsh+1

w(l−(p−1)Nsh−1)x(l )e−jωk l,

(5)
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Figure 2 LSFMmeasure as a function of long-term window length (R) in additive white noise (SNR = −5 dB).
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where X(p,ωk) is the short-time Fourier transform coef-
ficient at frequency ωk of the pth frame. w(i) is the
short-time Hann window, where i ∈ [ 0,Nw). Nw is the
frame length and Nsh is the frame shift duration in terms
of samples.
According to AM-GM inequality, the geometric mean,

GM(m,ωk), is smaller than or equal to the arith-
metic mean, AM(m,ωk), with equality being achieved if
and only if all S(n,ωk) are the same. Therefore, from
Equation 1, we can conclude that the LSFM feature, Lx(m),
is in the range (−∞, 0] with the maximum value acquired
when the geometric mean is equal to the arithmetic mean.

2.2 The LSFM feature distributions of speech and
non-speech

In this subsection, the distributions of the LSFM feature
are investigated in order to clarify the motivation for uti-
lizing the proposed LSFM feature as a VAD algorithm and
demonstrate the discriminative power of this feature.
The test set consisting of 16 individual speakers (8 male,

8 female), each speaking 10 phonetically balanced English

sentences, is randomly chosen from the TIMIT training
corpus [17]. The LSFM feature values were computed
at every frame from noisy speech. The LSFM measure,
Lx(m), is considered to be LS+N(m) if there are speech
samples between (m − R + 1)th and mth frame. Other-
wise, it is decided to be LN(m). The overlap area of the
two distributions (LS+N and LN ) is considered to be the
error caused by misclassification. The lower the misclas-
sification rate is, the better the separation. The sampling
frequency of the test signal is 16 kHz, and the Hann win-
dow has a length of 20 ms and a 10-ms shift.M is fixed to
be 10, and {ωk} is uniformly distributed between the fre-
quency range 500 Hz to 4 kHz. The total misclassification
error among these realizations of LS+N and LN was com-
puted by comparing with the phonetic level transcription
[17] of the TIMIT training corpus.
First, the distributions of the LSFM feature as a func-

tion of the long-term window length (R = 2, 5, 10, 20,
30, and 40) for white noise at five SNR levels (−10, − 5,
0, 5, and 10 dB) were studied. The results are shown
in Figures 1, 2, 3, 4, and 5. The total misclassification
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Figure 3 LSFMmeasure as a function of long-term window length (R) in additive white noise (SNR = 0 dB).
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Figure 4 LSFMmeasure as a function of long-term window length (R) in additive white noise (SNR = 5 dB).

error (Error), accuracy rate (Correct), speech detection
error (SE), and non-speech detection error (NE) are dis-
played on the upper or lower right of each subfigure.
The total misclassification error was reduced by 61.4%
(−10 dB), 74.5% (−5 dB), 79.0% (0 dB), 84.3% (5 dB), and
82.9% (10 dB) when the window length R was increased
from 2 to 30 frames. The percentage is the ratio between
the reduced misclassification error (when R was changed
from 2 to 30 frames) and the misclassification error when
R was 2.
The distributions of the LSFM feature for all 12 kinds

of noises at 0-dB SNR were investigated. M is fixed to be
10, and R is chosen to be 30. The discriminative power of
this LSFM feature can be measured by the separateness
of its distribution for speech and non-speech. As shown
in Figures 6, 7, and 8, there is overlap between the his-
tograms of log10(LS+N ) and log10(LN ). We calculated the
total misclassification error which is the sum of the speech
detection error and non-speech detection error. From the
figures, we can conclude that for most noises considered

(9 out of 12 kinds of noises), the proposed LSFM fea-
ture resulted in a misclassification error smaller than 10%:
white (7.86%), pink (7.75%), tank (7.47%), military vehi-
cle (7.75%), jet cockpit (9.32%), HF channel (8.30%), F-16
cockpit (8.89%), car interior (8.14%), and speech shaped
(7.84%). For factory floor (25.86%), machine gun (45.42%),
and speech babble (24.08%), the misclassification errors
were comparatively high. The factory floor is that of
cutting noise, that of the machine gun is impulsive in
nature, and that of speech babble is speechlike. One pos-
sible reason for the poor performance is the mismatch of
M and R.

3 The proposed LSFM-based VAD algorithm
The proposed VAD algorithm assumes that the signal
spectrum is more organized during speech segments
than during noise segments [18]. It adopts the average
spectrum over a long-term window instead of instanta-
neous values of the spectrum. Typically, a periodogram is
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Figure 5 LSFMmeasure as a function of long-term window length (R) in additive white noise (SNR = 10 dB).

commonly employed for spectrum estimation, but it
is well known that the periodogram is an inconsistent
spectral estimator. According to [8], the Welch-Bartlett
method [19] was found to give a good trade-off between
variance reduction and spectral resolution reduction.
Therefore, in our proposed algorithm, the signal spectrum
is estimated using the Welch-Bartlett method.
A block diagram of the proposed LSFM-based VAD

algorithm is shown in Figure 9. The algorithm can be
described as follows. The input speech signal is decom-
posed into frames of 20 ms in length with an overlap
of 10 ms by the Hann window. The spectrum of the
segmented signal is estimated using the Welch-Bartlett
method. At the mth frame, the LSFM feature Lx(m) is
computed using the previous R frames. The initial deci-
sion about whether there contains speech in the last R
frames is made through the comparison with an adap-
tive threshold. The initial decision is denoted by VINL.
If there is a speech frame existing over the previous R
frames ending at the mth frame, VINL(m) = 1; otherwise,

VINL(m) = 0 and there are only non-speech frames over
the previous R frames. We adopt the voting scheme pro-
posed by Ghosh et al. [15] tomake the final VAD decisions
on a 10-ms interval. First, the initial decisions, VINL(m),
VINL(m+ 1), . . ., VINL(m+ R− 1), are collected for those
long windows which overlap with the target 10-ms inter-
val. Then, the target 10-ms interval is marked to be speech
if there is 80% or above of those initial decisions that
contain speech; otherwise, it is marked as non-speech.
The 80% was gotten empirically, which provided the max-
imum VAD accuracy for most noises tested over five
SNR levels.
In general, speech is a low-pass signal, and the fre-

quency range of 500 Hz to 4 kHz is crucial for speech
intelligibility [20]. Hence, for a better discrimination, the
start bin, ks, and the end frequency bin, ke, are calculated
by:

ks = NDFT(
500
fs

), (6)
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Figure 6 Histogram of the logarithmic LSFMmeasure for white, pink, tank, andmilitary vehicle noises (SNR = 0 dB). Upper left: white noise,
upper right: pink noise, lower left: tank noise, and lower right: military vehicle noise.

ke = NDFT(
4, 000
fs

), (7)

in which fs is the sampling frequency andNDFT is the order
of Discrete Fourier Transform (DFT) which is used to cal-
culate the spectral estimate of the observed signal. In our
experiment, fs = 16 kHz and NDFT = 512. The frequen-
cies, ωk , are uniformly distributed between 500 Hz and
4 kHz.
An illustrative example of the VAD output is shown in

Figure 10. A high spectral flatness indicates that the spec-
trum has a similar amount of power in all spectral bands,
which would sound similar to white noise, and the graph
of the spectrum would appear relatively flat and smooth.
A low spectral flatness indicates that the spectral power
is concentrated in a relatively small number of bands; this
means that the spectrum is more organized, and the graph
of the spectrum would appear ‘spiky’. Hence, the spectral
flatness measure is a good feature for VAD.

3.1 Selection ofM and R
M and R are parameters used for computing the LSFM
feature Lx. We want to choose the appropriate M and R
so that the separateness of the distribution for noise and
speech is maximized since the more it is separated, the
better the final VAD decision is. The total misclassifica-
tion errors (sum of speech detection error and non-speech
detection error) for all combinations ofM (1, 5, 10, 20, 30,
and 40) and R (5, 10, 20, 30, and 40) are computed over
12 types of noise for five SNR levels (−10, −5, 0, 5, and
10 dB). The test speech set is the same with the one we
used for the demonstration of the discriminative power of
the proposed LSFM feature in Section 2.2.
The total misclassification error as a function of

different combinations of M and R is shown in
Figures 11, 12, 13, and 14. The best combination of M
and R for each noise at each SNR level is written on the
upper or lower right of each subfigure. After the summed
up frequency of eachM and R that appeared in the subfig-
ures, we conclude that (10, 30) is the optimal combination
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Figure 7 Histogram of the logarithmic LSFMmeasure for jet cockpit, HF channel, F-16 cockpit, and factory floor noises (SNR = 0 dB).
Upper left: jet cockpit noise, upper right: HF channel noise, lower left: F-16 cockpit noise, and lower right: factory floor noise.

which appeared most frequently ( M = 10 appeared
25 times out of the 60 subfigures in total; R = 30 also
appeared 25 times out of 60 subfigures in total). This fixed
combination (10, 30) is then adopted for all the following
tests.
Furthermore, from Figures 11, 12, 13, and 14, we

observe that for the same R value, if M is increased from
1 to 10, the total misclassification error is decreased for
most cases tested. However, when M is larger than 10,
even if M is increased, the total misclassification error
stops decreasing any further. This observation verified the
choice of 10 to be the optimal value ofM.
It is also worth mentioning that for those noise types

and SNR levels whose optimal M and R combination is
not (10, 30), the fixed combination (10, 30) still works well.
Table 1 shows the points that the total misclassification
error of adopting the fixed combination (10, 30) is worse
(higher error value) than utilizing the best combination
of M and R for each noise type and SNR level shown in

the subfigures. Except for cutting factory floor noise and
impulsive machine gun noise, the differences are all less
than five points.
For machine gun noise, the optimal choice of R is 5 for

all SNR levels. Machine gun noise is an impulsive noise
which consists of two types of sounds, namely gunshot
and silence between gunshots [15]. When R is 30, the
long analysis window would include both types of sounds.
Therefore, the spectral power over these 30 frames will
be less uniform; the LSFM feature value will then be
small, and there will be more classification errors com-
pared to the case when R is 5. Similarly, for factory floor
noise, the optimal choice of M is 1 for all SNR levels.
Factory floor noise [21] was recorded near plate-cutting
and electrical welding equipment which shows a repeti-
tive pattern. According to [19], the variance of estimated
power spectrum will not be obviously reduced if the
overlapped frames are highly correlated with each other.
Therefore, averaging overM overlapped frames will cause
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Figure 8 Histogram of the logarithmic LSFMmeasure for car interior, machine gun, speech babble, and speech-shaped noises (SNR =
0 dB). Upper left: car interior noise, upper right: machine gun noise, lower left: speech babble noise, and lower right: speech-shaped noise.
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Figure 9 Block diagram of the proposed LSFM-based VAD
algorithm.

more misclassification errors compared to the case when
M is 1.

3.2 Adaptive threshold
UnlikeM and R, a fixed threshold would lose its efficiency
when facing varying acoustic environments. Therefore, it
is more suitable to design an adaptive threshold [22]. From
Equations 2 to 4, we can conclude that (R+M − 1) frame
(0.39 s for fixed R = 30 and M = 10) information is
needed to acquire the first LSFM feature value. In our
implementations, the initial 1.39 s of the test signal x(n) is
always assumed to be non-speech. From this 1.39 s of x(n),
100 realizations of LN can be collected and saved to ψINL.
The threshold is initialized to be

THRINL = min(ψINL). (8)

To update the threshold at the mth frame, we used two
buffers ψS + N and ψN . ψS + N stores the LSFMmeasures
of the last 100 long window ending at themth frame which
was decided as containing speech; similarly, ψN stores
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Figure 10 Illustrative example of the adaptive threshold and the VAD output, white noise, SNR = 0 dB. The upper figure shows the LSFM
value and the corresponding adaptive threshold for each frame. The lower figure shows the VAD output decisions and the ground truth, namely
‘Label’. The two sentences are as follows: (1) She had your dark suit in greasy wash water all year; (2) in wage negotiations, the industry bargains as a
unit with a single union.

the LSFM measures of the last 100 long window ending
at the mth frame which was decided as including non-
speech information only. The adaptive threshold for the
mth frame is then updated as:

THR(m) = λ×min(ψS+N ) + (1− λ) ×max(ψN ), (9)

where λ is the parameter of the convex combination. We
experimentally found that λ = 0.55 results in the max-
imum accuracy rate in VAD decisions over the TIMIT
training set.

4 Evaluation setup
The proposed VAD algorithm was trained and tested
using a speech database that is phonetically balanced. The
system was evaluated using the error rate and accuracy
rate metrics.

4.1 Database description
For the evaluation of VAD algorithms, TIMIT corpus is
preferred since it provides manual transcription down
to word and phoneme levels. The reference labels are
computed using the start and end times of the utter-
ance obtained from the TIMIT transcription (.phn files).
Some experiments are carried out on the core TIMIT
test set consisting of 24 individual speakers (16 males, 8
females) of eight different dialects, each speaking 10 pho-
netically balanced English sentences. The utterances of
TIMIT corpus are short (about 3.5 s), and around 90% of
which are speech; this may introduce a bias when com-
paring the distributions of speech and non-speech. To
reduce this effect and make it closer to real-world sce-
narios, 2-s silence was added before and after each utter-
ance to simulate a typical telephone conversation [8,15,23]
in which the ratio of speech to non-speech is almost
40% to 60%.
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Figure 11 Total misclassification error as a function ofM and R combination for white, pink, and tank noises. Upper row: white noise,
middle row: pink noise, and lower row: tank noise. SNR= −10,−5, 0, 5, and 10 dB.

The noise of 11 categories taken from the NOISEX-92
database [21] and speech-shaped noise are added at five
different SNR levels (−10, −5, 0, 5, and 10 dB) to the sig-
nal concatenated by all 240 sentences. The noise samples
from the NOISEX-92 database are resampled to 16 kHZ
according to the experiment requirement. Among the 12
kinds of noises, white noise and pink noise are stationary
noises while others are all non-stationary noises, namely
tank, military vehicle, jet cockpit, HF channel, F-16 cock-
pit, factory floor, car interior, machine gun, speech babble,
and speech-shaped noises. The test set for each noise and
SNR thus consisted of 28.10 min of noisy speech of which
62.51% was only noise.

4.2 Performance evaluation
Performance of a VAD algorithm can be evaluated both
subjectively and objectively. In general, subjective evalu-
ation is done through a listening test, and VAD decision
errors are detected based on human perception [24]. On
the other hand, objective evaluation relies on a mathemat-
ical criterion for judging. However, subjective listening

tests like ABC [24] fail to consider the effect of the false
alarm which is inappropriate for a thorough evaluation of
a VAD algorithm [8]. Therefore, the objective evaluation
scheme proposed by Freeman et al. [2] was adopted to
evaluate the performance of the proposedVAD algorithm.

4.2.1 Error rate
The four traditional parameters that describe the error
rate are as follows:

• Front-end clipping (FEC). Clipping introduced in
passing from noise to speech activity.

• Mid-speech clipping (MSC). Clipping due to speech
misclassified as noise in an utterance.

• Noise detected as speech (NDS). Noise detected as
speech within a silence period.

• Carry over (OVER). Noise interpreted as speech due
to the VAD flag remaining active in passing from
speech activity to noise.

These four parameters are illustrated in Figure 15.
Among them, FEC and MSC are indicators of true
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Figure 12 Total misclassification error as a function ofM and R combination for military, jet cockpit, and HF channel noises. Upper row:
military noise, middle row: jet cockpit noise, and lower row: HF channel noise. SNR= −10,−5, 0, 5, and 10 dB.

rejection, while NDS and OVER are indicators of false
acceptance. Thus, in order to obtain the best over-
all system performance, all four parameters should be
minimized.

4.2.2 Accuracy rate
Although the method described above provides useful
objective information concerning the performance of a
VAD algorithm, it only gives the error rate of the system.
Parameters which describe the accuracy rate are needed
for a thorough analysis of the detection results. Three
parameters concerning the accuracy rate are described as
follows:

• CORRECT. They are correct decisions made by VAD
algorithm.

• Speech hit rate (HR1). Speech frames that are
correctly detected among all speech frames.

• Non-speech hit rate (HR0). Non-speech frames that
are correctly detected among all non-speech frames.

Among the three parameters, HR1 and HR0 define
the fraction of all actual speech frames or non-speech
frames that are correctly detected as speech frames or

non-speech frames, respectively [12]. The speech hit rate
and non-speech hit rate are calculated as follows:

HR1 = N1,1

Nref
1

HR0 = N0,0

Nref
0

, (10)

where Nref
1 and Nref

0 are the numbers of real speech and
non-speech frames in the whole database, respectively,
while N1,1 and N0,0 are the numbers of speech and non-
speech frames correctly classified. The overall accuracy
rate (CORRECT) is then defined as:

CORRECT = N1,1 + N0,0

Nref
1 + Nref

0
. (11)

All three parameters should be maximized to get the
best performance.

5 Simulation results
In order to gain a comparative analysis of the proposed
LSFM-based VAD performance, three modern standard-
ized VAD schemes and one recent long-term algorithm,
namely ETSI adaptive multi-rate (AMR) VAD options 1
and 2 (AMR1 and AMR2) [25], the G.729B VAD [26], and
LTSV, were also evaluated. The implementations of these
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Figure 13 Total misclassification error as a function ofM and R combination for F-16 cockpit, factory floor, and car interior noises. Upper
row: F-16 cockpit noise, middle row: factory floor noise, and lower row: car interior noise. SNR=−10, −5, 0, 5, and 10 dB.

three schemes were taken from the authors’ C implemen-
tations [27,28], respectively.
One important aspect of the comparison is the different

frame lengths used. The proposed schemes, the G.729B
VAD and LTSV-based VAD, produce a decision every
10 ms, while the AMR VADs need 20 ms. In order to
be comparable, the frame-wise VAD decisions produced
by the AMR VADs were compared to a set of reference
labels generated every 20 ms from the TIMIT phonetic
level transcription.Meanwhile, the proposed schemes, the
G.729B VAD and LTSV-based VAD, were compared to
a set of reference labels generated every 10 ms from the
TIMIT phonetic level transcription. The TIMIT utter-
ances were down-sampled to 8 kHz for the software
implementations of the G.729B VAD and AMR VADs.
The final VAD decisions were made, and the accuracy rate
and error rate were computed for 12 noises and five SNRs.

5.1 Performance average over all twelve kinds of noises
In Figure 16, the proposed LSFM-based VAD is com-
pared with three standards and LTSV-based VAD in terms
of accuracy rate and error rate for SNR levels ranging
from −10 to 10 dB. Note that the results in Figure 16

are averaged values for all 12 noises. The first row of
the figure shows the accuracy rates which include COR-
RECT, HR1, and HR0. The behavior of the different VADs
is analyzed. G.729B suffers poor CORRECT(62.74% at
−10 dB) and HR1 (33.62% at −10 dB) with the increas-
ing noise level, while it keeps a steady and relatively high
HR0 for the whole range of SNRs (80.33% on average).
AMR1 performs much better than G.729B for both COR-
RECT and HR1 while suffering degradation of HR0 when
the SNR level is increased. AMR2 improves considerably
over AMR1 in CORRECTmainly because of the highHR0
over all SNRs (88.96% on average) while yielding similar
HR1withAMR1. LTSV performs verywell under low SNR
conditions (80.73% CORRECT at −10 dB) but becomes
saturated (around 91% since 5 dB) at higher SNRs. Our
proposed LSFM-based VAD yields the best CORRECT
for all SNRs and shows a steady improvement with the
increased SNR.
Similarly, the second row of Figure 16 shows the error

rates which include FEC, MSC, OVER, and NDS. G.729B
performs the worst on average in terms of true rejection
rate (FEC and MSC). However, the OVER of G.729B
is the lowest among the five VADs tested. AMR1 and
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Figure 14 Total misclassification error as a function ofM and R combination for machine gun, speech babble, and speech-shaped noises.
Upper row: machine gun noise, middle row: speech babble noise, and lower row: speech-shaped noise. SNR= −10,−5, 0, 5, and 10 dB.

Table 1 Total misclassificationerror difference between
adopting the fixed combination (10, 30) and utilizing the
best (M, R) combination

Noise type −10 dB −5 dB 0 dB 5 dB 10 dB

White 2.85 0.69 0 0 0.87

Pink 4.49 0.64 0 0 1.19

Tank 2.32 0 1.59 2.20 2.17

Military vehicle 2.36 2.59 2.62 2.82 3.31

Jet cockpit 0 0 0 0 1.36

HF channel 1.15 0 0.57 1.02 2.27

F-16 cockpit 0 0 0.10 1.94 2.30

Factory floor 6.04 7.35 7.59 7.04 6.25

Car interior 2.33 2.82 3.16 2.33 2.21

Machine gun 12.45 11.33 9.83 8.74 7.56

Speech babble 2.11 0 2.068 0 0

Speech shaped 3.80 0 0 0 1.84

The numbers are the points that worse (higher error value) than utilizing the best
(M, R) combination for each noise type and SNR level shown in the subfigures.

AMR2 yield similar true rejection rates for all tested
SNRs, while AMR2 gives smaller false acceptance rate
(NDS and OVER) especially for NDS (around four points
less than AMR1 for all SNRs). LTSV leads to the lowest
true rejection rate, while LSFM achieved the best per-
formance in terms of NDS. The proposed LSFM-based
VAD acquires a comparatively higher FEC in low SNRs
(smaller than −5 dB) because of the averaging property of
this algorithm shown in Equations 2, 3, and 4.

Activity

Inactivity

VAD
Decision

FEC MSC OVER NDS

Figure 15 Objective parameters for performance evaluation.
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Figure 16 Accuracy and error rate comparisons for five VAD schemes averaged over 12 noises for five SNRs. Accuracy rate: CORRECT, HR1,
and HR0; error rate: FEC, MSC, OVER, and NDS. Five VAD schemes: AMR1, AMR2, G.729B, LTSV, and LSFM. Five SNRs (−10,−5, 0, 5, and 10 dB).

Table 2 summarizes the results provided by LSFM-
based VAD over the different VAD methods being evalu-
ated by comparing them in terms of the average accuracy
rate and error rate for all 12 noises over five SNR lev-
els ranging from −10 to 10 dB. LSFM achieves the best
CORRECT (88.95%) and HR0 (91.00%), while LTSV yields
the best HR1 (88.04%).

5.2 Performance average over five SNRs
Figure 17 shows the three different accuracy rate eval-
uation metrics averaged over five SNRs for 12 kinds of

Table 2 Average performance comparison for all 12 noises
over five SNR levels ranging from−10 to 10 dB

VAD AMR1 AMR2 G.729B LTSV LSFM

CORRECT 81.00 86.07 70.87 88.08 88.95

HR1 78.96 81.25 55.16 88.04 85.53

HR0 82.22 88.96 80.33 88.10 91.00

FEC 1.46 1.09 2.28 0.41 0.49

MSC 6.42 5.94 14.56 4.07 4.93

OVER 2.53 2.15 1.06 2.46 1.39

NDS 8.59 4.75 11.24 4.98 4.24

noises computed for AMR1, AMR2, G.729B, LTSV, and
LSFM-based VAD algorithms. From Figure 17, it is clear
that in terms of CORRECT, LTSV is the best among all
four reference VAD algorithms considered here. Hence,
the proposed LSFM-based VAD is compared with the
LTSV-based VAD.We observe that on average, the LSFM-
based VAD is better than the LTSV-based VAD in terms
of CORRECT for tank (0.52%), military vehicle (1.40%),
F-16 cockpit (0.34%), car interior (2.12%), machine gun
(1.88%), and speech babble (7.63%) noises, and it is worse
for white (1.10%), pink (0.79%), jet cockpit (0.64%), HF
channel (0.15%), factory floor (0.15%), and speech-shaped
(0.58%) noises. The number in the bracket indicates the
absolute CORRECT by which the proposed LSFM-based
VAD is better or worse than the LTSV-based VAD. The
mean CORRECT over all 12 noise types of our proposed
LSFM-based VAD is 0.87% higher than that of the LTSV-
based VAD. Furthermore, the proposed LSFM-basedVAD
outperforms LTSV-based VAD in terms of HR0 over most
noises (11 out of 12) that were considered.
Figure 18 shows the four different error rate evaluation

metrics (FEC, MSC, OVER, and NDS), averaged over five
SNRs for 12 kinds of noises, computed for AMR1, AMR2,
G.729B, LTSV, and LSFM algorithms. From Figure 18, it
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Figure 17 Accuracy rate comparisons for five VAD schemes averaged over five SNRs for 12 kinds of noises. Accuracy rate: CORRECT, HR1,
and HR0. Five VAD schemes: AMR1, AMR2, G.729B, LTSV, and LSFM.

is clear that the performance of LSFM-based VAD out-
performs the LTSV-based VAD in terms of OVER (all 12
noises) and NDS (9 out of 12). For example, The pro-
posed LSFM-based VAD has a smaller NDS score for tank
(0.26%), military vehicle (0.10%), jet cockpit (0.35%), HF

channel(0.44%), F16 cockpit (0.80%), factory floor (0.42%),
car interior (0.31%), machine gun (2.15%), and babble
(5.83%) noises. The number in the bracket indicates the
absolute NDS by which the proposed LSFM-based VAD
is smaller than the LTSV-based VAD. Moreover, values of

Figure 18 Error rate comparison of five VAD schemes averaged over five SNRs for 12 kinds of noises. Error rate: FEC, MSC, OVER, and NDS.
Five VAD schemes: AMR1, AMR2, G.729B, LTSV, and LSFM.
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standard deviation of our proposed LSFM-based VAD in
terms of MSC, OVER, and NDS are all smaller than that
of the LTSV-based VAD.
Thus, in consideration of both accuracy rate and error

rate, the proposed VAD algorithm achieved the best com-
promise when compared with the four representative
VADs analyzed.

6 Conclusions
The main contribution of this article was the introduction
of an efficient long-term spectral flatness measure-based
VAD algorithm. Themotivation of exploring flatness mea-
sure along time frames using a long window was clarified
by the LSFM feature distributions as a function of the
long-term window length R. The discriminative power of
the LSFM feature was verified in terms of the separateness
of its distribution for noisy speech and non-speech sig-
nals. The decision threshold was adapted according to the
previous 100 LSFM measures of speech and non-speech.
Experiments were done on core TIMIT test set for 12
kinds of noises (11 fromNOISEX-92 database and speech-
shaped noise) across five different SNRs ranging from−10
to 10 dB. No a priori knowledge of noise characteristics
was needed for training purposes. The performance of
our proposed method was compared with the three stan-
dards (namely G.729B, AMR1, and AMR2) and with an
emerging LTSV-based VAD algorithm. The results were
analyzed by accuracy rate and error rate. Through exten-
sive experiments, we showed that our proposed LSFM-
based VAD achieved the best CORRECT, HR0, and NDS
and among all tested schemes that averaged all 12 kinds of
noises. Furthermore, we investigated the individual per-
formance on each noise type. Our proposed LSFM-based
VAD outperformed LTSV-based VAD for 6 out of 12
noise types tested especially for non-stationary impulsive
machine gun noise and speechlike babble noise.
The test database used in the implementations was cre-

ated to simulate typical conversational speech by inserting
2-s silence before and after each utterance from core
TIMIT test corpus so that the ratio of speech to non-
speech was almost 40% to 60%. While this simulates a
conversational speech statistically, this is not very real-
istic in terms of randomness of pauses, hesitations, etc.
Furthermore, depending on the choice of the long-term
window length (R and M combination), the LSFM-based
VAD application is expected to suffer a delay equal to
the duration of the window (R + M − 1 frames). There-
fore, a trade-off between the delay and robustness of
VAD should be carefully considered before utilizing the
proposed LSFM-based VAD algorithm.
Moreover, it is worth mentioning that there is a trade-

off between HR1 and HR0. The increase of one may lead
to a decrease of the other. Therefore, it should be noted
that according to different applications, different (R, M)

combinations and thresholds for voting scheme can be
chosen to meet the variant requirement for HR1 and
HR0. For example, HR1 is a crucial factor for speech cod-
ing, while high HR0 rate is necessary for most speech
recognition-oriented systems.
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