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Abstract

Availability of large amounts of raw unlabeled data has sparked the recent surge in semi-supervised learning research.
In most works, however, it is assumed that labeled and unlabeled data come from the same distribution. This
restriction is removed in the self-taught learning algorithm where unlabeled data can be different, but nevertheless
have similar structure. First, a representation is learned from the unlabeled samples by decomposing their data matrix
into two matrices called bases and activations matrix respectively. This procedure is justified by the assumption that
each sample is a linear combination of the columns in the bases matrix which can be viewed as high level features
representing the knowledge learned from the unlabeled data in an unsupervised way. Next, activations of the labeled
data are obtained using the bases which are kept fixed. Finally, a classifier is built using these activations instead of the
original labeled data. In this work, we investigated the performance of three popular methods for matrix
decomposition: Principal Component Analysis (PCA), Non-negative Matrix Factorization (NMF) and Sparse Coding (SC)
as unsupervised high level feature extractors for the self-taught learning algorithm. We implemented this algorithm
for the music genre classification task using two different databases: one as unlabeled data pool and the other as data
for supervised classifier training. Music pieces come from 10 and 6 genres for each database respectively, while only
one genre is common for the both of them. Results from wide variety of experimental settings show that the
self-taught learning method improves the classification rate when the amount of labeled data is small and, more
interestingly, that consistent improvement can be achieved for a wide range of unlabeled data sizes. The best
performance among the matrix decomposition approaches was shown by the Sparse Coding method.

Introduction

A tremendous amount of music-related data has recently
become available either locally or remotely over networks,
and technology for searching this content and retrieving
music-related information efficiently is demanded. This
consists of several elemental tasks such as genre classi-
fication, artist identification, music mood classification,
cover song identification, fundamental frequency estima-
tion, and melody extraction. Essential for each task is the
feature extraction as well as the model or classifier selec-
tion. Audio signals are conventionally analyzed frame-by-
frame using Fourier or Wavelet transform, and coded as
spectral feature vectors or chroma features extracted for
several tens or hundreds of milliseconds. However, it is an
open question how precisely music audio should be coded
depending on the task kind and the succeeding classifier.
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For the classification, classical supervised pattern recog-
nition approaches require large amount of labeled data
which is difficult and expensive to obtain. On the other
hand, in the real world, a massive amount of musical
data is created day by day and various musical databases
are newly composed. There may be no labels for some
databases and musical genres may be very specific. Thus,
recent music information retrieval research has been
increasingly adopting semi-supervised learning methods
where unlabeled data are utilized to help the classifica-
tion task. Common assumption, in this case, is that both
labeled and unlabeled data come from the same distri-
bution [1] which, however, may not be easily achieved
during the data collection. This restriction is alleviated
in the transfer learning framework [2] which allows the
domains, tasks, and distributions used in training and
testing to be different. Utilizing this framework and the
semi-supervised learning ideas, the recently proposed
self-taught learning algorithm [3] appears to be a good
candidate for the kind of music genre classification task
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described above. According to this algorithm, first, a high-
level representation of the unlabeled data is found in an
unsupervised manner. This representation is assumed to
hold some common structures appearing in the data such
as curves, edges, or shapes for images or particular spec-
trum changes for music. In other words, we try to learn
some basic “building blocks” or high-level features rep-
resenting the knowledge extracted from the unlabeled
data. In practice, this is accomplished by decomposing
the unlabeled data matrix into a matrix of basis vec-
tors representing those “building blocks” and matrix of
combination coefficients such that each data sample can
be approximated by a linear combination of the basis
vectors. The basis vectors matrix is often called a dic-
tionary while the coefficients matrix is called an activa-
tions matrix. There are various methods for this kind of
matrix decomposition but most of them are based on
the minimization of the approximation error, so the main
difference between those methods lays in the used opti-
mization algorithms. In this study, we investigated the
performance of two recently proposed methods: the Non-
negative Matrix Factorization (NMF) [4] and Sparse Cod-
ing (SC) [5], as well as the classical Principal Component
Analysis (PCA) [6] as approaches for learning the dictio-
nary of basis vectors. Each method has its own advantages
and drawbacks and some researchers have investigated
their combinations by essentially adjusting the objective
function to accommodate some constraints. Thus, the
sparse PCA [7], the non-negative sparse PCA [8], and
sparse NMF [4,9] have been introduced lately. However,
in order to be able to do a fair comparison, we decided
to use the original PCA and NMF rather than their
sparse derivatives.

The next step of the self-taught learning algorithm
involves transformation of the labeled data into new fea-
ture vectors using the dictionary learned at the previous
step. This is done using the same matrix factorization pro-
cedure as before with the only difference that the basis
vectors matrix is kept fixed and only the activation matrix
is calculated. This way, each of the labeled data vectors
is approximated by a linear combination of bases learned
from a large amount of data. It is expected that the acti-
vation vectors will capture more information than the
original labeled data they correspond to, since additional
knowledge encapsulated in the bases is being used. Finally,
using labeled activation vectors as regular features, classi-
cal supervised classifier is trained for the task at hand. In
this work, we used the standard Support Vector Machine
(SVM) classifier.

In our experiments, we utilized two music databases:
one as unlabeled music data and the other for the
actual supervised classification task. We have published
some preliminary experimental results on these databases
[10,11], but this study provides a thorough investigation
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and comparison of the three matrix decomposition meth-
ods mentioned above.

Related studies

There are several studies where the semi-continuous
learning framework has been used for music analysis and
music information retrieval tasks. Based on a manifold
regularization method, it has been shown that adding
unlabeled data can improve the music genre classifica-
tion accuracy rate [12]. This approach is later extended
to include fusion of several music similarity measures
which achieved further gains in the performance [13].
The so called “semi-supervised canonical density esti-
mation” method was proposed for the task of automatic
audio tag classification [14]. In this study, using the semi-
supervised variants of the canonical correlation analysis
and the kernel density estimation methods, authors have
built a system for automatic music annotation with tags
such as genre, instrumentation, emotion, style, rhythm,
etc. According to the published results, adding unlabeled
sound samples can improve both the precision and recall
rates. In all these studies, although not explicitly stated,
both the labeled and unlabeled data come from the same
classes and have the same distribution. This is evident
from the fact that the unlabeled data have been obtained
by removing the labels from part of the data corpus used
in the experiments. In the self-taught learning case, how-
ever, the unlabeled data, though being of the same type,
i.e., music, come from different classes (genres).

On the other hand, the non-negative matrix factoriza-
tion and the sparse representation methods have been
applied in various music processing tasks, but in a stan-
dard supervised learning scenario. An NMF based on
Itakura-Saito divergence has been used for notes pitch
estimation as well as decomposition of music into indi-
vidual instrumental sounds [15]. In another study [16], a
polyphonic music transcription is achieved by estimating
the spectral profile and temporal information for every
note using NMF decomposition. Recent review of the
sparse representations in audio and music [17] describes
successful applications in such tasks as audio coding,
denoising, blind source separation as well as automatic
music transcription. In an experimental setup similar to
our baseline, i.e., with no unlabeled data, high genre classi-
fication performance has been reported using the so called
Predictive Sparse Decomposition method [18].

As an instance of the transfer learning, the self-taught
learning approach can be particularly useful when the
amount of target data is too small, but other raw data from
the same “type” or “modality” are sufficiently available.
Using the self-taught idea, clustering performance can be
improved by simultaneous clustering of both the target
and auxiliary raw data through a common set of features
[19]. When the number of bases learned from the other
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unlabeled data is less than the feature vectors dimen-
sion, the representation of the target data using these
bases essentially becomes a dimensionality reduction.
This observation is the basis of the self-taught dimension-
ality reduction method [20], where special care is taken for
the preservation of the target data structures in the origi-
nal space in order to improve the k-means performance. In
our system, labeled data dimension is also reduced, but the
goal is to improve the supervised classification accuracy.

The self-taught learning algorithm

A classification task is considered with small labeled train-
ing data set Xl = {xf},i = 1,...,M drawn i.i.d. from an
unknown distribution D. Each xf € R% is an input feature
vector which is assigned a class label y; € YV = {1,...,C}.
In addition, a larger unlabeled training data set X% =
x'},x e R4,i =1,...,N is available, which is assumed
only to be of the “same type” as X! and may not be associ-
ated with the class labels ) and distribution D. Obviously,
in order X'* to help the classification of the labeled data, it
should not be totally different or unrelated.

The main idea of the self-taught learning approach is
to use the unlabeled samples to learn in an unsupervised
way slightly higher level representation of the data [3]. In
other words, to discover some hidden structures in the
data which can be considered as basic building blocks. For
example, if the data represent images, the algorithm would
find simple elements such as edges, curves, etc., so that the
image can be represented in terms of these more abstract,
higher level features. Once learned, this representation is
applied to the labeled data X' resulting in a new set of
features which lighten the supervised learning task.

This idea is formalized as follows: each unlabeled data
vector x is assumed to be generated as a linear combina-
tion of some basis functions:

K
Xt =>"alb 1)
k=1

where al‘.‘k € R are the linear combination coefficients

specific to xf-‘ and by € R4k = 1,...,K are the basis
functions. In the self-taught learning framework, these
basis functions are considered as the data building blocks
or the higher level features. Taking into account all the
unlabeled training data, Equation (1) can be conveniently
rewritten in the following matrix form:

X* = B“A" )

where X% =[xi‘,x§‘,...,x}‘v] e RN jg g product of
two matrices BY = [b},b%,...,b}]e RA*K and A% =
[a},a5,...,a)] € REXN Each column al = {”Zk} of A*
represents the coefficient vector for data vector x¥. It is
easy to see that Equation (2) essentially decomposes the
training data matrix X into two unknown matrices A*
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and B* which are also often called activation matrix and
dictionary (of bases) respectively. All the methods for find-
ing A¥ and B discussed in the next section produce an
approximative solution and thus, in practice, Equations (1)
and (2) become:

K

Xt = " albl + € (3)
k=1

X* ~ B*A* (4)

where €/ € R is a Gaussian noise representing the
approximation error.

After the dictionary B has been learned from the unla-
beled training data X%, according to the self-taught learn-
ing algorithm, this dictionary is used to obtain activations
for the labeled data X’. In other words, it is assumed that
the labeled vectors xf can also be represented as a linear
combination of some basis functions and particularly the
basis vectors by:

K
xi = Z af,kbz +él (5)

k=1
X! ~ B“Al (6)
where A! =[all,a12,...,a§v1] € REXM js the activation

matrix corresponding to the labeled data. We can con-
sider these activations as a new representation of X’ and
the whole procedure as a non-linear mapping or transfor-
mation of vectors xf € R% into vectors aﬁ e RX. Note
that in the case when d > K, this transformation involves
dimension reduction as well. Next, we can assign origi-
nal class labels y; to each aﬁ and thus obtain new labeled
training data which we can use to build any appropriate
classifier in the traditional supervised manner. In other
words, instead of the original training data X, we use the
set of activations A/ = {af } as feature vectors for our clas-
sification task. This exchange is justified when the amount
of original labeled training data is too small for reliable
model estimation. Although the size of the new training
set Al is the same, the new feature vectors may contain
more information about the underlying classes because
they are obtained using the higher level features, i.e., the
basis functions, learned from a much bigger pool of data.
This can be considered as a transfer of structural informa-
tion or knowledge from one set of data to another under
the reasonable assumption that both the data sets share
the same or similar higher level features.

The whole self-taught learning algorithm can be sum-
marized into the following steps:

Step 1. Compute a dictionary B of basis vectors from the
unlabeled data A* using any appropriate matrix decom-
position method.
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Step 2. Obtain activation vectors aﬁ for each labeled train-
ing vector xf using the dictionary learned at Step 1.

Step 3. Use activation vectors aﬁ as new labeled features
to train standard supervised classifier.

Step 4. Transform each test vector into an activation vec-
tor in the same way as the training data at Step 2 and apply

the classifier to obtain its label.

Data matrix decomposition and feature
transformation methods

The general approach for finding the solution, i.e., A* and
B*, for the Equations (3) or (4) is the minimization of the
squared approximation error:

N K
. 2
min ) | xf =) aixb I3 (7)
i=1 k=1

a,

which in the matrix form can be expressed by the Frobe-
nius norm:

A*,B* = argmin Dp(X"||AB) = ! | X* —BA |2 (8)
AB 2
Since there is no unique solution to the above opti-
mization problem, the different minimization approaches
described in this section result in solutions with different
properties and, consequently, different performance.
For the labeled data transformation into activation vec-
tors, similar optimization objective is used:

K
I . ) 2
a; = argmin lIx; — E arbi|l; 9)
k=1

where aﬁ is the activation vector corresponding to xﬁ. It
is easy to see that this is a sub-task of the optimization
of Equation (7) and can be solved using the same or even
simpler method.

Principal Component Analysis (PCA)

The PCA [6] is a popular data-processing and dimension-
reduction technique, with numerous applications in engi-
neering, biology, and social science. It identifies a low
dimensional subspace of maximal variation within the
data in an unsupervised manner. It is not difficult to show
that the following function [21]:

K
(m + Z ai,kek> — X

k=1

N 2

JEK) =Y

i=1

(10)

where m is the data mean, is minimized when the vectors
e, are the K eigenvectors of the data covariance matrix
having largest eigenvalues, and the coefficients a; are
called principal components. Assuming that our unlabeled
data are mean normalized, i.e, m = 0, and comparing
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this equation with Equation (7) we see that the eigenvec-
tors and the principal components correspond to the basis
functions by and activations aj’ respectively.

The standard way of performing PCA is to do a singular
value decomposition (SVD) of the data matrix:

X* =wizH vt (11)

where W* is the eigenvectors matrix, i.e., the dictionary,
and P* = $*[ V¥]T is the matrix of principal components,
i.e., the activations matrix.

In this case, the labeled data transformation, i.e.,
Equation (9), is simplified to:

al =[w*]Tx! 12)

which together with the SVD procedure required for find-
ing the matrix W* makes the PCA approach very easy
to implement and computationally inexpensive way of
calculating the high level features for the self-taught learn-
ing algorithm. However, compared to the other matrix
decomposition methods, the PCA has several limitations.
First, as can be seen from the above equation, the PCA
results in linear feature extraction, i.e., activations are just
linearly transformed input data. Other methods, such as
sparse coding, can produce features which are inherently
a non-linear function of the input. Second, the dictionary
size cannot be bigger than the data dimension because the
eigenvectors are assumed to be orthogonal. Finally, it is
difficult to think of the eigenvectors as building blocks or
higher level structures of the data.

Non-negative Matrix Factorization (NMF)

In this case, to learn the higher level representation,
we use the non-negative matrix factorization method. It
decomposes the unlabeled data matrix X* into a prod-
uct of two matrices W* = [w{,w5,...,wh]e RA*K and
H* =[h{,hj,...,hi] e RI>N having only non-negative
elements. The decomposition is approximative in nature,
s0:

X* ~ W*H" (13)
or equivalently in a vector form:
K
X/ ~ ZthwZ (14)
k=1

where H* is the mixing matrix corresponding to the
activations matrix A¥ and W¥ corresponds to the bases
matrix B* of Equation (4). Since only additive combina-
tions of these bases are allowed, the non-zero elements of
W* and H* are all positive. Thus, in such decomposition
no subtractions can occur. For these reasons, the non-
negativity constraints are compatible with the intuitive
notion of combining components to form a whole signal,
which is how the NMF learns the high level (parts-based)
representations.
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In contrast to the sparse coding method, the NMF does
not assume explicitly or implicitly sparseness or mutual
statistical independence of components. However, some-
times it can produce sparse decompositions [22].

For finding W and H, the most frequently used cost
functions are the Square Euclidean distance expressed by
the Frobenius norm:

Dr(X||WH) = ; I X —WH || (15)
which is optimal for Gaussian distributed approximation
error, and the generalized Kullback-Leibler divergence:

D (XIWH) = Y (xijlog ([v%]) —x,-,»+[WH],-,»>.
ij U
(16)

Although both functions are convex in W and H only,
they are not convex in both variables together. Thus, we
can only expect the maximization algorithm to find a
local minimum. A good compromise between speed and
ease of implementation have been proposed in [23] and is
known as the multiplicative updates algorithm. It consists
of iterative application of the following update rules:

i <y LY X 17)
7 I WTWHI

T..
Wi [XH"1; (18)

e
/ Y[ WHHT];

when Frobenius norm (Equation (15)) is chosen as objec-
tive function. Another popular optimization method is the
alternating least squares (ALS) algorithm where simpler
objective is solved by fixing one of the unknown matri-
ces and then solving again with the other matrix held
fixed. The ALS algorithm, however, does not guarantee
convergence to a global minimum or even to a station-
ary point. Some other approaches such as the Projected
Gradient or Quasi-Newton method have been shown
to give better results. An excellent and deep descrip-
tion of the NMF and its optimization methods is given
in [4].

After learning the basis vectors w from the unlabeled
training data X'* we use them to obtain activations for the
labeled data X’. The new labeled features are computed
by solving Equation (9) which in the case of NMF is:

K
l . ) 2
h; = arg mﬁn lIx; — E hewills
k=1

(19)

This is a convex least squares task which is the same as
the optimization of (15) with fixed bases wy and can be
solved in the by using the update rule just for 4y, i.e.,
Equation (17).
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Sparse Coding (SC)

To learn the higher level representation with a sparse cod-
ing method, we can add a sparsity constraint to the objec-
tive function of Equation (7). Given the unlabeled data set
X*, the following optimization procedure is defined:

N K
. 2
min 7 Ix = Y aibll3 + Blailh (20)
ab 0 k=1
subjectto |bgll? <1, k=1,...,K
where basis vectors by € R4k = 1,...,K and activa-
tionsa; € RX,i = 1,...,N are subject to optimization.

The parameter § controls the sparsity level and is usu-
ally tuned on a development data set. The first term of
the above objective tries to represent each data vector as
a linear combination of the bases by with weights given
by the corresponding activations. The second term, on
the other hand, tries to reduce the L; norm of the activa-
tion vectors, thus making them sparse. The optimization
problem is convex only in terms of basis vectors or activa-
tions alone and these sub-problems are solved iteratively
by alternatingly holing a; or by fixed. For learning the
bases, the problem is a least squares optimization with
quadratic constraints which in general is solved using gra-
dient descent or convex optimization approaches such
as the quadratically constrained quadratic programming
(QCQP). For the activations, the optimization problem
is a convex Lj-norm regularized least squares problem
and the possible solutions include generic QP solvers,
least angle regression (LARS) [24] or grafting [25]. In our
experiments, however, we used the more efficient feature-
sign search algorithm [26]. It is based on the fact that if
the sign of a; x is known, then the optimization problem is
reduced to a standard, unconstrained QP problem, which
can be solved analytically.

After learning the basis vectors by from the unlabeled
training data A% as described above, we use them to
obtain activations for the labeled data X! by solving the
following optimization problem:

K
l . ) 2
a; = argmin lIx; — E arbill; + Bllallx
k=1

(21)

This is the same as the optimization problem of Equation
(20) with fixed bases by and can be solved using the same
feature-sign search algorithm. Vectors aﬁ are sparse and
approximate labeled data xf as a linear combination of

the bases which, however, are learned using the unlabeled
data X%

Experiments
In this section, we provide details about the databases we
used, the experimental conditions and obtained results.
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All data sets, signal processing and classification meth-
ods are common to all the matrix decomposition methods
described in the previous section.

Databases

As unlabeled database we used the GTZAN collection
of music [27]. It consists of 1000 30s audio clips, each
belonging to one of the following ten genres: Classical,
Country, Disco, Hip-Hop, Jazz, Rock, Blues, Reggae, Pop
and Metal. There are 100 clips per genre and all of them
have been down-sampled to 22050 Hz. The other database
which we used as labeled data is the corpus used in
the ISMIR 2004 audio contest [28]. It contains of 729
whole tracks for training, but since the number of tracks
per genre is non-uniform, the original nine genres are
usually mapped into the following six classes: Classical,
Electronic, Jazz-Blues, Metal-Punk, Rock-Pop and World.
Another 729 tracks are used for testing. Note that the
only common genre between the two databases is the
“Classical” genre.

Audio data from both databases are divided into 5s
pieces which were further randomly selected in order to
make several training sets with different amount of data,
keeping the same number of such pieces per genre. Table
1 summarizes the contents of the training data sets we
used in our experiments. For example, set GT-50 has 50
randomly selected 5 s pieces per genre, 500 pieces in total
or 0.69h of music from the GTZAN database. In con-
trast, IS-20 is a data set from the training part of the
ISMIR 2004 corpus consisting of 20 pieces per genre or
120 pieces in total. All sets are constructed in such way
that each larger set contains all the pieces from the smaller
set. There is only one test set and it consists of 250
pieces per genre randomly selected from the ISMIR 2004
test tracks.

Audio signal preprocessing

When it comes to feature extraction for music infor-
mation processing, in contrast to the case of speech
where the MFCC is dominant, there exists wide variety
of approaches—from carefully crafted multiple music spe-
cific tonal, chroma, etc. features to single and simple “don’t
care about the content” spectrum. In our experiments,
we used spectral representation tailored for music signals,

Table 1 Data sets used in the experiments
GTZAN database ISMIR 2004 database

Set Pieces Hours Set Pieces Hours
GT-50 500 0.69 1S-20 120 0.17
GT-100 1000 1.39 IS-50 300 0.42
GT-250 2500 347 1S-100 600 0.83
GT-500 5000 6.95 1S-250 1500 2.08
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Table 2 PCA baseline classification accuracy (%)

Training Dictionary size K
Set 100 200 300 500
1S-20 385 36.8 36.5 356
1S-50 43.5 41.8 41.8 41.7
IS-100 54.3 523 533 53.0
1S-250 56.0 56.3 56.6 57.3

Bases are learned from the labeled ISMIR training data.

such as the Constant-Q transformed (CQT) FFT spec-
trum. The CQT can be thought of as a series of logarith-
mically spaced filters having constant center frequency to
bandwidth ratio, i.e.,

Ji

Afk (22

=Q

where Q is known as the transform’s “quality factor” The
main property of this transform is the log-like frequency
scale where the consecutive musical notes are linearly
spaced [29].

Table 3 Absolute improvement (%) wrt the PCA baseline
when bases are learned from the unlabeled GT data sets

Training Dictionary size K
Set 100 200 300 500
GT-50
1S-20 13.6 16.1 159 16.8
IS-50 1.1 1.3 135 14.0
IS-100 —0.7 04 2.0 1.7
1S-250 —0.6 —03 0.0 —0.6
GT-100
1S-20 133 15.7 154 16.7
1S-50 10.5 109 13.7 13.7
IS-100 —-09 1.0 1.7 1.5
1S-250 —04 —05 0.0 —03
GT-250
1S-20 138 159 18.1 173
IS-50 10.5 114 15.7 135
IS-100 —0.6 09 25 1.6
1S-250 —-09 0.1 0.1 —05
GT-500
1S-20 14.4 159 15.2 16.8
1S-50 1.1 1.2 14.0 14.0
IS-100 —04 14 2.1 15
1S-250 —0.9 0.1 0.2 —03
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Table 4 NMF baseline classification accuracy (%)

Training Dictionary size K
Set 100 200 300 500
1S-20 527 53.1 54.2 54.5
IS-50 544 558 56.3 57.2
1S-100 52.7 54.0 553 56.9
1S-250 542 55.8 56.6 575

Bases are learned from the labeled ISMIR training data.

The CQT transform is applied to the FFT spectrum vec-
tors computed from 23.2ms (512 samples) frames with
50% overlap in a way that there are 12 Constant-Q fil-
ters per octave resulting in a filter-bank of 89 filters
which covers the whole bandwidth of 11025 Hz. The
filter-bank outputs of 20 consecutive frames are fur-
ther stacked into a 1780 (89 x 20) dimensional super-
vector which is used in the experiments. This is the
same as to have a 20 frame time-frequency spectrum
image. There is a overlap of 10 frames between such
two consecutive spectrum images. This way, each 5s
music piece is represented by 41 spectrum images or
super-vectors.

Table 5 Absolute improvement (%) wrt the NMF baseline
when bases are learned from the unlabeled GT data sets

Training Dictionary size K
Set 100 200 300 500
GT-50
1S-20 —1.53 0.27 —0.93 —0.54
1S-50 —047 1.13 1.20 133
1S-100 0.40 —0.07 —033 033
1S-250 —1.07 0.00 0.20 0.00
GT-100
1S-20 —1.06 —0.2 0.07 —0.80
IS-50 —0.67 1.20 1.67 1.20
IS-100 0.40 —0.40 —0.33 0.46
IS-250 —0.20 —033 0.67 0.00
GT-250
1S-20 —253 —0.26 047 —0.34
1S-50 —0.93 1.60 1.67 1.13
1S-100 —0.06 0.27 047 —0.80
IS-250 —-0.27 0.00 0.07 0.00
GT-500
1S-20 —3.06 —0.93 0.27 —0.94
IS-50 —1.67 1.87 133 1.06
1S-100 —0.40 —0.33 —0.13 —0.74
1S-250 —0.87 —0.40 —0.67 0.00
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Table 6 SC baseline classification accuracy (%)

Training Dictionary size K

Set 100 200 300 500
1S-20 525 524 515 54.1
1S-50 56.3 586 589 60.9
1S-100 57.0 589 60.1 62.3
1S-250 574 59.9 61.7 64.0

Bases are learned from the labeled ISMIR training data.

Bases learning
For each data set given in Table 1 we learned several
basis vector sets or dictionaries. The sets sizes K are: 100,
200, 300 and 500. Contrary to the conventional sparse
coding scheme, where the dictionary size is much bigger
than the vectors dimension (for over-complete represen-
tation), in our case we in fact do dimension reduction.
This is motivated by the fact that our super-vectors are
highly redundant and that the basis vectors actually repre-
sent higher level spectral image features, not just arbitrary
projection directions.

Before bases learning, all the feature vectors from the
corresponding GTZAN data set are pooled together and

Table 7 Absolute improvement (%) wrt the SC baseline
when bases are learned from the unlabeled GT data sets

Training Dictionary size K
Set 100 200 300 500
GT-50
1S-20 —1.67 0.66 4.60 2.54
1S-50 —1.06 —1.00 1.83 —0.86
1S-100 —2.00 —1.67 0.34 —1.40
1S-250 —1.40 —0.60 —0.20 —033
GT-100
1S-20 —0.67 0.40 340 1.94
1S-50 —2.06 —0.06 1.76 2.74
IS-100 —2.80 —-0.14 —0.60 1.14
IS-250 —033 0.00 —0.27 0.60
GT-250
1S-20 —0.80 0.20 3.80 3.67
1S-50 —3.06 —0.73 1.56 0.80
1S-100 —2.73 0.00 —0.40 —0.60
IS-250 —2.07 —0.60 0.06 —0.80
GT-500
1S-20 —1.27 0.46 273 3.20
1S-50 —153 —1.20 0.16 1.60
1S-100 —2.13 —1.07 —0.60 —0.40
1S-250 —0.87 —0.73 —1.34 033
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Figure 1 Example of learned basis vectors using NMF (shown as spectrum images).

randomly shuffled. Then, each of the matrix decompo-
sition method is applied and the respective dictionaries
learned.

Supervised classification

After all labeled training data, i.e. sets IS-20, IS-50, IS-
100 and IS-250, have been transformed into activation
vectors for each dictionary learned from each unlabeled
data set, we obtained in total 64 (4 labeled data sets x
4 dictionary sizes x 4 unlabeled data sets) labeled train-
ing data sets. Then, using the LIBSVM tool, we learned
64 SVM classifiers each consisting of 6 SVMs trained in
one-versus-all mode. The SVM input vectors were lin-
early scaled to fit the [0, 1] range. For the sparse coding
method, this significantly reduces vectors sparsity, but
it is tolerable since our goal is not the sparse represen-
tation itself. Linear kernel was used as distance mea-
sure and the SVMs were trained to produce probabilistic
outputs.

During testing, each 5s musical piece represented by
41 feature (activation) vectors is considered as a sam-
ple for classification. Outputs of all genre specific SVMs
are aggregated (summed in the log domain) and the label
of the maximum output is taken as the classification
result.

In order to assess the effect of the self-taught learn-
ing, we need performance comparison with a system build
under the same conditions but without unlabeled data. We
will refer to this system as baseline. In this case, the basis
vectors are learned using labeled training data X" instead

of the unlabeled X“. Then, the activations are obtained
in the same way as if the bases were learned from the
unlabeled data.

Results using PCA

Table 2 shows the baseline results in terms of genre clas-
sification accuracy for each data set IS-20, IS-50, IS-100
and IS-250 with respect to the number of eigenvectors
used, i.e., dictionary size K. As can be seen, performance
improves with the data set size, but doesn’t change much
with respect to the activation features dimension. This
suggests that the input data are highly redundant and that
the information captured by the eigenvectors is propor-
tional to the data set size.

Using larger amount of data to obtain the eigenvectors
through the self-taught learning algorithm significantly
improves the results for the poorly performing data sets
IS-20 and IS-50 as evident from the Table 3. In this
table, the absolute improvement with respect to the base-
line accuracy is shown in four sub-tables, one for each
of the unlabeled data sets GT-50, GT-100, GT-250 and
GT-500. It is interesting to notice that the improvement
due to the unlabeled data doesn’t change with the data
set size.

Results using NMF

The same set of experiments was done with the non-
negative matrix factorization method. Results summa-
rized in Tables 4 and 5 correspond to those for PCA which
we described in the previous section.

rew

Figure 2 Example of learned basis vectors using Sparse Coding (shown as spectrum images).
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Table 8 Some main differences and similarities of the PCA, NMF and SC methods

PCA
Number of bases Less or same

wrt input dimension

Bases orthogonality Yes
Bases learning Analytic
Data representation Linear
Data sign Any
Sparsity No

We can see that the baseline performance is much better
than the PCA baseline, especially for the small data sets
IS-20 and IS-50. Application of the self-taught learning,
however, did not result in such definite improvement as
in the case of PCA. In average, the unlabeled data helped
for the middle range data sets, IS-50 and IS-100 when the
dictionary size was 200 or 300.

Results using sparse coding
The last two tables, Tables 6 and 7, show the correspond-
ing results for the sparse coding method. As in the NMF,
the baseline performance is much better than the PCA,
and in some cases even better. The SC approach achieved
the best baseline accuracy of 64 %.

As for the self-taught learning effect, we can see clear
performance improvement for the small data sets IS-20
and IS-50, though not as big as in the PCA case.

Discussion

To some extend, the results presented in the previous
section highlight the strengths and drawbacks of each
of the matrix decomposition methods we used in our
experiments. The PCA is easy to implement and com-
putationally not expensive, but it fails to capture enough

60

55 —

50

45

40

35 .

o H B o B
No dec. PCA NMF SC
Data matrix decomposition method

i Self-taught

Accuracy (%)

& Supervised

Figure 3 Genre classification results using the IS-20 data set for
training in both the supervised and self-taught learning
scenarios.

NMF SC

Less, same or more Less, same or more

No No
[terative Iterative
Non-linear Non-linear

Positive Any

Uncontrollable Adjustable

structural information from the data and shows the low-
est absolute classification rate. The drawbacks of the PCA
are well known and include the lack of sparseness, i.e.,
activations are linear combinations of the input data, dif-
ficulty to interpret the results in terms of high level data
shapes, and the upper limit on the number of achievable
basis vectors.

On the other hand, the NMF and sparse coding meth-
ods have iterative solutions which may become compu-
tationally challenging for big data sets, but they provide
non-linear labeled data transformation albeit with differ-
ent degree of sparsity. In the standard NMF method it is
not possible to control the sparseness and depending on
the data it can be quite low. In contrast, the sparse coding
approach allows the sparseness to be adjusted (to some
degree of course, since if set too high it may lead to sta-
bility and numerical issues) and optimized with respect to
the data. It is expected that higher degree of sparseness
forces more information to be captured by the basis vec-
tors which is essential for the success of the self-taught
learning algorithm. This is also evident from the visual
inspection of the learned basis vectors using NMF and
sparse coding shown in Figures 1 and 2, respectively.
It is apparent that the bases learned by the SC exhibit

70
65
60

55
& Self-taught

Accuracy (%)

50 & Supervised

45 -

o 1 S e
Nodec. PCA NMF SC
Data matrix decomposition method

Figure 4 Genre classification results using the I1S-50 data set for
training in both the supervised and self-taught learning
scenarios.
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Figure 5 Genre classification results using the IS-100 data set for
training in both the supervised and self-taught learning
scenarios.

clearer spectrum shapes with higher diversity than the
NMEF bases. Some of the main differences and similarities
of all the three methods are summarized in Table 8.

In order to evaluate the self-taught learning algorithm
itself, we obtained genre classification accuracy using the
initial set of 1780 dimensional feature vectors, i.e., with-
out any matrix decomposition and transformation, and a
SVM classifier. The results of this evaluation are shown
in Figures 3, 4, 5, and 6 for each training set 1S-20, IS-
50, IS-100, and ID-250, respectively, compared with the
corresponding results obtained using each of the PCA,
NMF, and SC data matrix decomposition methods for
their best conditions. The improvement from the self-
taught learning with unlabeled data is added to each of the
bars in different color. Clearly, even in the regular super-
vised setup, NMF and SC can produce some gain in the
classification performance. In total, including the effect of
the unlabeled data usage, the improvement especially for
small target data sizes, is quite substantial.

70
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® 55
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45
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Figure 6 Genre classification results using the IS-250 data set for
training in both the supervised and self-taught learning
scenarios.
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Conclusion

In this study, we investigated the performance of several
matrix decomposition methods, such as PCA, NMF and
sparse coding when applied for high level feature extrac-
tion in the self-taught learning algorithm with respect to
the music genre classification task. Results of the exper-
iments conducted under various conditions showed that
the sparse coding method outperforms the PCA in abso-
lute recognition accuracy and the NMF in terms of relative
improvement due to the knowledge extracted from the
unlabeled data.

As for the self-taught learning algorithm itself, the
results show that it achieves its purpose, i.e., to improve
the performance when the amount of labeled data is small.
Experiments also suggested that this improvement in not
sensitive to the size of unlabeled data set.
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