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Abstract

The framework of voice conversion system is expected to emphasize both the static and dynamic characteristics of
the speech signal. The conventional approaches like Mel frequency cepstrum coefficients and linear predictive
coefficients focus on spectral features limited to lower frequency bands. This paper presents a novel wavelet packet
filter bank approach to identify non-uniformly distributed dynamic characteristics of the speaker. Contribution of this
paper is threefold. First, in the feature extraction stage, dyadic wavelet packet tree structure is optimized to involve
less computation while preserving the speaker-specific features. Second, in the feature representation step,
magnitude and phase attributes are treated separately to rule out on the fact that raw time-frequency traits are highly
correlated but carry intelligent speech information. Finally, the RBF mapping function is established to transform the
speaker-specific features from the source to the target speakers. The results obtained by the proposed filter
bank-based voice conversion system are compared to the baseline multiscale voice morphing results by using
subjective and objective measures. Evaluation results reveal that the proposed method outperforms by incorporating
the speaker-specific dynamic characteristics and phase information of the speech signal.

Keywords: Admissible wavelet packet; Dynamic time warping; Radial basis function; Speaker-specific features;
Wavelet-based filter bank

1 Introduction
The voice conversion (VC) system aims to apply various
modifications to the source speaker’s voice so that the
converted signal sounds like a particular target speaker’s
voice [1,2]. The VC system is comprised of two phases:
training and transformation. The training phase includes
feature extraction and incorporates features to formu-
late an appropriate mapping function. Subsequently, the
source speaker characteristics are transformed to that of
target speaker using mapping function developed in the
training phase [3]. In order to extract the speaker-specific
features, several speech feature representations have been
developed in the literature, such as Formant Frequen-
cies (FF) [1,4], Linear Predictive Coefficients (LPC) [1,5]
and Line Spectral Frequency (LSF) [6-8], Mel Frequency
Cepstrum Coefficient (MFCC) [9], Mel Generated Cep-
strum (MGC) [10], and spectral lines [11]. The LPC
features can provide a good approximation model for
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the vocal tract characteristics, but it neglects few sig-
nificant details of the individual speaker, like the nasal
cavity, unvoiced sound, and other side branches related
to non-linguistic information [12]. For the enhancement
of the speech quality, a STRAIGHT approach has been
proposed [13]. However, it needs enormous computation
and therefore is inappropriate for real-time applications.
The methods based on the vocal tract model have been
developed using MFCC features considering the nonlin-
ear mechanism of the human auditory system [14]. Most
of the above approaches provide a good approximation to
the source-filter model. However, these methods ignore
fine temporal details during the extraction of formant
coefficients and the excitation signal [12,15]. This gives
muffled effect in synthesized target speech.
Further improvements in the synthesized speech qual-

ity have been reported in various multiscale approaches
[16-18]. To our knowledge, initially, the wavelet-based
sub-band model proposed by Turk and Arslan produced
promising results [16]. Following the ideas of sub-band-
based approach, the multiscale approach has been pro-
posed for voice morphing [17]. Afterwards, the auditory
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sub-band-based wavelet neural network architecture has
been proposed [18], which is widely application for speech
classification [12]. However, VC needs to model the
speech and speaker-specific characteristics of the speech
for developing transformation model [4,19]. The fea-
tures representing speaker identity are distributed non-
uniformly in different frequency regions.
This paper presents the wavelet filter structure for

extracting the speaker-specific features without consider-
ing any underlying knowledge of the human auditory sys-
tem. This filter bank is analysed using admissible wavelet
transform as it gives freedom to decompose the low- and
high-frequency bands. The contribution of this paper are
as follows: (1) the first is the use of the admissible wavelet
packet transform based filter bank to extract the speaker-
specific information of the speech signal, (2) the second
is to reduce the computational complexity of the pro-
posed features using Discrete Cosine Transform (DCT),
(3) the third is to incorporate phase of the DCT coeffi-
cients to emphasize that phase equally contributes to the
synthesized speech signal naturality as the magnitude.
Radial Basis Function is explored to establish the non-

linear mapping rules for modifying the source speaker
features to that of the target speaker. The RBF model
is used as a mapping model because of its fast train-
ing procedure and good generalization properties. Finally,
the performance of the proposed filter bank-based VC
model is compared with the state-of-the-art multiscale
voicemorphing using RBF analysis. This is done using var-
ious objectivemeasures, such as performance index (PLSF)
[1], formant deviation [7,20], and spectral distortion [20].
The commonly used subjective measures such as Mean
Opinion Score (MOS) and ABX are used to verify the
quality and similarity of the converted speech signal [21].
The rest of the paper is structured as follows: The opti-

mal filter bank is explained in Section 2. The new VC
system based on optimal filter bank along with the state of
the art multiscale method is explained in Section 3. There-
after, Section 4 briefs the theoretical aspects of RBF-based
transformation model. The database and performance
measures for comparison of quality and similarity of the
synthesized speech are mentioned in Section 5. Finally,
the conclusions are derived in Section 6.

2 Optimal filter bank
The voice individuality caused by different articulatory
speech organs is distributed non-uniformly in some
invariant parts of the vocal tract, such as the nasal cavity,
piriform fossa, and laryngeal tube [12]. The information
of the glottis is encoded in the low-frequency region from
100 to 400 Hz, and the piriform fossa is positioned in
the medium frequency band from 4 to 5 kHz. The infor-
mation of consonant factor exists in a higher frequency
region, i.e., 7 to 8 kHz [12,14]. The first three formants are

encoded in the lower and middle frequency regions from
200 Hz to 3 kHz.
The VC system needs to realize the transformation

model considering the speaker-specific features [22]. The
traditional auditory filter bank is not suitable to cap-
ture the speaker individuality of the speech signal [12,23].
Therefore, the frequency resolution in different bands is
restructured considering the non-uniform distribution of
the speaker-specific information in these bands. Addi-
tional details about wavelet analysis can be found in
[17,18,24].
For the design of filter bank, the ARCTIC database is

used. The input speech signal sampled at 16 kHz is pre-
processed in various stages, such as pre-emphasis, fram-
ing, and windowing. The 8-kHz bandwidth speech frame
is decomposed up to four levels by wavelet packet decom-
position. This partitions the frequency axis into 16 bands
each of 500-Hz band width. The different frequency bands
with the speaker-specific features are further decomposed
to get finer resolution than the Mel filter bank [24,25].
The lower frequency range 0 to 1 kHz captures the funda-
mental frequency which has maximum energy with most
speaker-specific information. Therefore, the lower two
bands 0 to 0.5 kHz and 0.5 to 1 kHz is decomposed up
to the seventh level. It splits the band of 0 to 1 kHz into
16 sub-bands 62.5 Hz each, which is finer than corre-
sponding bandwidth of Mel filter bank [24]. In addition,
the frequency band of 1 to 3 kHz contains the speaker-
specific information about the first and second harmonics
of the fundamental frequency [23]. This frequency band
carries less speaker-specific information compared to pre-
vious lower sub-bands. Therefore, the band of 1 to 2 kHz
is decomposed up to six levels and 2- to 3-kHz band is
decomposed up to five levels. This gives 12 sub-bands
with finer frequency resolution than the Mel sub-bands.
The frequency band of 4 to 5 kHz related to the invari-
ant part of the vocal tract gives information about the
piriform fossa. It holds features suitable for speaker iden-
tity. However, the resolution of this frequency range is
coarser in Mel filter bank [12]. Therefore, this band is fur-
ther decomposed up to fifth level. The frequency bands 3
to 4 kHz and 5 to 8 kHz do not require further decom-
position as these bands already have a fine frequency res-
olution than the corresponding bands of Mel filter bank.
The significant band decomposition is continued till the
substantial energy of the corresponding bands is achieved.
The selection of the wavelet basis is done using root-

mean-square error (RMSE) measure [17,18]. In reference
with the above discussion, the experiments are carried
out. The final filter structure shown in Figure 1 gives best
results. It consists of 40 different sub-bands. The quality
and naturalness in the VC system may be improved by
capturing speaker-specific features in the high-frequency
region.
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Figure 1 Proposed filter bank realized using admissible wavelet packet decomposition.

3 Voice conversion framework
In this section, the design of a new VC algorithm using
the proposed filter bank is explained. In order to com-
pare the performance of the proposed VC system with the
state-of-the-art multiscale-based voice morphing using
RBF analysis [17] is considered.

3.1 Proposed filter bank-based VC
The proposed VC system depicted in Figure 2, consists
of two phases: training and transformation. During the
training phase, the normalized utterances of the source
speaker are segmented into frames of 32 ms each frame
consisting of 480 samples. Thereafter, the proposed fil-
ter bank is applied to each of these frames. Then, log and
DCT transformation of the filter coefficients is carried
out to reduce the computational complexity. The feature
vector is formed considering the phase along with the
magnitude of DCT coefficients [26]. The similar set of
procedures is used to obtain the feature vectors from the
target speaker. However, it is unlikely that synchronized

feature vectors would be obtained even if the source and
target speaker utter the same sentence. Therefore, feature
vectors of source speaker are time aligned with that of
the target speaker to train the mapping model. The align-
ment is carried out using dynamic timewarping technique
[9]. The aligned magnitude and phase feature vectors of
source and target speakers are used to train the separate
RBF-based transformation model to establish conversion
rules.
In the transformation stage, the test utterances of

source speaker are pre-processed in the similar way as
the training stage to get the separate feature vectors
for magnitude and phase information of filtered coeffi-
cients. Then, the transformed coefficients are obtained by
projecting coefficients through the separate trained mod-
els. Afterwards, inverse mathematical operations such as
Inverse Discrete Cosine Transform (IDCT) and antilog are
applied to the transformed coefficients analogous to oper-
ations performed in the training phase. The time domain
speech frames are computed in the inverse filtering stage

Figure 2 Block diagram of filter bank-based VC with detailed (a) training and (b) testing mode.
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and combined using overlap-add technique. The use of
post filtering followed by inverse operations ensures the
good quality of the converted speech signal.

3.2 Baselinemultiscale voicemorphing using RBF analysis
As discussed earlier, the performance of the proposed
algorithm is compared with a state of the art multiscale
voice morphing [17]. The pre-processing operations of
this method are similar to proposed voice conversion
method. The dyadic wavelet filter bank applied to the
source and target speech frames partitions each of the
frames into different frequency bands.Wavelet basis func-
tions, coiflet5, and bi-orthogonal6.8 are chosen for male-
to-female and female-to-male conversion, respectively.
The wavelet basis with minimum reconstruction error is
chosen. It is important to note that the wavelet coefficients
at the highest sub-band are set to zero in this filter bank.
The networks are trained using frames of normalized
wavelet coefficients of the remaining four levels. The net-
work with minimum error on the validation data is chosen
for each level and mapping function at that correspond-
ing level is established [17]. The transformation phase
employs the RBF-based mapping rules developed in the
training stage to obtain the morphed features of the tar-
get speaker [27]. Then, inverse mathematical operations
analogous to the training stage are used to reconstruct the
target speaker’s speech signal.

4 Radial basis function-basedmapping
Radial basis function-based transformation model is
explored to capture the nonlinear dynamics of the acous-
tical cues between source and desired target speakers.
The baseline method performs spectral conversion using
RBF-based transformation model and a similar approach
is used in this paper for transforming speaker-specific fea-
tures [17,28]. The RBF neural network is a special case of
feed forward network which maps input space nonlinearly
to hidden space followed by linear mapping from hid-
den space to output space. The network represents a map
from M0 dimensional input space to N0 dimensional out-
put space written as, S : RM

0 → RN
0 . The training dataset

includes input output pairs [xk , dk]; k = 1, 2 . . .M0. When
the M0 dimensional input x is applied to the RBF model,
the mapping function F is computed as [27]

Fk(x) =
m∑
j=1

wjk�(||x − dj||), (1)

where ||.|| is a norm usually Euclidean, computes the dis-
tance between applied input x and training data point dj.
The above equation can also be written in matrix form as

F(x) = W�, (2)

where �(||x − dj||), j = 1, 2 . . .m is the set of m arbi-
trary functions known as Radial Basis Functions. The σ

is the spread factor of the basis function. The commonly
considered form of � is Gaussian function defined as,

�(x) = e
||x−μ||2
2σ2 . (3)

The radial basis function network model learning pro-
cess includes training and generalization phase. Training
of the network is carried out using the input dataset alone.
The optimized basis function is used in the training phase
which is usually obtained using k-means algorithm in an
unsupervised manner. In the second phase, the weights in
the hidden to output layer are optimized in a least square
sense by minimizing squared error function,

E = 1
2

∑
m

∑
k
[ fk(xn) − (dk)n]2 , (4)

where (dk)n is desired value for kth output unit when
input to the network is xn. The weight vector is deter-
mined as

W = �TD, (5)

where �: matrix of size (n × j), D: matrix of size (n × k),
�T : transpose of matrix �,

�T�)W = �TD (6)
W = (�T�)−1�TD, (7)

where (�T�)−1�T denotes the pseudo inverse of matrix
� and D denotes the target matrix for dnk . The weight
matrixW can be calculated by linear inverse matrix tech-
nique and used for mapping between the source and
target feature vectors. The exact interpolation of RBF
is acquainted with two serious problems namely, poor
performance for noisy data and increased computational
complexity [28]. These problems can be addressed by
modifying two RBF parameters. First, one is the spread
factor calculated as

σj = 2 × avg||x − μj||. (8)

The optimized spread factor confirms that the indi-
vidual RBFs are neither wide nor narrow. The second is
bias unit. A bias unit is introduced into the linear sum
of activations at the desired output layer to compensate
difference between the mean over the data set of the
basis function activations and the corresponding mean of
the targets. Hence, we obtain the RBF network with the
mapping function Fk(x) computed as

Fk(x) =
m∑
j
wjk�(||x − dj||). (9)



Nirmal et al. EURASIP Journal on Audio, Speech, andMusic Processing 2013, 2013:28 Page 5 of 10
http://asmp.eurasipjournals.com/content/2013/1/28

Table 1 Performance index of proposedmethod and baselinemethod for different synthesized speech samples

Type of conversion Performance index

Converted sample 1 Converted sample 2 Converted sample 3 Converted sample 4

Proposed Baseline Proposed Baseline Proposed Baseline Proposed Baseline

M1-F1 0.5286 0.4070 0.5372 0.4371 0.5983 0.5547 0.5211 0.5118

F1-M2 0.4486 0.3341 0.4682 0.4582 0.996 0.4764 0.3906 0.3104

F1-F2 0.4249 0.4508 0.4337 0.4408 0.4435 0.4492 0.4348 0.2892

M1-M2 0.5452 0.5003 0.6264 0.5735 0.6924 0.6867 0.5658 0.5480

The separate conversion models are used for mapping
the magnitude and phase feature vectors of the source
speaker to that of the target speaker. The optimum net-
works obtained through the training are used to predict
the transformed parameters of the target speaker from the
source speaker.

5 Experimental results
The training set includes phonetically balanced English
utterances of seven professional narrators. The utter-
ances in this database are sampled at 16 kHz. The cor-
pus includes sentences of JMK (Canadian male), BDL
(American male), AWB (Scottish male), RMS (American
male), KSP (Indian male), CLB (American female), and
SLT (American female) [29].
The utterances of two male speakers, AWB (M1) and

BDL (M2), and two female speakers, CLB (F1) and SLT
(F2), are employed in the analysis. The transformation
models are developed for four different speaker combina-
tions: M1-F1, F2-M2, F1-F2, and M1-M2. The minimum
40 parallel utterances are required to form a VCmodel [9].
Our training set includes 50 parallel utterances obtained
from each of the speaker pairs and a separate set of 25
utterances of each source speaker are used to evaluate the
system. In order to evaluate the VC system the objective
measures, such as performance index, spectral distor-
tion and formant deviations are considered. The end user

of the VC system is human so the objective evaluations
are confirmed with subjective evaluations. The subjective
evaluations involve rating the system performance in
terms of similarity and quality of the converted and target
speech. Usually, ABX andMOS tests are employed to eval-
uate similarity and quality, respectively. The performance
index (PLSF) is computed for investigating the require-
ment of normalized error for different pairs. The spectral
distortion between desired and transformed utterances,
DLSF(d(n), d̂(n)) and the inter speaker spectral distortion,
DLSF(d(n), s(n)) are used for computing the PLSF measure.
In general, the speaker spectral distortion between signals
u and v, DLSF(u, v) is defined as

DLSF(u, v) = 1
N

N∑
i=1

√√√√ 1
P

P∑
j=1

(LSFi,ju − LSFi,jv )2, (10)

where N represents the number of frames, P refers to a
LSF order, and LSFi,ju is the jth LSF component in the frame
i. The performance index is given by

PLSF = 1 − DLSF(d(n), d̂(n))

DLSF(d(n), s(n))
. (11)

The performance index PLSF = 1 indicates that the
converted signal is identical to the desired one, whereas

Table 2 Performance of baselinemethod for predicting formant frequencies within a specified percentage of deviation

Transformation model Formant frequencies % Predicted frame within deviation

2% 10% 15% 20% 25% 50% μRMSE γ(x, y)

M1-F1 f1 56 82 87 88 89 92 4.36 0.74

f2 40 77 79 83 85 90 3.63 0.78

f3 22 61 66 70 73 89 3.25 0.71

f4 7 23 40 52 65 93 3.05 0.67

F2-M2 f1 51 71 77 79 82 91 3.92 0.65

f2 44 72 77 82 84 92 3.37 0.57

f3 29 59 65 70 73 88 3.31 022

f4 6 39 53 63 74 94 2.91 0.26
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Table 3 Performance of proposedmethod for predicting formant frequencies within a specified percentage of deviation

Transformation model Formant frequencies % Predicted frame within deviation

2% 10% 15% 20% 25% 50% μRMSE γ(x, y)

M1-F1 f1 60 87 88 89 90 94 4.46 0.78

f2 51 83 88 90 91 95 3.39 0.86

f3 57 90 91 92 94 98 2.78 0.84

f4 66 89 93 95 96 100 2.41 0.86

F2-M2 f1 35 65 71 76 80 89 3.36 0.71

f2 44 88 92 93 94 97 2.71 0.86

f3 58 89 91 94 95 99 2.40 0.74

f4 81 90 94 96 97 100 2.10 0.77

PLSF = 0 specifies that the converted signal is not at all
similar to the desired one.
It can be seen in the Table 1 that both the proposed VC

method and baseline method shows performance index
differences for M1-F1, F2-M2, M1-M2, and F1-F2 pairs.
The results specify that the performance of the proposed
system is significantly better than that of the baseline
method.
The other performance measures, such as formant

deviation (Dk), root-mean-square error (RMSE), and
correlation coefficients (σx,y) are used to analyse our

system. Deviation parameter is defined as, the percentage
variation in the actual (xk) and predicted (yk) formant
frequencies, derived from the corresponding speech
frames. It represents the percentage of test frames that lie
within a specified deviation (Dk) and is calculated as

Dk = |xk − yk|
xk

× 100. (12)

For a given transformed and target signals, root-mean-
square error is calculated in terms of percentage of

Figure 3 Desired and predicted formant frequencies for M1 to F1 using baseline method. (a) First, (b) second, (c) third, and (d) fourth
formants.
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Figure 4 Desired and predicted formant frequencies for F2 to M2 using baseline method. (a) First, (b) second, (c) third, and (d) fourth
formants.

Figure 5 Desired and predicted formant frequencies for M1 to F1 using proposedmethod. (a) First, (b) second, (c) third, and (d) fourth
formants.
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Figure 6 Desired and predicted formant frequencies for F2 to M2 using proposedmethod. (a) First, (b) second, (c) third, and (d) fourth
formants.

average desired formant values obtained from the speech
segments. It is computed as

μRMSE =
√∑

k |xk − yk|2
x̄

× 100, (13)

where σ =
√∑

k d2k

dk = ek − μ, ek = xk − yk ,μ =
∑

k |xk − yk|
N

. (14)

The error ek is the difference between the actual and
predicted formant values. N is the number of observed
formant frequencies of speech frames. The parameter dk

is the deviation error. The correlation coefficient γ(x, y)
is the parameter to be computed in terms of covariance
COV(X,Y ) between the target (x) and the predicted (y)
formant values and the standard deviations σX ,σY of the
target and the predicted formant values, respectively. The
parameters γ(x, y) and COV(X,Y ) are calculated as

γx,y = COV(X,Y )

σXσY
(15)

COV(X,Y ) =
∑

(xk − x̄)(yk − ȳ)
N

. (16)

Figure 7 Target and transformed spectral envelopes of the desired speaker using proposedmethod and baseline method.
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Table 4 Score used in speech quality (MOS) and speaker
identity (ABX)

Score MOS (speech quality) ABX (speaker identity)

1 Bad (imperfect to perceive) Totally different

2 Poor (almost impossible to perceive) Certainly not

3 Fair (sound perception is not perfect) Possibly different

4 Very good (cell phone quality) More or less the same

5 Outstanding (perfect to perceive) Totally same

Table 2 shows the different objective measures (DK ),
RMSE, and (γx,y) for different speaker combinations (M1-
F1, F2-M2) using baseline method. Table 3 shows the
similar measures for proposed method.
One can observe that the RMSE values between the

desired and the predicted acoustic space parameters for
proposed model are less than that of the baseline model.
However, every time RMSE does not give strong informa-
tion about the spectral distortion. Consequently, scatter
plot and spectral distortion are employed additionally as
objective measures.
The baseline method scatter plots for first-, second-,

third-, and fourth-order formant frequencies using M1-
F1 and F2-M2 speaker pairs are shown in Figures 3 and 4,
respectively. Similar analysis is done for proposed method
as shown in Figures 5 and 6. The clusters obtained using
proposed model are more compact and diagonally ori-
ented compared to the baseline model. It is observed that
the higher predicted formants are more closely oriented
toward the desired formants for proposed filter bank-
based method than that of the baseline method. Also, the
diagonal orientation of the clusters demonstrates the good
prediction ability of both the methods, as perfect predic-
tion means all the data points in scatter plot are diagonally
oriented in right side. The compact clusters obtained for
proposed method imply its ability to capture the formant
structure of desired speaker.
Figure 7 shows the desired and predicted spectral

envelopes for proposed and baseline method. It can be
seen in the figure that the spectral envelopes obtained for
proposed method follow the same shape and have peaks
and valleys at same frequencies confirming the similarity

Table 5 Subjective analysis for quality (MOS) and identity
(ABX)

Proposed algorithm Baseline algorithm

MOS ABX MOS ABX

M1-F1 4.58 4.88 4.17 4.39

F2-M2 4.59 4.83 4.03 4.23

M1-M2 4.47 4.77 4.24 4.38

F1-F2 4.50 4.79 4.12 4.32

between them. On the other hand, the spectral envelopes
for baseline method have different shapes.
As mentioned earlier, the proposed and the baseline

methods are also evaluated in terms of subjective tests:
MOS and ABX. Mean opinion score is a quality evalua-
tion test for the synthesized speech and ABX is the test
for similarity between converted and target speech sig-
nal. The tests related to quality and similarity are carried
out using 25 synthesized speech utterances obtained from
four different speaker pairs and the corresponding tar-
get utterances. In the first part, the listeners are asked to
judge the quality of synthesized speech signal using MOS
in the scale of 1 to 5 as shown in Table 4. The MOS results
shown in Table 5 indicates that the conversion is more in
proposed method than baseline method.
In the next part of the evaluation, the ABX similarity

test (A: Source, B: Target, X: Transformed speech signal)
is carried out without considering the speech quality. The
listeners are asked to grade the speaker identity on the
five-point scale. The listeners are asked to give ratings in
the scale of 1 to 5 to decide whether the output X matches
with A or B as shown in Table 4. The higher value of
ABX suggests that mapping functions which are devel-
oped with proposed and the baseline method can convert
the identity of one speaker to the other with acceptable
level. Table 5 shows that the listeners have given better
rating to the proposed method than that of the baseline
method in term of both MOS and ABX test.

6 Conclusion
In this article, a new feature extraction approach based on
admissible wavelet packet transform has been proposed.
The earlier feature extraction methods focused only on
the low-frequency bands without considering the features
in the high-frequency bands which are equally impor-
tant for speaker identity. The proposed method mainly
emphasizes the speech signal frequency regions which
are important for speaker identity. The features obtained
from the proposed filter bank are modified using RBF-
based conversion models. Different objective and subjec-
tive measures used in our work justifies the performance
of proposed and baseline model. The proposed method
gives considerably improved results than the baseline
method in terms of both the quality and identity of the
speaker. The performance of the proposed system proved
the significance of combining the information from the
high-frequency bands with low-frequency bands to use it
effectively for voice conversion.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Electronics Engineering, S.V. National Institute of Technology,
Surat 395007, India. 2Department of Computer Engineering, S.V. National



Nirmal et al. EURASIP Journal on Audio, Speech, andMusic Processing 2013, 2013:28 Page 10 of 10
http://asmp.eurasipjournals.com/content/2013/1/28

Institute of Technology, Surat 395007, India. 3Department of Electronics
Engineering, Veermata Jeejabai Institute of Technology, Mumbai 400031, India.

Received: 26 June 2013 Accepted: 18 November 2013
Published: 10 December 2013

References
1. K-S Lee, Statistical approach for voice personality transformation. Audio,

Speech, Lang. Process., IEEE Trans. 15(2), 641–651 (2007)
2. H Ye, S Young, High quality voice morphing, in Proceedings of IEEE

International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’04), vol. 1, (Montreal, 17–21 May 2004), pp. I-9–12

3. LM Arslan, Speaker transformation algorithm using segmental code
books (stasc). Speech Commun. 28, 211–226 (1999)

4. H Kuwabara, Y Sagisaka, Acoustics characteristics of speaker individuality:
control and conversion. Speech Commun. 16, 165–173 (1995)

5. M Abe, S Nakamura, K Shikano, H Kuwabara, vol. 1, Voice conversion
through vector quantization, in International Conference on Acoustics,
Speech, and Signal Processing (ICASSP-88), (New York, NY, 11–14 April
1988), pp. 655–658

6. A Kain, MW Macon, Design and evaluation of a voice conversion
algorithm based on spectral envelope mapping and residual prediction,
in Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’01), vol. 2, (Salt Lake City, UT, 7–11 May 2001),
pp. 813–816

7. KS Rao, Voice conversion by mapping the speaker-specific features using
pitch synchronous approach. Comput. Speech & Lang. 24(3), 474–494
(2010)

8. O Turk, LM Arslan, Robust processing techniques for voice conversion.
Comput. Speech & Lang. 20(4), 441–467 (2006)

9. S Desai, AW Black, B Yegnanarayana, K Prahallad, Spectral mapping using
artificial neural networks for voice conversion. Audio, Speech, and Lang.
Process., IEEE Trans. 18(5), 954–964 (2010)

10. E Helander, T Virtanen, J Nurminen, M Gabbouj, Voice conversion using
partial least squares regression. Audio, Speech, Lang. Process., IEEE Trans.
18(5), 912–921 (2010)

11. D Sundermann, H Hoge, A Bonafonte, H Ney, AW Black, Residual
prediction based on unit selection, in 2005 IEEEWorkshop on Automatic
Speech Recognition and Understanding, (San Juan, 27 Nov 2005),
pp. 369–374

12. X Lu, J Dang, An investigation of dependencies between frequency
components and speaker characteristics for text-independent speaker
identification. Speech Commun. 50(4), 312–322 (2008)

13. H Kawahara, I Masuda-Katsuse, de Cheveigné A, Restructuring speech
representations using a pitch-adaptive time–frequency smoothing and
an instantaneous-frequency-based f0 extractionpossible role of a
repetitive structure in sounds. Speech Commun. 27(3), 187–207 (1999)

14. S Hayakawa, F Itakura, Text-dependent speaker recognition using the
information in the higher frequency band, in IEEE International Conference
on Acoustics, Speech, and Signal Processing, (ICASSP-94), vol.1 (Adelaide,
19–22 Apr 1994), pp. I/137–140

15. S Imai, vol. 8, Cepstral analysis synthesis on the mel frequency scale, in
IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP ‘83, (Boston, MA, 14–16 April 1983), pp. 93–96

16. O Turk, LM Arslan, Subband based voice conversion, in International
Conference on Spoken Language Processing, (Denver, CO, 16–20 Sept
2002), pp. 289–292

17. C Orphanidou, IM Moroz, SJ Roberts, Multiscale voice morphing using
radial basis function analysis, in Algorithms for Approximation (Springer,
Berlin Heidelberg, 2007), pp. 61–69

18. RC Guido, L Sasso Vieira, S Barbon Júnior, FL Sanchez, C Dias Maciel, E
Silva Fonseca, J Carlos Pereira, A neural-wavelet architecture for voice
conversion. Neurocomputing. 71(1), 174–180 (2007)

19. S Furui, Research of individuality features in speech waves and automatic
speaker recognition techniques. Speech Commun. 5(2), 183–197 (1986)

20. R Laskar, D Chakrabarty, F Talukdar, KS Rao, K Banerjee, Comparing ann
and gmm in a voice conversion framework. Appl. Soft Comput. 12(11),
3332–3342 (2012)

21. J Nurminen, V Popa, J Tian, Y Tang, I Kiss, A parametric approach for voice
conversion, in International (TC-STAR) Workshop on Speech-to-Speech

Translation, Audio and Visual Communications,Nokia Research Center,
(Barcelona, Spain, June 2006), pp. 225–229

22. M Narendranath, HA Murthy, S Rajendran, B Yegnanarayana,
Transformation of formants for voice conversion using artificial neural
networks. Speech Commun. 16(2), 207–216 (1995)

23. E Ormanci, UH Nikbay, O Turk, LM Arslan, Subjective assessment of
frequency bands for perception of speaker identity, in Proceedings of the
ICSLP 2002,INTERSPEECH, (Denver, CO, 16–20 September 2002),
pp. 2581–2584

24. O Farooq, S Datta, Mel filter-like admissible wavelet packet structure for
speech recognition. Signal Processing Letters, IEEE 8(7), 196–198 (2001)

25. S-Y Lung, Wavelet feature selection based neural networks with
application to the text independent speaker identification. Pattern
Recognit. 39(8), 1518–1521 (2006)

26. LD Alsteris, KK Paliwal, Short-time phase spectrum in speech processing: a
review and some experimental results. Digit. Signal Process. 17(3),
578–616 (2007)

27. T Watanabe, T Murakami, M Namba, T Hoya, Y Ishida, Transformation of
spectral envelope for voice conversion based on radial basis function
networks, in Seventh International Conference on Spoken Language
Processing, INTERSPEECH, ISCA(2002), (Denver, CO, 16–20 September 2002)

28. N Iwahashi, Y Sagisaka, Speech spectrum conversion based on speaker
interpolation and multi-functional representation with weighting by
radial basis function networks. Speech Commun. 16(2), 139–151 (1995)

29. J Kominek, AW Black, The CMU ARCTIC Speech Databases, in SSW5-2004,
(Pittsburgh, PA, 14–16 June 2004), pp. 223–224

doi:10.1186/1687-4722-2013-28
Cite this article as: Nirmal et al.: A novel voice conversion approach using
admissiblewavelet packet decomposition. EURASIP Journal onAudio, Speech,
andMusic Processing 2013 2013:28.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	1 Introduction
	2 Optimal filter bank
	3 Voice conversion framework
	3.1 Proposed filter bank-based VC
	3.2 Baseline multiscale voice morphing using RBF analysis

	4 Radial basis function-based mapping
	5 Experimental results
	6 Conclusion
	Competing interests
	Author details
	References

