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Abstract

In this article, we describe a speaker adaptation method based on the probabilistic 2-mode analysis of training
models. Probabilistic 2-mode analysis is a probabilistic extension of multilinear analysis. We apply probabilistic 2-mode
analysis to speaker adaptation by representing each of the hidden Markov model mean vectors of training speakers as
a matrix, and derive the speaker adaptation equation in the maximum a posteriori (MAP) framework. The adaptation
equation becomes similar to the speaker adaptation equation using the MAP linear regression adaptation. In the
experiments, the adapted models based on probabilistic 2-mode analysis showed performance improvement over
the adapted models based on Tucker decomposition, which is a representative multilinear decomposition technique,
for small amounts of adaptation data while maintaining good performance for large amounts of adaptation data.
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1 Introduction
In automatic speech recognition (ASR) systems using hid-
den Markov models (HMMs) [1], mismatches between
the training and testing conditions lead to perfor-
mance degradation. One of such mismatches results
from speaker variation. Thus, speaker adaptation tech-
niques [2] are employed to transform a well-trained
canonical model (e.g., speaker-independent (SI) HMM)
to the target speaker. Speaker adaptation requires
fewer adaptation data than needed to build a speaker-
dependent (SD) model. Among speaker adaptation tech-
niques, eigenvoice (EV) [3] expresses the model of a
new speaker as a linear combination of basis vectors,
which are built from the principal component analysis
(PCA) of the HMMmean vectors of training speakers.
In a similar approach, speaker adaptation based

on tensor analysis using Tucker decomposition
[4] was investigated in [5], where bases were con-
structed from the multilinear decomposition of a
tensor that consisted of the HMM mean vectors of
training speakers. In the approach, all the training
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models were collectively arranged in a third-order tensor
(3-D array):

MR×D×S (1)

where the first, second, and third modes (dimensions)
were for the mixture component, dimension of the mean
vector, and training speaker. In [5], Tucker decomposition
was used to build bases and in the experiments, speaker
adaptation using Tucker decomposition showed better
performance than eigenvoice and maximum likelihood
linear regression (MLLR) adaptation [6]. The improve-
ment seemed to be attributable to the increased number
of adaptation parameters and compact bases. Also noticed
in [5] was that the increased number of adaptation param-
eters did not guarantee a good performance when the
amount of adaptation data was small (the determina-
tion of the proper number of adaptation parameters for
given adaptation data is amodel-order selection problem).
Extending the tensor-based approach, in [7], the fourth
mode for noise was added (so, M became a 4-D array)
so that the training models of various speakers and noise
conditions were decomposed.
In this article, we describe a speaker adaptation method

using probabilistic 2-mode analysis, which is an appli-
cation of probabilistic tensor analysis (PTA) [8] to the
second-order tensor (i.e., matrix); PTA is an application
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of probabilistic PCA (PPCA) [9] to tensor objects. Using
probabilistic 2-mode analysis, we derive bases from train-
ing models in a probabilistic framework, and formulate
the speaker adaptation equation in the maximum a pos-
teriori (MAP) framework [10]. The speaker adaptation
equation based on the probabilistic approach becomes
similar to MAP linear regression (MAPLR) adaptation
[11] as shown below. The experiments showed that the
proposed method further improved the performance of
the speaker adaptation based on Tucker decomposition
for small amounts of adaptation data.
The rest of this article is organized as follows.

Section 2.1 explains some tensor algebra and tensor
decomposition. Section 2.3 explains the probabilistic 2-
mode analysis of a set of mean vectors of training HMMs.
In Section 2.5, the estimation of the prior distribution
of the adaptation parameter is described. Section 2.6
describes the speaker adaptation in the MAP framework
using the bases and the prior. Section 2.2 describes the
speaker adaptation using Tucker decomposition, which is
compared with the probabilistic 2-mode analysis-based
method.We explain the experiments in Section 3 and con-
clude the article in Section 4. Some of the notations used
in this article are summarized in Table 1.

2 Methods
2.1 Multilinear decomposition

Following the convention of multilinear algebra, we
denote vectors, matrices, and tensors by lowercase bold-
face letters (e.g., m), uppercase boldface letters (e.g., M),
and calligraphic letters (e.g., M), respectively, in this
article.
A tensor is a multidimensional array, and an N-

dimensional array is called the Nth-order tensor (or N-
way array). The order of a tensor is the number of indices

Table 1 Notations used in the article

Notation Meaning

r Index for the mixture component (1, . . . , R)

s Index for the training speaker (1, . . . , S)

D Dimension of the acoustic feature vector

μμμ HMMmean vector

M Matrix representation of HMMmean vector

M Tensor representation of training models

G Core tensor

U Mode matrix, factor loading matrix

w Weight vector

W Weight matrix, latent matrix

C, � , � covariance matrix

E Error matrix

for addressing the tensor; so the order of MI1×I2×···×IN

is N. Scalar, vector, and matrix are zeroth-, first-, and
second-order tensors, respectively. There are three indices
for addressing the array in a third-order tensor as depicted
in Figure 1.
Tensor algebra is performed in terms of matrix and

vector representations of tensors; the mode-n flattening
(matricization) of tensor M, which is denoted as M(n), is
obtained by reordering the elements as follows:

M(n) ∈ R
In×(I1×···×I(n−1)×I(n+1)×···×IN ). (2)

That is, all the column vectors along the mode n are
arranged into a matrix. For example, a third-order tensor
MI×J×K can be flattened into an I×(JK), J×(KI), or K×
(IJ) matrix as depicted in Figure 2; for aM2×2×2 tensor:

M = {M(:, :, 1) M(:, :, 2)} (3)

M(:, :, 1) =
[
m111 m121
m211 m221

]
, M(:, :, 2) =

[
m112 m122
m212 m222

]
,

the mode-n flattening is given as:

M →
[
m111 m121
m211 m221

] [
m112 m122
m212 m222

]

→ M(1) =
[
m111 m121 m112 m122
m211 m221 m212 m222

]
(4)

M →
[
m111 m121
m211 m221

] [
m112 m122
m212 m222

]

→ M(2) =
[
m111 m112 m211 m212
m121 m122 m221 m222

]

M →
[
m111 m121
m211 m221

] [
m112 m122
m212 m222

]

→ M(3) =
[
m111 m211 m121 m221
m112 m212 m122 m222

]
.

The operation of the mode-n flattening will be denoted
as matn( · ), i.e., matn(M) = M(n).

Figure 1 A third-order tensor.
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Figure 2Mode-n flattening of a third-order tensor.

Multiplication of a tensor and a matrix is performed by
n-mode product; the n-mode product of a tensorW with
a matrix U is denoted as

M = W ×n U (5)

and is carried out by matrix multiplication in terms of
flattened matrices:

M(n) = UW(n) (6)

or elementwise

(
W ×n U

)
i1...in−1jin+1...iN =

In∑
in=1

wi1i2...iN ujin (7)

where w and u denote the elements of W and U, respec-
tively. If W ∈ R

I1×I2×···×IN and UT ∈ R
Kn×In , then the

dimension of W ×n UT becomes I1 × I2 × · · · × In−1 ×
Kn × In+1 × · · · × IN .
As an extension of singular value decomposition (SVD)

to tensor objects, Tucker decomposition decomposes a
tensor as follows [4]:

MI1×I2×···×IN � WK1×K2×···×KN
N∏

n=1
×nUn (8)

whereUn ∈ R
In×Kn , Kn ≤ In (n = 1, . . . ,N). The core ten-

sorW andmodematricesUn’s correspond to the matrices
of singular values and orthonormal basis vectors in matrix
SVD, respectively. An example of Tucker decomposition
of a third-order tensor is illustrated in Figure 3.
The core tensor W and mode matrices Un’s in Tucker

decomposition can be computed such that they minimize

Error =
∥∥∥∥M − W

N∏
n=1

×nUn

∥∥∥∥2 (9)

where the norm of a tensor is defined as ‖X ‖ =√∑I1
i1=1

∑I2
i2=1 . . .

∑IN
iN=1 x

2
i1i2...iN . A representative tech-

nique for Tucker decomposition is the alternating least

Figure 3 Tucker decomposition of a third-order tensor.

squares (ALS) [12]; the basic idea is to compute eachmode
matrix Un alternatingly with other mode matrices fixed.
For more details on Tucker decomposition, refer to [4].
In the following section, we explain probabilistic 2-mode
analysis in the context of speaker adaptation.

2.2 Speaker adaptation using Tucker decomposition

The probabilistic 2-mode analysis basedmethod is a prob-
abilistic extension of the Tucker decomposition based
method. Thus, we compare the probabilistic approach
with the Tucker decomposition based method in the
experiments. In this section, we explain the speaker adap-
tation based on the Tucker decomposition of training
models in [5]. In this article, speaker adaptation is per-
formed by updating the mean vectors of the output dis-
tribution of an HMM. The HMM mean vectors of each
training speaker are arranged in an R × Dmatrix:

Ms = [
μμμs;1 . . .μμμs;r . . .μμμs;R

]T , s = 1, . . . , S. (10)

Here,μμμs;r denotes the mean vector corresponding to mix-
ture r of the sth training speaker model.
All the centered HMM mean vectors of training speak-

ers,
{
Ms − M

}S
s=1 where M = 1/S

∑
sMs, are collectively

expressed as a third-order tensor M̃, and we decompose
the training tensor by Tucker decomposition as follows:

M̃R×D×S � GKR×KD×KS ×1 Umixture ×2 Udim ×3 Uspeaker (11)

= (
GKR×KD×KS ×3 Uspeaker

)×1 Umixture ×2 Udim.

In the above equation, Umixture ∈ R
R×KR , Udim ∈ R

D×KD ,
and Uspeaker ∈ R

S×KS are basis matrices for the mixture
component, dimension of the mean vector, and training
speaker, respectively (KR ≤ R − 1, KD ≤ D − 1, and
KS ≤ S − 1); the core tensor G is common across the
mixture component, dimension of the mean vector, and
training speaker. In Equation (11), the sth row vector of
Uspeaker, which is denoted as uspeaker;s, corresponds to
the speaker weight of the sth speaker, thus the low-rank
approximation of the sth speaker model is given by

Ms � (
GKR×KD×KS ×3 uspeaker;s

)×1 Umixture ×2 Udim + M.
(12)
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If we define the augmented speaker weight WKR×KD
s ≡

GKR×KD×KS ×3 uspeaker;s, Equation (12) becomes

Ms � Ws ×1 Umixture ×2 Udim + M (13)
= UmixtureWsUT

dim + M.

Thus, we express the model of a new speaker as

Mnew = UmixtureWnewUT
dim + M. (14)

For the given adaptation dataO = {o1, . . . , oT }, we derive
the equation for finding the speaker weight in a maximum
likelihood (ML) criterion:∑

t

∑
r

γr(t)C−1
r UdimWT

new︸ ︷︷ ︸
≡WT

new,aug

uTmixture;rumixture;r (15)

=
∑
t

∑
r

γr(t)C−1
r
(
ot − mT

r
)
umixture;r

where γr(t) denotes the occupation probability of being at
mixture r at t givenO, Cr the covariance matrix of the rth
Gaussian component of an SI HMM (in this article, a diag-
onal covariance matrix is used); umixture;r and mr denote
the rth row vectors of Umixture and M, respectively. In the
above equation, Wnew, aug can be computed using a tech-
nique similar to MLLR adaptation and the weight of the
new speaker is obtained by

Ŵnew = Wnew, augUdim (16)

which is plugged into Equation (14) to produce the model
updated for the new speaker.

2.3 Probabilistic 2-mode analysis
The advantage of probabilistic 2-mode analysis over
Tucker decomposition is similar to that of PPCA over
standard PCA; probabilistic 2-mode analysis can deal with
missing entries in the data tensor (although this is not
the case in our experiments). In the modeling perspec-
tive, probabilistic 2-mode analysis assumes a distribution
of latent variables, thus it is suitable for aMAP framework.
In this section, the ensemble of training models is

expressed as

M = {Ms}Ss=1. (17)

Assuming the HMM mean vectors of training speakers
are drawn from the matrix-variate normal distribution
[13], we derive the adaptation equation based on the
probabilistic 2-mode analysis of training models. We use
probabilistic 2-mode analysis, the second-order case of
PTA [8], to decompose the training models expressed in
matrix form. The latent tensor model is expressed as

M = W
N∏

n=1
×nUn + Mmean + E (18)

whereW denotes the latent tensor,Un’s the factor loading
matrices, Mmean the mean, and E is the error/noise pro-
cess. The 2-mode case of the latent tensor model is given
by

M = W ×1 U1 ×2 U2 + Mmean + E (19)

which becomes, for the training models {M1, . . . ,MS},
Ms = Ws ×1 U1 ×2 U2 + Mmean + Es (20)

= UmixtureWsUT
dim + Mmean + Es

whereWs ∈ R
KR×KD denotes the latent matrix, Umixture ∈

R
R×KR and Udim ∈ R

D×KD the factor loading matrices
(KR ≤ R − 1 and KD ≤ D − 1), Mmean the mean, and
Es the error/noise process. (Mode matrices and dimen-
sions are defined as follows: U1 = Umixture, U2 = Udim,
I1 = R, I2 = D, K1 = KR, and K2 = KD.) The distribu-
tion of Ws is assumed to be a matrix-variate normal, i.e.,
Ws ∼ N (0KR×KD , IKR ⊗ IKD) where ⊗ denotes the Kro-
necker product, and independent of Es whose elements
follow N (0, σ 2). Figure 4 shows the graphical model rep-
resenting the probabilistic 2-mode model.
In Equation (20), it is computationally intractable to cal-

culate Un’s simultaneously. So, the following decoupled
predictive density is defined:

p
(
M|Mmean, {Un}Nn=1, σ

2
)

∝
N∏

n=1
p
(
M×̄nUT

n |t̄n, σ 2
n
)
(21)

Figure 4 Graphical model representation of the probabilistic
2-modemodel.
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where t̄n ∈ R
In×1 and σ 2

n denote the mean vector and
noise variance, respectively, for mode n;M×̄nUT

n ≡ M×1
UT
1 . . . ×n−1 UT

n−1 ×n+1 UT
n+1 . . . ×N UT

N , i.e., the prod-
uct ofM with all the mode matrices except mode n, which
is called the contracted n-mode product [14]. That is, the
nth probabilistic function is defined as the projectedM by
all Uj’s expect Un. Given observed data M, the decoupled
posterior probabilistic function is defined as

p
(
Mmean, {Un}Nn=1, σ

2|M) ∝
N∏

n=1
p
(
t̄n,Un, σ 2

n ,M, {Uj}Nj=1,j �=n
)
.

(22)

By Bayes’ theorem, the nth posterior distribution can be
expressed in terms of the decoupled likelihood function
and the decoupled prior distribution:

p
(
t̄n,Un, σ 2

n ,M, {Uj}Nj=1,j �=n
) ∝

p
(
M, {Uj}Nj=1,j �=n|t̄n,Un, σ 2

n
)
p
(
t̄n,Un, σ 2

n
)
. (23)

Therefore, the decoupled predictive density is given by

p (M|M) ∝p
(
M|Mnew, {Un}Nn=1, σ

2
)

× p
(
Mmean, {Un}Nn=1, σ

2|M) (24)

=
N∏

n=1
p
(
M×̄nUT

n |t̄n, σ 2
n

)

× p
(
M, {Uj}Nj=1,j �=n|t̄n,Un, σ 2

n

)
.(

p
(
t̄n,Un, σ 2

n
)
is dropped out for a fixedUn). This is the 2-

mode case of the PTA in [8]. In our case, Equation (24) is
given by

p (M|M) ∝ p
(
UT
dimM

T |t̄mixture, σ 2
mixture

)
× p

(
M,Udim|t̄mixture,Umixture, σ 2

mixture
)

(25)
× p

(
UT
mixtureM|t̄dim, σ 2

dim
)

× p
(
M,Umixture|t̄dim,Udim, σ 2

dim
)
.

Now, Un’s are obtained by maximizing the following pos-
terior distribution:

p
({Un}Nn=1|M

) ≈
N∏

n=1
p
(
Un|M×̄nUT

n
)

(26)

where p
(
Un|M×̄nUT

n
) ≡ ∏S

s=1Ms×̄nUT
n . The

expectation-maximization (EM) algorithm [15] is applied
to compute Un’s. The application of the EM algorithm to
construct probabilistic 2-mode model is explained in the
next section.

2.4 Construction of probabilistic 2-modemodel for
speaker adaptation

In Equation (20), for the given training models, the maxi-
mum likelihood (ML) estimate of Mmean is given as M =
(1/S)

∑
sMs and {Un, σ 2

n } can be estimated as follows.

First, let us define the followings: Let tn;j ∈ R
In×1 be the

jth column vector of

T(n) = matn
(
M×̄nUT

n
)

(27)

for 1 ≤ j ≤ ĪnS (Īn = ∏N
j=1,j �=n Ij) and xn;j ∈ R

Kn×1 be the
jth column vector of

X(n) = matn
(
M

N∏
n=1

×nUT
n
)
. (28)

Let us suppose tn|xn ∼ N (Unxn + t̄n, σ 2
n IIn) and

xn ∼ N (0Kn×1, IKn). Then, by integrating out xn, tn ∼
N (t̄n,Gn)where t̄n = 1/(ĪnS)

∑ĪnS
j=1 tn;j andGn = UnUT

n +
σ 2
n IIn . Consequently,

xn|tn ∼ N
(
H−1

n UT
n (tn − t̄n), σ 2

nH−1
n
)

(29)

where Hn = UT
n Un + σ 2

n IKn . The right-hand side
of Equation (26) becomes

log p
(
Un|M×̄nUT

n
) ∝ − ĪnS

2

(
log |Gn| + tr

[
G−1
n Sn

])
(30)

where Sn = 1/(ĪnS − 1)
∑ĪnS

j=1
(
tn;j − t̄n

)(
tn;j − t̄n

)T and
tr[ · ] denotes the trace of a matrix. Summing up for all the
modes, we obtain the following log-likelihood function of
the posterior distribution:

L =
∑
n

log p
(
Un|M×̄nUn

) ∝

−
∑
n

{
ĪnS
2

(
log |Gn| + tr

[
G−1
n Sn

])}
. (31)

The graphical model representation of the decoupled
probabilistic model is shown in Figure 5.
We seek to find Un’s that maximize the log-likelihood

function alternatingly. Mode matrices U1 and U2 are ini-
tialized with the results from the Tucker decomposition
which minimizes the reconstruction error:

Error =
∑
s

∥∥∥∥Ms − (
Ws ×1 U1 ×2 U2 + M

)∥∥∥∥2. (32)

With the initial U1 and U2, the following procedure is
performed for each mode (n = 1, 2).
Each training model is projected into mode matrices

except mode n and expressed in a mode-nmatrix:

Ts,(n) = matn
(
Ms×̄nUT

n
)
. (33)

All the column vectors of
{
Ts,(n)

}S
s=1 constitute the train-

ing data set:

{tn;j}, 1 ≤ j ≤ Īn S. (34)

Then, with an initial estimate of σ 2
n (e.g., 0.005 was used in

the experiments), the EM algorithm is iterated as follows
until Un and σ 2

n converge.
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E-step: From Equation (31), the expectation of
the log-likelihood function of complete data w.r.t.
p
(
xn;j|tn;j, t̄n,Un, σ 2

n
)
is given as

〈Lc〉 =
∑
n

∑
s

E
[
log p(Ms,Ws|{U}Nj=1,j �=n)

]
(35)

=
∑
n

InS∑
j=1

E
[
log p(tn;j, xn;j|{U}Nj=1,j �=n)

]

where

log p(tn;j, xn;j|{U}Nj=1,j �=n) = log p(xn;j) + log p(tn;j|xn;j)
(36)

∝ −‖xn;j‖2 − In
2
log(σ 2

n )

− 1
σ 2
n

‖tn;j − Unxn;j − t̄n‖2.

So,

〈Lc〉 ∝ −
∑
n

ĪnS∑
j=1

{
tr
[〈xn;jxTn;j〉]

+ 1
σ 2
n

(tn;j − t̄n)T(tn;j − t̄n) (37)

+ In
2
log(σ 2

n ) + 1
σ 2
n
tr
[
UT
nUn〈xn;jxTn;j〉

]
− 2

σ 2
n

〈xn;j〉TUT
n (tn;j − t̄n)

}

Figure 5 Graphical model representation of the decoupled
probabilistic model.

with the sufficient statistics are given as follows from
Equation (29):

〈xn;j〉 = H−1
n UT

n
(
tn;j − t̄n

)
(38)

〈xn;jxTn;j〉 = σ 2
n H−1

n + 〈xn;j〉〈xn;j〉T .

M-step: Model parameters are updated by maximizing
〈Lc〉 w.r.t. Un and σ 2

n . Setting ∂Un〈Lc〉 = 0 produces

Un =
[ ĪnS∑

j=1

(
tn;j − t̄n

)〈xn;j〉T][ ĪnS∑
j=1

〈xn;jxTn;j〉
]−1

. (39)

Next, setting ∂σ 2
n
〈Lc〉 = 0 produces

σ 2
n = 1

InĪnS

ĪnS∑
j=1

{
‖tn;j − t̄n‖2 − 2〈xn;j〉TUT

n
(
tn;j − t̄n

)

+ tr
[〈xn;jxTn;j〉UT

nUn
]}

.

(40)

Essentially, the procedure applies PPCA to the data set
{tn;j} for each mode.

2.5 Estimation of prior distribution
Given model parameters {M,Un, σ 2

n }, the weight matrix
for the training speaker modelMs is obtained by

Ws = (
Ms − M

) 2∏
n=1

×n
(
H−1

n UT
n
)

(41)

= (
H−1

1 UT
mixture

)(
Ms − M

)(
H−1

2 UT
dim
)T .

From the set of weight matrices {Ws}Ss=1, the distribu-
tion of the weight is estimated. In deriving the adaptation
equation in the MAP framework, the parameters for the
prior distribution can be obtained in closed-form solu-
tions if p(W) follows a conjugate distribution. Hence,
we assume the prior distribution of the weight to be a
matrix-variate normal:

p(W) ∝ 1
|�|KD/2|�|KR/2

exp
{
− 1
2
tr
[
(W−Wmean)

T�−1(W−Wmean)���
−1]}.
(42)

Furthermore, the hyperparameters of p(W) can easily
be estimated in an ML criterion if ��� is known [16]. So,
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��� is assumed to be the identity matrix [17], and the
hyperparameters are estimated as:

Ŵmean = 1
S
∑
s

Ws = 0KR×KD (43)

�̂�� = 1
S − 1

∑
s

WsWT
s .

2.6 Speaker adaptation in the MAP framework
Based on Equation (20), we express the model of a new
speaker as

Mnew = UmixtureWnewUT
dim + M. (44)

For the given adaptation data O = {o1, . . . , oT }, we
estimate the adaptation parameter in a MAP criterion:

���MAP = arg max
���

p(���|O) (45)

∝ arg max
���

p(O|���) p(���)

∝ arg max
���

log p(O|���) + log p(���)

where��� = {Wnew} denotes the model parameter.

Using the EM algorithm, we obtain the following auxil-
iaryQ-function to be optimized (discarding the terms that
are independent of the model parameter):

Q(���, �̂��)=− 1
2
∑
t

∑
r

γr(t) tr
[
(ot−mT

new;r)
TC−1

r (ot−mT
new;r)

]
(46)

− 1
2
tr
[
(WnewUdim)T�̂��

−1
(WnewUdim)

]

where ��� and �̂�� denote the current and updated
model parameters, respectively, and mnew;r =
umixture;rWnewUT

dim + mr . In finding the speaker weight,
we compute Wnew, aug ≡ WnewUdim, from which Wnew
is obtained. Solving in this way, we can use the row-
by-row technique in MLLR adaptation [6]. Setting
∂WnewQ(���, �̂��) = 0 yields the following equation:
∑
t

∑
r

γr(t)C−1
r UdimWT

new︸ ︷︷ ︸
≡WT

new, aug

uTmixture;rumixture;r+UdimWT
new︸ ︷︷ ︸

≡WT
new, aug

�̂��
−1

(47)

=
∑
t

∑
r

γr(t)C−1
r
(
ot − mT

r
)
umixture;r .

The above equation can be solved for Wnew, aug in a
similar way to MLLR adaptation in [6]: we define the
followings:

Vr =
∑
t

γr(t)C−1
r (48)

Dr = uTmixture;rumixture;r

G(i) =
∑
r

vr(i, i)Dr

Z =
∑
t

∑
r

γr(t)C−1
r
(
ot − mT

r
)
umixture;r

���(i) = 1
S − 1

∑
s

ws;iwT
s;i

where vr(i, i) denotes the (i, i) element of Vr and ws;i the
ith column vector ofWs, aug ≡ WsUdim. Then, the speaker
weight can be computed:

wT
new, aug, (i) =

[
G(i) + ���−1

(i)

]−1
zT(i), i = 1, . . . ,D

(49)

where wnew, aug, (i) denotes the ith row of Wnew, aug and
z(i) the ith row vector of Z. The method becomes similar
to MAPLR adaptation in [11]. Finally, the speaker weight
is obtained as

Ŵnew = Wnew, augU+
dim (50)

where [ · ]+ denotes the pseudoinverse of a matrix. The
weight is plugged into Equation (44) to produce the model
adapted to the new speaker.

2.7 Speaker adaptation techniques compared in the
experiments

In this section, we briefly review the speaker adapta-
tion techniques compared with the probabilistic 2-mode
analysis based method: eigenvoice adaptation [3], MLLR
adaptation [6], and MAPLR adaptation [11].
In eigenvoice adaptation, the collection of HMM mean

vectors of speaker s is arranged in an (RD) × 1 vector:

μμμs =

⎡
⎢⎢⎢⎣

μμμs;1
μμμs;2
...

μμμs;R

⎤
⎥⎥⎥⎦ . (51)

Then, the set of S supervectors, {μμμ1, . . . ,μμμS}, is decom-
posed by PCA to produce the adaptation model

μμμnew = ���wnew + μ̄μμ (52)

where ��� = [
φφφ1 . . .φφφK

]
, the basis matrix consisting of the

K dominant eigenvectors from PCA, and μ̄μμ = 1/S
∑

sμμμs.
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Table 2 Word recognition accuracy (%) of the Tucker 3-mode and probabilistic 2-mode basedmethods

Number of Number of adaptation sentences

Method (KR,KD) free parameters 1 2 3 4 5

Tucker 3-mode (20, 35) 700 91.84 92.98 93.07 92.99 93.11

(20, 38) 760 91.82 92.83 93.11 93.01 93.01

(30, 35) 1050 90.77 92.99 93.18 93.09 92.94

(30, 38) 1140 90.77 92.86 93.18 93.01 92.86

(40, 35) 1400 89.39 92.85 93.11 93.24 93.03

(40, 38) 1520 89.16 92.77 93.20 93.14 92.98

(50, 35) 1750 87.95 92.34 93.24 93.26 93.13

(50, 38) 1900 87.75 92.47 93.27 93.31 93.16

Probabilistic 2-mode (20, 35) 700 93.07 93.18 93.26 93.27 93.16

(20, 38) 760 92.96 93.07 93.03 93.24 93.13

(30, 35) 1050 92.98 93.20 93.24 93.24 93.31

(30, 38) 1140 92.94 93.33 93.33 93.27 93.31

(40, 35) 1400 93.13 93.20 93.39 93.24 93.01

(40, 38) 1520 93.14 93.22 93.33 93.20 93.24

(50, 35) 1750 93.26 93.35 93.37 93.29 93.29

(50, 38) 1900 93.37 93.44 93.42 93.31 93.39

The number of mixture components R = 3472 · 8 and the dimension of acoustic feature vector D = 39. The number of free parameters is KR × KD .

The K × 1 weight vector can be obtained by maximizing
the likelihood of the adaptation data, which is given by

ŵnew =
[∑

t

∑
r

γr(t)���T
r C−1

r ���r

]−1

×
[∑

t

∑
r

γr(t)���T
r C−1

r
(
ot − μ̄μμr

)]
(53)

where ���r and μ̄μμr denote the D × K submatrix and D × 1
subvector corresponding to the rth mixture of ��� and μ̄μμ,
respectively.
In MLLR adaptation, the updated model for a new

speaker is obtained by linearly transforming the SI model
(assuming a global regression matrix):

μμμnew, r = Wnew ξξξ r , ξξξ r =
[

ω

μμμSI, r

]
(54)

where μμμSI, r denotes the mean vector of the SI HMM cor-
responding to mixture r and ω is the bias offset term: ω =
1 to include the term and ω = 0 otherwise (ω = 1 in our
experiments). The D× (D+ 1) transformation matrix can
be obtained in an ML criterion, which yields the following
equation:∑

t

∑
r

γr(t)C−1
r ot ξξξTr (55)

=
∑
t

∑
r

γr(t)C−1
r Wnew ξξξ r ξξξ

T
r .

The above equation can be solved forWnew:

ŵT
new, (i) = G−1

(i) z
T
(i), i = 1, . . . ,D (56)

where ŵnew, (i) and z(i) denote the ith row vectors of Ŵnew
and Z, respectively; G(i) and Z are defined as:

Vr =
∑
t

γr(t)C−1
r (57)

Dr = ξξξ r ξξξ
T
r

G(i) =
∑
r

vr(i, i)Dr

Z =
∑
t

∑
r

γr(t)C−1
r ot ξξξTr

where vr(i, i) denotes the (i, i) element of Vr .
In MAPLR adaptation, the prior for the transformation

matrix is used in the MLLR framework. The parameters
for the prior are obtained from the MLLR transformation
matrices of training speakers {W1, . . . ,WS}:

w̄(i) = 1
S
∑
s

ws, (i) (58)

���(i) = 1
S − 1

∑
s

(
ws, (i) − w̄(i)

)T(ws, (i) − w̄(i)
)

where ws, (i) denotes the ith row vector of Ws. Then, the
transformation matrix for a new speaker is obtained in a
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Table 3 p-values from thematched-pair t-test
Methods Number of adaptation sentences

1 2 3 4 5

Prob. 2-mode and Tucker 3-mode < 0.01 0.22 0.08 0.03 0.34

Prob. 2-mode and MAPLR 0.10 < 0.01 < 0.01 0.01 0.02

Prob. 2-mode and MLLR, block-diagonal < 0.01 0.01 0.04 < 0.01 0.05

Prob. 2-mode and EV < 0.01

Tucker 3-mode and MLLR, block-diagonal 0.43 0.18 0.63 0.17 0.22

Tucker 3-mode and EV 0.94 < 0.01 < 0.01 < 0.01 < 0.01

For the probabilistic 2-mode and Tucker 3-mode based models, KR = 20 and KD = 35.

MAP criterion. Deriving the equation in the same way as
above, we can obtain the following:

ŵT
new, (i) =

[
G(i) + ���−1

(i)

]−1[
z(i) + w̄(i)���

−1
(i)

]T
. (59)

3 Experiments
We carried out the large-vocabulary continuous-speech
recognition (LVCSR) experiments using the Wall Street
Journal corpus WSJ0 [18]. In building the SI model, we
used 12754 utterances of 101 speakers from the corpus.
As the acoustic feature vector, we used the 39-dimensional
vector consisting of 13-dimensional mel-frequency cep-
stral coefficients (MFCCs) including the 0th cepstral coef-
ficient, their derivative coefficients, and their acceleration
coefficients. The feature vector was extracted with the 20-
ms Hamming window with the frame sliding of 10 ms.
Using the HMM toolkit (HTK) [19], we built a tied-state
triphone model (word-internal triphones) with 3472 tied
states and 8-mixture Gaussian.
To build training models for constructing bases, we

transformed the SI model by MLLR adaptation [6] using
32 regression classes followed by maximum a posteriori
(MAP) adaptation [10]. We used the 101 adapted mod-
els to build the Tucker decomposition and probabilistic
tensor based models as well as eigenvoice.
For adaptation and recognition test, we used Nov’92

5K non-verbalized adaptation and test sets. The num-
ber of testing speakers was 8; adaptation set was used
for adaptation and testing set of 330 sentences was used
for recognition test (the number of testing utterances per
speaker was about 40). The length of an adaptation sen-
tence was about 6 s and the adaptation was performed
in supervised mode. In recognition test, we used WSJ 5K
non-verbalized 5k closed-vocabulary set and WSJ stan-
dard 5K non-verbalized closed bigram.
The word recognition accuracy of the SI model is

91.54%. Table 2 shows the results of the Tucker decom-
position and probabilistic 2-mode based methods (KS =
100 in the Tucker decomposition based model). In the
table, the probabilistic 2-mode based method shows
improved performance over the Tucker decomposition

based method for small amounts of adaptation data,
which can be evidently seen in Figure 6 for the Tucker
decomposition and probabilistic 2-mode based models
with (KR = 20,KD = 35). The results of MAPLR [11]
are also shown in the figure. The use of MAP framework
contributes to improved performance for small amounts
of adaptation data. The number of free parameters of
each method is given as follows: 20 · 35 for the Tucker 3-
mode and probabilistic 2-mode based models, and 39 · 40
for MAPLR adaptation. In Figure 7, the Tucker decom-
position based method is compared with MLLR and
eigenvoice adaptation techniques. The figure shows that
the Tucker decomposition based method outperforms
MLLR and eigenvoice adaptation techniques for adapta-
tion sentences > 1. It can be inferred from the figure that
eigenvoice adaptation will outperform the Tucker decom-
position based method or MLLR for sparse adaptation
data. The p-values from thematched-pair t-test are shown
in Table 3; although the values are not always small, the
performance improvement of the probabilistic 2-mode
based method seems meaningful. Additionally, Figure 8
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Figure 6Word recognition accuracy of the probabilistic 2-mode
basedmodel, Tucker 3-mode basedmodel, and MAPLR
adaptation.
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Figure 7Word recognition accuracy of the Tucker 3-mode based
model, MLLR, and eigenvoice adaptation.

shows the performance of the probabilistic 2-mode based
model with (KR = 20,KD = 35), MLLR adaptation with a
full regression matrix, andMAPLR adaptation for adapta-
tion data of about 6–240 s; for adaptation sentences ≥ 10
(about 60 s), the probabilistic 2-mode based model shows
the comparable performance with MLLR adaptation and
MAPLR adaptation. In Figure 8, the p-values are given
as: p < 0.01 for 1–5 adaptation sentences between the
probabilistic 2-mode based model and MLLR adaptation,
p < 0.05 for 2–5 adaptation sentences between the proba-
bilistic 2-mode based model and MAPLR adaptation. The
number of free parameters of each method is summarized
in Table 4.
We think that the performance improvement of the pro-

posed method over MLLR or MAPLR adaptation comes
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Figure 8Word recognition accuracy of the probabilistic 2-mode
basedmodel, MLLR, and MAPLR adaptation.

Table 4 Number of free parameters of adaptation
techniques

Method Number of free parameters

Probabilistic 2-mode based model 20 · 35 (KR · KD)

Tucker 3-mode based model 20 · 35 (KR · KD)

MLLR, 3-block-diagonal regression matrix 13 · 40
MLLR, full regression matrix 39 · 40
MAPLR adaptation 39 · 40
Eigenvoice 50

from the use of basis vectors and speaker weight of large
dimension. Additionally, we think that the performance
improvement of the probabilistic 2-mode based method
in the MAP framework over the Tucker decomposition
based method in the ML framework for small amounts
of adaptation data (e.g., 1 adaptation sentence) is due to
its constraint on the weight. If the amount of adaptation
data is small (e.g., 1 adaptation sentence), the weight can-
not be reliably estimated in the ML framework where the
weight is estimated using only adaptation data without
constraint, as done in the Tucker decomposition based
method. The results confirm that constraint on the weight
in the MAP framework can produce better model when
the amount of adaptation data is small.
The selection of appropriate dimensions of model

parameters (e.g., KR and KD) in the probabilistic 2-mode
analysis depends on the training models and also available
adaptation data. The selection ofmodel parameters affects
the performance of the system, but how to choose the
optimummodel parameters is not obvious, which needs a
further study.

4 Conclusions
In this article, we applied probabilistic tensor analysis to
the adaptation of HMM mean vectors to a new speaker.
The training models consisted of the mean vectors of
HMMs expressed in matrix form and the training set was
decomposed by probabilistic 2-mode analysis. The prior
distribution of the adaptation parameter was estimated
from the training models. Then, the speaker adaptation
equation was derived in the MAP framework. Compared
with the speaker adaptation method based on Tucker
3-mode decomposition in the ML framework, the pro-
posed method further improved the performance for
small amounts of adaptation data.
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