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Abstract

Eigenphone-based speaker adaptation outperforms conventional maximum likelihood linear regression (MLLR) and
eigenvoice methods when there is sufficient adaptation data. However, it suffers from severe over-fitting when only a
few seconds of adaptation data are provided. In this paper, various regularization methods are investigated to obtain
a more robust speaker-dependent eigenphone matrix estimation. Element-wise l1 norm regularization (known as
lasso) encourages the eigenphone matrix to be sparse, which reduces the number of effective free parameters and
improves generalization. Squared l2 norm regularization promotes an element-wise shrinkage of the estimated matrix
towards zero, thus alleviating over-fitting. Column-wise unsquared l2 norm regularization (known as group lasso) acts
like the lasso at the column level, encouraging column sparsity in the eigenphone matrix, i.e., preferring an
eigenphone matrix with many zero columns as solution. Each column corresponds to an eigenphone, which is a basis
vector of the phone variation subspace. Thus, group lasso tries to prevent the dimensionality of the subspace from
growing beyond what is necessary. For nonzero columns, group lasso acts like a squared l2 norm regularization with
an adaptive weighting factor at the column level. Two combinations of these methods are also investigated, namely
elastic net (applying l1 and squared l2 norms simultaneously) and sparse group lasso (applying l1 and column-wise
unsquared l2 norms simultaneously). Furthermore, a simplified method for estimating the eigenphone matrix in case
of diagonal covariance matrices is derived, and a unified framework for solving various regularized matrix estimation
problems is presented. Experimental results show that these methods improve the adaptation performance
substantially, especially when the amount of adaptation data is limited. The best results are obtained when using the
sparse group lasso method, which combines the advantages of both the lasso and group lasso methods. Using
speaker-adaptive training, performance can be further improved.
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1 Introduction
Model space speaker adaptation is an important tech-
nique in modern speech recognition system. The basic
idea is that given some adaptation data, the parameters
of a speaker-independent (SI) system are transformed to
match the speaking pattern of an unknown speaker, result-
ing in a speaker-adapted (SA) system. In this paper, we
focus on the speaker adaptation of a conventional hidden
Markov model Gaussian mixture model (HMM-GMM)-
based speech recognition system. To deal with the scarcity
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of the adaptation data, parameter sharing schemes are
usually adopted. For example, in the eigenvoice method
[1], the SAmodels are assumed to lie in a low-dimensional
speaker subspace. The subspace bases are shared among
all speakers, and a speaker dependent coordinate vector
is estimated for each unknown speaker. The maximum
likelihood linear regression (MLLR) method [2] estimates
a set of linear transformations to transform an SI model
into an SAmodel. The transformationmatrices are shared
among different HMM state components.
Recently, a novel phone subspace-based method, the

eigenphone-based method, was proposed [3]. In con-
trast to the eigenvoice method, the phone variations of a
speaker are assumed to be in a low-dimensional subspace,
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called the phone variation subspace. The coordinates of
the whole phone set are shared among different speakers.
During speaker adaptation, a speaker-dependent eigen-
phone matrix representing the main phone variation
patterns for a specific speaker is estimated. In [4], the
‘eigenphone’ is first introduced as a set of linear basis
vectors of the phone space used in conjunction with eigen-
voices. The set of linear basis vectors are obtained by a
Kullback-Leibler divergence minimization algorithm for a
closed set of training speakers. Estimation of the eigen-
phones for unknown speakers is not studied. Kenny’s
eigenphone method is a multi-speaker modeling tech-
nique rather than a speaker adaptation technique in the
usual sense. In our method, the speaker-independent
phone coordinate matrix is obtained by principal compo-
nent analysis (PCA), and speaker adaptation is performed
by estimating a set of eigenphones for each unknown
speaker using the maximum likelihood criterion.
Due to its more elaborate modeling, the eigenphone

method outperforms both the eigenvoice and the MLLR
method, when sufficient amounts of adaptation data are
available. However, with limited amounts of adaptation
data, the estimation shows severe over-fitting, resulting
in very bad adaptation performance [3]. Even with a fine
tuned Gaussian prior, the eigenphone matrix estimated by
the maximum a posteriori (MAP) criterion still does not
match the performance of the eigenvoice method.
In machine learning, regularization techniques are

widely employed to address the problem of data scarcity
and model complexity. Recently, regularization has been
widely adopted in speech processing and speech recog-
nition applications. For instance, l1 and l2 regularization
have been proposed for spectral denoising in speech
recognition [5]. In [6], similar regularization methods
are adopted to improve the estimation of state-specific
parameters in the subspace Gaussian mixture model
(SGMM). In [7], l1 regularization is used to reduce the
nonzero connections of deep neural networks (DNNs)
without sacrificing speech recognition performance. In
[8], it was found that group sparse regularization can offer
significant gains over efficient techniques like the elastic
net (combining of l1 and l2 regularization) in noise robust
speech recognition.
In this paper, we investigate the regularized estimation

of the speaker-dependent eigenphone matrix for speaker
adaptation. Three regularization methods and their com-
binations are applied to improve the robustness of the
eigenphone-based method. The l1 norm regularization
can be used to constrain the sparsity of the matrix,
which can reduce the number of free parameters of each
eigenphone, thus improving the robustness of the adapta-
tion. The squared l2 norm can prevent each eigenphone
from being too large, yielding better generalization of the
adapted model. Each column in the eigenphone matrix

corresponds to one eigenphone and hence is a basis vec-
tor of the phone variation subspace. Thus, the number of
nonzero columns determines the dimension of the phone
variation subspace. The column-wise unsquared l2 norm
regularization forces some columns of the matrix to be
zero, thus effectively preventing the dimensionality of the
phone variation subspace to grow beyond what is neces-
sary. In this paper, all these regularizationmethods, as well
as two combinations of them, namely, the elastic net and
sparse group lasso, are presented in a unified framework.
Accelerated proximal gradient descent is adopted to solve
the mathematical optimization problems in a flexible way.
In [9], a speaker-space compressive sensing method

is used to perform speaker adaptation using an over-
complete speaker dictionary in case of limited amount of
adaptation data. In this paper, we discuss the phone-space
speaker adaptation method, which obtains good perfor-
mance when the adaptation data is sufficient. Various
regularization methods are applied to improve perfor-
mance in case of insufficient adaptation data. Although
the speaker-space and phone-space methods can be com-
bined using a hierarchical Bayesian framework [10], we
will not pursue that in this paper.
In the next section, a brief overview of the eigenphone-

based speaker adaptation method is given, a simplified
method for row-wise estimation of the eigenphone matrix
in case of diagonal covariance matrices is derived, and
the comparisons between the eigenphone method and
various existing methods are presented. A unified frame-
work of regularized eigenphone estimation is proposed in
Section 3. Various regularization methods and their com-
binations are discussed in detail. The optimization of the
eigenphonematrix using an accelerated incremental prox-
imal gradient decent algorithm is given in Section 4. In
Section 5, different regularization methods are compared
through experiments on supervised speaker adaptation of
a Mandarin syllable recognition system and unsupervised
speaker adaptation of an English large vocabulary speech
recognition system using the Wall Street Journal (WSJ;
NewYork, NY, USA) corpus. Finally, conclusions are given
in Section 6.

2 Review of the eigenphone-based speaker
adaptationmethod

2.1 Eigenphone-based speaker adaptation
Given a set of speaker-independent HMMs containing a
total ofMmixture components across all states and mod-
els and a D-dimensional speech feature vector, let μm,
μm(s), and um(s) = μm(s) − μm denote the SI mean vec-
tor, the SA mean vector, and the phone variation vector
for speaker s and mixture component m, respectively. In
eigenphone-based speaker adaptation method, the phone
variation vectors {um(s)}Mm=1 are assumed to be located
in a speaker-dependent N(N << M) dimensional phone



Zhang et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:11 Page 3 of 13
http://asmp.eurasipjournals.com/content/2014/1/11

variation subspace. The eigenphone decomposition of the
phone variation matrix can be expressed by the following
equation [3]:

U(s)= [u1(s)u2(s) · · ·uM(s)]

≈[v0(s) v1(s) v2(s) · · · vN (s)]

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
l11 l21 l31 . . . lM1
l12 l22 l32 . . . lM2
...

... . . .
...

...
l1N l2N l3N . . . lMN

⎤
⎥⎥⎥⎥⎥⎦

=V (s) · L, (1)

where v0(s) and {vn(s)}Nn=1 denote the origin and the
bases of the phone variation subspace of speaker s, respec-
tively,

[
lm1 lm2 · · · lmN

]T is the corresponding coordinate
of mixture component m. We call {vn(s)}Nn=0 the eigen-
phones of speaker s.
Equation 1 can be viewed as the decomposition of the

phone variation matrix U(s) to the multiplication of two
low-rank matrices L and V (s). Note that the phone coor-
dinate matrix L is shared among all speakers, and the
eigenphone matrix V (s) is speaker dependent. Given L,
speaker adaptation can be performed by estimating V (s′)
for each unknown speaker s′ during adaptation.
Suppose there are S speakers in the training set. Con-

catenating each column of all training speaker phone
variation matrices {U(s)}Ss=1, we can obtain

U =

⎡
⎢⎢⎢⎣

U(1)
U(2)
...
U(S)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

u1(1) u2(1) · · · uM(1)
u1(2) u2(2) · · · uM(2)
...

...
. . .

...
u1(S) u2(S) · · · uM(S)

⎤
⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎣

v0(1) v1(1) v2(1) · · · vN (1)
v0(2) v1(2) v2(2) · · · vN (2)
...

...
...

. . .
...

v0(S) v1(S) v2(S) · · · vN (S)

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
l11 l21 l31 . . . lM1
l12 l22 l32 . . . lM2
...

...
...

. . .
...

l1N l2N l3N . . . lMN

⎤
⎥⎥⎥⎥⎥⎦

= V · L. (2)

Note that the nth column of V , which is the concatena-
tion of the nth eigenphones for all speakers {vn(s)}Ss=1, can
be viewed as a basis vector of the column vectors of matrix
U . Themth column of the phone coordinate matrix L cor-
responds to the coordinate vector for mixture component

m. Hence, L implicitly contains the correlation informa-
tion for different Gaussian components, which is speaker
independent. From Equation 2, it can be observed that L
can be calculated by performing PCA on the columns of
matrix U .
During speaker adaptation, given some adapta-

tion data, the eigenphone matrix V (s) is estimated
using the maximum likelihood criterion. Let
O(s) = {o(s, 1), o(s, 2), · · · , o(s,T)} denote the sequence
of feature vectors of the adaptation data for speaker s.
Using the expectation maximization (EM) algorithm, the
auxiliary function to be minimized is given as follows:

Q(V (s)) = 1
2

∑
t

∑
m

γm(t)
[o(s, t) − μm(s)

]T

× �−1
m

[o(s, t) − μm(s)
]
,

(3)

where μm(s) = μm + v0(s) + ∑N
n=1 lmnvn(s), and γm(t)

is the posterior probability of being in mixture m at time
t given the observation sequence O(s) and the current
estimation of the SA model.
Suppose the covariance matrix �m is diagonal. Let σm,d

denote its dth diagonal element and od(s, t), μm,d, and
vn,d(s) represent the dth component of o(s, t), μm, and
vn(s), respectively. After some mathematical manipula-
tion, Equation 3 can be simplified to

Q(V (s))= 1
2
∑
d

∑
t

∑
m

γm(t)σ−1
m,d

[
o′
m,d(s, t)− l̂Tmνd(s)

]2
,

(4)

where o′
m,d(s, t) = od(s, t) − μm,d, l̂m =[ 1, lm1, lm2, . . . ,

lmN ]T, and νd(s) =[ v0,d(s), v1,d(s), v2,d(s), . . . , vN ,d(s)]T,
which is the dth row of the eigenphone matrix V (s).
Define

Ad =
∑
t

∑
m

γm(t)σ−1
m,d l̂m l̂

T
m

and

bd =
∑
t

∑
m

γm(t)σ−1
m,do′m,d(s, t)l̂m.

Equation 4 can be further simplified to

Q(V (s)) = 1
2

∑
d

[
νd(s)TAdνd(s) − bTd νd(s)

]
+ Const. (5)

Setting the derivative of (5) with respect to νd(s) to zero
yields ν̂d(s) = A−1

d bd. Because of the independence of dif-
ferent feature dimensions, {ν̂d(s)}Dd=1 can be calculated in
parallel very efficiently.
It is well known that many conventional speaker adapta-

tion methods, such as MLLR and the eigenvoice method,
work substantially better in combination with speaker-
adaptive training (SAT) [11]. The above eigenphone-based
speaker adaptation method can also be combined with
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SAT. Initially, an SI model �SI is trained using all the
training data. Then, the speaker-adapted model �s for
each training speaker s is obtained using conventional
speaker adaptation methods such as MLLR + MAP. The
phone coordinate matrix L is calculated using PCA on the
columns of the training speaker phone variation matrixU
(Equation 2). Let�c denote the canonical model; then, the
eigenphone-based SAT procedure can be summarized as
follows:

1. Initialize �c with �SI.
2. Given �c and L, estimate the eigenphone matrices

V (s) for each training speaker s using the
corresponding speaker-dependent training data.

3. Given {V (s)}Ss=1 and L, re-estimate the canonical
model �c using all training data.

4. Repeat steps 2 and 3 for a predefined count K.

Note that in step 3, the first-order statistic sm and
second-order statistic Sm of Gaussian component m are
calculated as

sm =
∑
s

∑
t

γm(t)om(s, t) (6)

Sm =
∑
s

∑
t

γm(t)om(s, t)oTm(s, t), (7)

where om(s, t) = o(s, t) − V (s)l̂m.

2.2 Comparison with existingmethods
Various adaptation methods have been proposed in the
past 2 decades, which can be classified into three broad
categories: MAP [12], MLLR [13], and speaker subspace-
based methods [1]. In conventional MAP adaptation, with
a conjugate prior distribution, the SA model parame-
ters are estimated using the maximum a posteriori crite-
rion. The main advantage of MAP adaptation is its good
asymptotic property, which means that the MAP estimate
approaches the maximum likelihood (ML) estimate when
the adaptation data is sufficient. But, it is a local update
of the model parameters, in which only model parame-
ters observed in the adaptation data can be modified from
their priormeans. The number of free parameters inMAP
adaptation is fixed toM · D. Large amounts of adaptation
data are required to obtain good performance. The chance
of over-fitting is controlled by the prior weight. The larger
the prior weight, the lower the chance of over-fitting.
Instead of estimating the SD model directly, the MLLR

method estimates a set of linear transformations to trans-
form an SI model into a new SA model. Using a regres-
sion class tree, the Gaussian components are grouped
into classes with each class having its own transforma-
tion matrix. The number of regression classes (denoted
by R) can be adjusted automatically according to the

amount of adaptation data. There are RD2 free parame-
ters in MLLR, which are much fewer than those of the
MAP method. Hence, the MLLR method has lower data
requirements. However, its asymptotic behavior is poor, as
performance improvement saturates rapidly as the adap-
tation data increases. The chance of over-fitting is closely
related to the number of regression classes N used. The
number of free parameters can only be an integer multiple
of D2, which restricts its flexibility.
Unlike MAP and MLLR, speaker subspace-based

approaches deal with the speaker adaptation problem in
a different way. These assume that all SD models lie in a
low-dimensional manifold, so that speaker adaptation is
no more than the estimation of the local or global coor-
dinate of the new SD model. A representative of these
methods is the eigenvoice method [1], where the low-
dimensional manifold is a linear subspace and a set of
linear bases (called eigenvoices), which capture most of
the variance of the SD model parameters, can be obtained
by principal component analysis. During speaker adap-
tation, the coordinate of a new SD model is estimated
using the maximum likelihood criterion. The number of
free parameters in the eigenvoice method is equal to the
dimension (K ) of the speaker subspace, which is much
fewer than that of the MAP and MLLR methods. So,
the eigenvoice method can yield good performance even
when only a few seconds of adaptation data is provided.
The chance of over-fitting is related to K, which can be
adjusted according to amount of adaptation data using a
heuristic formula or regularization method [9]. However,
due to the strong subspace constraint, its performance is
poor compared with that of the MLLR or MAP method
when there is a sufficient amount of adaptation data.
In the eigenphone method, a phone variation subspace

is assumed. Each speaker-dependent eigenphone matrix
V (s) is of size (N + 1) × D, containing more free para-
meters than the eigenvoice method. By adjusting the
dimensionality (N) of the phone variation subspace, the
number of free parameters can be varied by an integer
multiplier of D. So, the eigenphone method is more flex-
ible than the MLLR method. When a sufficient amount
of adaptation data is available, better performance can be
obtained with a large N (typically N = 100). However,
when the amount of adaptation data is limited, perfor-
mance degrades quickly. The recognition rate can even fall
bellow that of the unadapted SI model. In order to allevi-
ate the over-fitting problem, a Gaussian prior is assumed
and an MAP adaptation method is derived in [3]. In this
paper, we address this problem using an explicit matrix
regularization function.
The advantages of the MAP method, the eigenvoice

method, and the eigenphone method can be combined
using a probabilistic formulation and the Bayesian prin-
ciple, resulting in a hierarchical Bayesian adaptation
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method [10]. This paper focuses on using various matrix
regularization methods to improve the performance of
the eigenphone method in case of insufficient amount of
adaptation data. In the following sections, we omit the
speaker identifier s for brevity, i.e., we writeV forV (s) and
vn for vn(s).

3 Regularized eigenphone matrix estimation
The center of the eigenphone adaptation method is the
robust estimation of the eigenphone matrix V . This type
of problem, i.e., the estimation of an unknown matrix
from some observation data, has appeared frequently
across many diverse fields. Regularization proved to be a
valid method to overcome the data scarcity. For robust
eigenphone matrix estimation, the regularized objective
function to be minimized is as following:

Q′(V ) = Q(V ) + J(V ), (8)

where J(V ) denotes a regularization function (known as
regularizer) for V .
In this paper, we consider the following general regular-

ization function:

J(V ) = λ1||V ||1 + λ2||V ||22 + λ3

N∑
n=0

||vn||2, (9)

where ||V ||1 = ∑N
n=0 ||vn||1 and ||V ||22 = ∑N

n=0 ||vn||22
denote the l1 norm and squared l2 norm of matrix V .
||vn||1 and ||vn||2 denote the l1 norm and l2 norm of
column vector vn. λ1, λ2, and λ3 are nonnegative weight-
ing factors for the matrix l1 norm, squared l2 norm, and
column-wise unsquared l2 norm, respectively.
Different norms have different effects of regularization.

Equation 9 is a mixed norm regularizer, with many well-
known regularizers as special cases of it. The general form
has the advantage that we can solve the various regular-
ization problems in a unified framework using a single
algorithm.
The l1 norm is the standard convex relaxation of the l0

norm. The l1 norm regularizer (J(V )withλ1 > 0 and λ2 =
λ3 = 0) is sometimes referred to as lasso [14], which can
drive an element-wise shrinkage of V towards zero, thus
leading to a sparse matrix solution. l1 norm regularization
has been widely used as an effective parameter selection
method in compressive sensing, signal recovery etc.
The squared l2 norm regularizer (J(V ) with λ2 > 0 and

λ1 = λ3 = 0) is referred to as ridge regression [15] or
weight decay in the literature. This penalizes large value
components of the parameters, enabling more robust esti-
mation and prevents model over-fitting.
The column-wise l2 norm regularizer (J(V ) with λ3 > 0

and λ1 = λ2 = 0) is a variant of the group lasso [16],
which acts like lasso at the group level: due to the non-
differentiability of vn at 0, the entire group of parameters

may be set to zero at the same time [16]. Here a ‘group’
corresponds to one column of the matrix V , and the
group lasso is a good surrogate for column sparsity. Previ-
ous experiments on eigenphone-based speaker adaptation
have shown that when the amount of adaptation data is
sufficient, the number of eigenphones should be large.
When less adaptation data is available, fewer eigenphones
should be used, i.e., many eigenphones should be zero.
In this situation, the optimal eigenphone matrix should
show ‘group sparsity’, where a group corresponds to an
eigenphone vector. Hence, group lasso is a good choice
for eigenphone matrix regularization. Each eigenphone is
of dimension D, and there are N eigenphones in the N-
dimensional phone variation subspace. If we combine all
eigenphones to form a dictionary, the dictionary is over-
complete when N > D. Learning such an over-complete
dictionary requires a large amount of adaptation data. The
group lasso regularizer removes unnecessary eigenphones
from the dictionary according to the amount of adapta-
tion data available. When insufficient data is provided, the
resulting dictionary may not be complete due to the effect
of nondifferentiable column-wise l2 norm penalties.
Each type of norm regularizer has its own strong points,

and the combination of them through the generic form
J(V ) (9) is expected to obtain better performance. Two
typical variants of this are the elastic net [17] and sparse
group lasso (SGL) [18].
The elastic net regularizer combines l1 and l2 norm reg-

ularization through linear combination and can be written
as J(V ) with λ1 > 0, λ2 > 0, and λ3 = 0. It has been
successfully applied to many fields of speech processing
and recognition, such as spectral denoising [5], sparse
exemplar-based representation for speech [19], and robust
estimation of parameters for the SGMM [6] and DNN [7].
The combination of group lasso and the original lasso

is referred as SGL [18], which corresponds to J(V ) with
λ1 > 0, λ3 > 0, and λ2 = 0. The basic considerations are
as follows: the group lasso selects the best set of parame-
ters through nonzero columns of matrix V and the lasso
regularization can further reduce free parameters of each
column, resulting in a column-wise sparse and within-
column sparse matrix. Sparse group lasso looks very sim-
ilar to the elastic net regularizer but differs in that the
column-wise l2 norm term is not squared, which makes it
not differentiable at 0. However, we will show in Section 4
that within each nonzero group (i.e., eigenphone) it gives
an ‘adaptive’ elastic net fit.

4 Optimization
There is no closed form solution to the regularized objec-
tive function (8). Many numerical methods have been
proposed in the literature to solve the regularization prob-
lem. For example, a gradient projection method has been
proposed in [20] to solve the lasso and elastic net problem
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for sparse reconstruction. The software tool SLEP [21]
implements the sparse group lasso formulation using a
version of the fast iterative shrinkage-thresholding algo-
rithm (FISTA) [22]. Recently, a more efficient algorithm
using accelerated generalized gradient descent method
has been proposed [18]. In this paper, for robust eigen-
phonematrix estimation using the regularization function
J(V ), we propose an accelerated version of the incre-
mental proximal descent algorithm [23,24], which is fast
and flexible and can be viewed as a natural extension of
the incremental gradient algorithm [25] and the FISTA
algorithm [22].
For a convex regularizer R(V ),V ∈ R

N×D, the proximal
operator [26] is defined as

proxR(V ) = argmin
X

1
2
||X − V ||22 + R(X). (10)

The proximal operator for the l1 norm regularizer is the
soft thresholding operator

proxγ ||·||1(V ) = sgn(V ) ◦ (|V | − γ )+, (11)

where ◦ denotes the Hadamard product of two matrices,
(x)+ = max{x, 0}. The sign function (sgn), product, and
maximum are all taken component-wise.
The proximal operator for the squared l2 norm regular-

izer is the multiplicative shrinkage operator

proxγ ||·||22(V ) = 1
1 + 2γ

V . (12)

For the column-wise group sparse regularizer, the proxi-
mal operator proxγ ||·||2 is given by the shrinkage operation
on each column of the parameter matrix vn as follows [26]:

proxγ ||·||2(vn) = (1 − γ

||vn||2 )+vn. (13)

The proximal operator (13) is sometimes called the
block soft thresholding operator. In fact, when ||vn||2 > γ ,
the resulting nth column will be nonzero, and it can be
written as

proxγ ||·||2(vn) = 1
1 + γ

||vn||2−γ

vn. (14)

Comparing (14) with (12), it can be seen that for
nonzero columns, the group sparse lasso is equivalent to
the squared l2 norm regularization with a weighting factor
of γ

2(||vn||2−γ )
. The larger ||vn||2, the smaller the weighting

factor of the squared l2 norm. So within each nonzero col-
umn, the weighting factor of the equivalent l2 norm is kind
of adaptive.
In fact, the proximity operator of a convex function is

a natural extension of the notion of a projection operator
onto a convex set. The incremental proximal descent algo-
rithm [24] could be viewed as a natural extension of the
iterated projection algorithm, which activates each convex

set modeling a constraint individually by means of its pro-
jection operator. In this paper, an accelerated version of
the incremental proximal descent algorithm is introduced
for the estimation of the eigenphone matrix V , which is
summarized in Algorithm 1.

Algorithm 1 Accelerated Incremental Proximal Descent
Algorithm for Regularized Eigenphone Matrix Estimation
1: k = 0, η(0) = 1.0, t(0) = t(−1) = 1.0
2: V (0) = V (−1) = 0
3: repeat
4: Y (k) = V (k) + t(k−1)−1

t(k)

(
V (k) − V (k−1)

)

5: repeat � Search for a suitable step size η(k)

6: V (k+1) = Y (k) − η(k)∇Q(Y (k))

7: V (k+1) ← proxη(k)λ1||·||1
(
V (k+1)

)

8: V (k+1) ← proxη(k)λ2||·||22
(
V (k+1)

)

9: V (k+1) ← proxη(k)λ3||·||2
(
V (k+1)

)

10: �Q′(k+1) = Q′
(
V (k+1)

)
− Q′

(
V (k)

)

11: if �Q′(k+1) > 0 then
12: η(k) ← θη(k)

13: end if
14: until �Q′(k+1) ≤ 0

15: η(k+1) = η(k), t(k+1) = 1+
√
1+4(t(k))2

2
16: k ← k + 1
17: until

∣∣�Q′(k)∣∣ /
∣∣∣Q′

(
V (k−1)

)∣∣∣ < ε.
18: return V = V (k−1).

In Algorithm 1, ∇Q(V ) is the gradient of (5), which
can be easily calculated from ∇Q(νd) = −Adνd + bd.
Step 6 is the normal gradient descent step of the original
objective function Q(V ). In steps 7, 8 and 9, the proximal
operators of the element-wise l1 norm, squared l2 norm,
and column-wise group sparse regularizer are applied in
sequence. The initial descent step size η(0) is simply set
to 1.0. From step 10 to 14, we calculate the change of the
regularized objective function (8) as �Q′(k+1) and reduce
the current step size η(k) by a factor of θ (0 < θ < 1, i.e.,
θ = 0.8) until �Q′(k+1) is below zero.
To accelerate the convergence speed, a momentum term

[27] is included in step 4. For fastest convergence, t(k)
should increase as fast as possible. In step 15, t(k) is
updated using the formula proposed by [22]. Note that
when k = 0, t(k−1)−1

t(k) = 0; when k → ∞, t(k−1)−1
t(k) → 1.

This gives the nice property that when V approaches its
optimal value, the momentum term increases towards
1, which prevents unnecessary oscillations during the
iteration process, thus improves convergence speed. The
whole procedure is iterated until the relative change of
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(8) is smaller than some predefined threshold ε = 10−5

(step 17). In our experiments, the typical number of outer
iterations is around 200. After finding suitable step sizes
η(k) in the first k iterations (typically k < 10), there
is almost no change in step size for the following outer
iterations. Once k > 10, the average number of inner iter-
ations is nearly a constant 1. For each iteration, there are
only a few element-wise matrix addition, multiplication
and thresholding operations, together with an evaluation
of the objection function Q′(k). Using any modern linear
algebra software package, an efficient implementation of
Algorithm 1 can be obtained.
Algorithm 1 is also very flexible. If λ2 = 0 and λ3 = 0,

step 8 and 9 can be omitted, resulting in an accelerated
version of the iterative shrinkage-thresholding (IST) [28]
algorithm for solving the lasso problem. If only one of
steps 7, 8, and 9 is retained, it reduces to FISTA [22] for
solving lasso, ridge regression, and group lasso problems,
respectively. If λ3 = 0 or λ2 = 0, the algorithm becomes
the accelerated generalized gradient descent method for
solving the elastic net and sparse group lasso problems
[18], respectively.

5 Experiments
This section presents an experimental study to evalu-
ate the performance of various regularized eigenphone
speaker adaptation methods on a Mandarin Chinese con-
tinuous speech recognition task provided by Microsoft
[29] (Redmond, WA, USA) and the WSJ English large
vocabulary continuous speech recognition task. Super-
vised and unsupervised speaker adaptation using a vary-
ing amount of adaptation data were evaluated. For both
tasks, we compare the proposed methods with various
conventional methods. In all methods, only the Gaussian
means are updated. When comparing the results of the
two methods, statistical significance tests were performed
using the suite of significance tests implemented by NIST
[30]. Three significance tests were applied, including the
matched pair (MP) sentence segment (word error) test,
the signed paired (SI) comparison test (speaker word
accuracy rate), and the Wilcoxon (WI) signed rank test
(speaker word accuracy rate). We use this to define sig-
nificant improvement at a 5% level of significance. All
experiments were based on the standard HTK (v 3.4.1)
tool set [31]. Detailed experimental setups and results are
presented below for each task.

5.1 Experiments on the Mandarin Chinese task
5.1.1 Experimental setup
Supervised speaker adaptation experiments were per-
formed on the Mandarin Chinese continuous speech
recognition task provided by Microsoft [29]. The train-
ing set contains 19,688 sentences from 100 speakers with
a total of 454,315 syllables (about 33 h total). The testing

set consists of 25 speakers, and each speaker contributes
20 sentences (the average length of a sentence is 5 s).
The frame length and frame step size were set as 25
and 10 ms, respectively. Acoustic features were con-
structed from 13 dimensional Mel-frequency cepstral
coefficients (MFCC) and their first and second deriva-
tives. The basic units for acoustic modeling are 27 ini-
tial and 157 tonal final units of Mandarin Chinese as
described in [29]. Monophone models were first created
using all 19,688 sentences. Then, all possible cross-syllable
triphone expansions based on the full syllable dictionary
were generated, resulting in 295,180 triphones. Out of
these triphones, 95,534 triphones actually occur in the
training corpus. Each triphone was modeled by a 3-state
left-to-right HMM without skips. After decision tree-
based state clustering, the number of unique tied states
was reduced to 2,392. We then use the HTK’s Gaussian
splitting capability to incrementally increase the number
of Gaussians per state to 8, resulting in 19,136 different
Gaussian components in the SI model.
Standard regression class tree-based MLLR was used

to obtain the 100 training speakers’ SA models. HVite
was used as the decoder with a full connected syllable
recognition network. All 1,679 tonal syllables are listed
in the network, with any syllable allowed to follow any
other syllable, or a short pause or silence. This recogni-
tion framework puts the highest demand on the quality
of the acoustic models. We drew 1, 2, 4, 6, 8, and 10
sentences randomly from each testing speaker for adap-
tation in supervised mode; the tonal syllable recognition
rate was measured among the remaining 10 sentences.
To ensure statistical robustness of the results, each exper-
iment was repeated eight times using cross-validation,
and the recognition rates were averaged. The recognition
accuracy of the SI model is 53.04% (the baseline reference
result reported in [29] is 51.21%).
For the purpose of comparison, we carried out experi-

ments using conventional MLLR +MAP [32], eigenvoices
[1], and the ML and MAP eigenphone methods [3] with
varying parameter settings. TheMAP eigenphonemethod
is equivalent to the squared l2 norm regularized eigen-
phonemethod. Other regularization methods, namely the
lasso, the elastic net, the group lasso and the sparse group
lasso, were tested with a wide range of weighting factors.
Experimental results are presented and compared in the
following sections.

5.1.2 Speaker adaptation based on conventional methods
For MLLR + MAP adaptation, we experimented with dif-
ferent parameter settings. The best result was obtained at
a prior weighting factor of 10 (forMAP), a regression class
tree with 32 base classes and three-block-diagonal trans-
formation matrices (for MLLR). The number of trans-
formation matrices is adjusted automatically based on
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the amount of adaptation data using the default setting
of HTK. For eigenvoice adaptation, the dimension K of
the speaker subspace was varied from 10 to 100. For the
eigenphone-based method, both the ML and MAP esti-
mation schemes were tested. For the MAP eigenphone
method, σ (−2) denotes the inverse prior variance for the
eigenphone. In fact, the MAP estimation using a zero
mean Gaussian prior is equivalent to the squared l2 norm
regularized estimation with λ2 = σ (−2).
The experiment results of the above methods are sum-

marized in Table 1. Significance tests show that when
the amount of adaptation data is sufficient (≥ 4 sen-
tences) and the number (N) of the eigenphones is 50, the
ML eigenphone method outperforms the MAP + MLLR
method significantly. But, when the adaptation data is
limited to 1 or 2 sentences (about 5∼10 s), the perfor-
mance degrades quickly due to over-fitting. The situation
is worse when a high-dimensional phone variation sub-
space (i.e., N = 100) is used. Reducing the number of
the eigenphones improves the recognition rate. However,

even with N = 10, the performance is still worse than
that of the SI model when the adaptation data is one
sentence. MAP estimation using a Gaussian prior can
alleviate over-fitting to some extent. To prevent perfor-
mance degradation, a very small Gaussian prior (i.e., a
large weighting factor of the squared l2 norm regularizer)
is required, which heavily limits the performance when
there is a sufficient amount of adaptation data available.
This suggests that the l2 regularization can only improve
the performance in the case of limited amount of adapta-
tion data (less than two sentences, about 10 s). In order
to demonstrate the performance of the various regular-
ization methods, the subsequent experiments all employ a
large number of eigenphones, 100.

5.1.3 Eigenphone speaker adaptation using lasso
The lasso regularizer (J(V ) with λ1 > 0, λ2 = λ3 = 0)
leads to a sparse eigenphone matrix. To measure the
sparseness of a matrix, we calculate its ‘overall sparsity’,
which is defined as the percentage of nonzero elements

Table 1 Average tonal syllable recognition rate (%) after speaker adaptationusing conventionalmethods

Methods
Number of adaptation sentences

1 2 4 6 8 10

MAP + MLLR 53.32 54.93 57.83 58.50 59.65 60.16

Eigenvoice

K = 20 55.32 56.38 56.61 56.90 57.11 57.05

K = 40 55.67 56.59 57.03 57.26 57.62 57.45

K = 60 55.72 57.01 57.15 57.36 57.87 57.95

K = 80 55.37 56.97 57.39 57.45 58.14 58.18

K = 100 55.20 57.11 57.24 57.53 57.91 58.39

ML eigenphone

N = 10 51.45 56.71 56.95 57.41 57.87 58.12

N = 25 47.25 55.73 57.99 59.36 59.34 59.57

N = 50 33.74 51.38 58.16 59.00 59.84 60.62

N = 100 19.14 41.46 54.30 57.91 59.44 60.13

MAP eigenphone, N = 50

σ (−2) = 10 43.26 53.67 58.43 59.11 59.78 60.45

σ (−2) = 100 50.08 53.69 56.71 58.35 59.21 59.80

σ (−2) = 1, 000 53.69 54.28 55.35 56.13 56.95 57.41

σ (−2) = 2, 000 53.63 54.13 54.80 55.43 56.27 56.69

MAP eigenphone, N = 100

σ (−2) = 10 27.91 44.63 53.78 57.39 59.61 60.70

σ (−2) = 100 45.24 50.31 55.77 57.55 59.34 60.30

σ (−2) = 1, 000 53.29 54.22 55.75 56.78 57.41 58.29

σ (−2) = 2, 000 53.92 54.28 55.52 56.34 56.55 57.74

For MLLR + MAP adaptation, we only show the best results which were obtained at a prior weighting factor of 10 (for MAP) and 32 regression classes with a
three-block-diagonal transformation matrix (for MLLR). For eigenvoice adaptation, K denotes the number of eigenvoices. For the eigenphone-based method, N
denotes the number of eigenphones. For the MAP eigenphone method, σ (−2) denotes the inverse prior variance for the eigenphone, i.e., the weighting factor λ2 of
the squared l2 norm term.
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in that matrix. The weighting factor (λ1) of the l1 norm
is varied between 10 and 40. The experimental results are
summarized in Table 2. For each experiment setting, the
average overall sparsity of the eigenphone matrix among
all testing speakers is shown in parentheses.
Significance tests show that compared with the ML

eigenphone method, the l1 norm regularization method
can improve the performance significantly. It shows per-
formance gain over the MAP eigenphone method under
almost every testing condition. The larger the weight-
ing factor λ1, the more sparse the resulting eigenphone
matrix becomes. When the amount of adaptation data
is limited to one, two, four, or six sentences, the best
results are obtained with λ1 = 20. The relative improve-
ments over theML eigenphonemethod are 181.5%, 36.4%,
7.8%, and 2.5%, respectively. When the amount of adap-
tation data is increased to eight or ten sentences, a small
weighting factor of 10 performs best. The resulting recog-
nition rates are still better than that of the ML eigenphone
method, with relative improvements of 1.3% and 1.1%,
respectively.

5.1.4 Eigenphone speaker adaptation using elastic net
For the elastic net method, λ1 was fixed to 10. All exper-
iments were repeated with λ2 changing from 10 to 2,000.
The results are summarized in Table 3. Again, the aver-
age overall sparsity of the eigenphone matrix is shown in
parentheses.
Unfortunately, the results in Table 3 show little improve-

ment over the lasso method. The overall sparsity remains
the same in all testing conditions. When the adaptation
data is one sentence, even with a large weighting fac-
tor of l2 = 2, 000, the relative improvement over the
lasso method is only 0.2%. We also set λ1 to different
values of 20, 30, and 40, and experimented with λ2 vary-
ing from 10 to 2,000. Again, almost no improvement was
observed over the results in Table 2. The squared l2 regu-
larization term seems to not work in combination with l1
regularization.

5.1.5 Eigenphone speaker adaptation using group lasso
As pointed out in Section 3, the group lasso regularizer
leads to a column-wise group sparse eigenphone matrix
that is a matrix with many zero columns. To measure the
column-wise group sparseness of the eigenphone matrix,
we calculate its ‘column sparsity’, which is defined as the per-
centage of nonzero columns in that matrix. In the group
lasso experiments, the weighting factor (λ3) of the
column-wise l2 norm is varied between 10 and 150. The
results are summarized in Table 4. For each experiment
setting, the average column sparsity of the eigenphone
matrix among all testing speakers is shown in parentheses.
From Table 4, it can be observed that the group lasso

method improves the recognition results compared with
the ML eigenphone method, especially with limited adap-
tation data. Under all testing conditions, its best results
are better than that of the MAP eigenphone method, i.e.,
the squared l2 regularization method. When the adapta-
tion data is limited to one sentence and λ3 is larger than
120, the recognition rate is higher than the best results of
the lasso method. However, when more adaptation data is
provided, the group lasso method no longer achieves bet-
ter results than the lasso method. The larger the weighting
factor λ3, the larger the column sparsity of the eigenphone
matrix. With two adaptation sentences or less, λ3 should
be larger than 120 to obtain a good row sparsity. With lots
of adaptation data (more than four sentences), even with
a large value of λ3 of 150, the column sparsity remains
very small, that is, almost no column is set to zero. For
these nonzero columns, the group lasso is equivalent to
the ‘adaptive’ l2 regularization, and the recognition results
are better than those obtained with the ML eigenphone
method.

5.1.6 Eigenphone-based speaker adaptation using sparse
group lasso

In the sparse group lasso experiments, we fixed λ1 to 10
and varied λ3 from 10 to 150, in hope that the advantages
of the lasso and group lasso methods can be combined.

Table 2 Average tonal syllable recognition rate (%) after eigenphone-based speaker adaptationusing lasso

λ1 Number of adaptation sentences

1 2 4 6 8 10

10 52.25 56.04 58.06 59.06 60.24 61.27

(0.61) (0.43) (0.23) (0.16) (0.12) (0.04)

20 53.88 56.55 58.54 59.36 60.24 60.83

(0.83) (0.63) (0.42) (0.33) (0.26) (0.23)

30 53.63 55.96 57.70 59.19 60.05 60.81

(0.91) (0.74) (0.54) (0.44) ( 0.37) (0.34)

40 53.82 55.18 57.30 58.90 59.75 60.49

(0.95) (0.820) (0.65) (0.61) (0.49) (0.42)

The number of eigenphones (N) was fixed to 100. λ2 = λ3 = 0, and λ1 was varied between 10 and 40. The average overall sparsity is shown in parentheses.
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Table 3 Average tonal syllable recognition rate (%) after eigenphone-based speaker adaptation using elastic net

λ2 Number of adaptation sentences

1 2 4 6 8 10

10 52.27 55.98 58.10 59.19 60.22 61.08

(0.67) (0.48) (0.33) (0.24) (0.20) (0.16)

40 52.27 55.98 58.14 59.17 60.18 61.08

(0.67) (0.48) (0.33) (0.24) (0.20) (0.16)

80 52.22 55.96 58.12 59.17 60.20 61.04

(0.67) (0.48) (0.33) (0.24) (0.20) (0.16)

120 52.22 55.98 58.16 59.17 60.16 61.08

(0.67) (0.48) (0.33) (0.24) (0.20) (0.16)

1,000 52.31 55.98 58.02 59.13 60.13 60.97

(0.67) (0.48) (0.33) (0.24) (0.20) (0.16)

2,000 52.35 55.98 58.02 59.13 60.16 60.97

(0.67) (0.48) (0.33) (0.24) (0.20) (0.16)

The number of eigenphones (N) was fixed to 100. λ1 = 10, λ3 = 0, and λ2 was varied between 10 and 2,000. The average overall sparsity is shown in parentheses.

The results are summarized inTable 5. The average overall
sparsity and column sparsity of the eigenphone matrix are
shown in parentheses.
FromTable 5, it can be seen that when theweighting fac-

tor λ3 is set to 20 ∼ 30, the recognition results obtained
by applying l1 regularization and the column-wise l2 reg-
ularization simultaneously are better than that of using
any one of the regularizers. When the amount of adapta-
tion data is limited to one and two sentences, the relative
improvements over the lasso method are 1.63% and 0.54%,
respectively. These results are comparable to that of the
best results of the eigenvoice method. When more adap-
tation data is available, the relative improvement over
the lasso method becomes smaller. However, compared
with the group lasso method, the relative improvement is
more significant when sufficient adaptation data is pro-
vided. The advantages of both the l1 regularization and the
column-wise l2 regularization combine well. Significance

tests show that with λ1 = 10 and λ3 = 30, the sparse
group lasso is significantly better than all other regulariza-
tion methods under all testing conditions.
An interesting phenomenon is observed in that for

all experimental settings, the overall sparsity is larger
than that of the lasso method, while the column sparsity
remains small when λ3 ≤ 40, that is, most of the columns
remain nonzero. This observation implies that compar-
ing with the lasso method, the performance improvement
using the sparse group lasso should be attributed to the
column-wise adaptive shrinkage property of the column-
wise unsquared l2 norm regularizer.

5.2 Experiments on theWSJ task
This section gives the unsupervised speaker adaptation
results on the WSJ 20K open vocabulary speech recogni-
tion task. A two-pass decoding strategy was adopted. For a
batch of recognition data from one speaker, hypothesized

Table 4 Average tonal syllable recognition rate (%) after eigenphone-based speaker adaptation using group lasso

λ2 Number of adaptation sentences

1 2 4 6 8 10

60 52.56 53.36 56.84 58.06 59.78 60.85

(0.07) (0.0) (0.0) (0.0) (0.0) (0.0)

90 53.84 54.51 56.90 58.37 59.86 60.45

(0.34) (0.02) (0.0) (0.0) (0.0) (0.0)

120 54.22 55.77 57.03 58.06 59.63 60.34

(0.65) (0.12) (0.01) (0.0) (0.0) (0.0)

150 54.26 55.33 56.99 57.97 59.30 60.30

(0.84) (0.32) (0.03) (0.0) (0.0) (0.0)

The number of eigenphones (N) was fixed to 100. λ1 = λ2 = 0, and λ3 was varied between 10 and 150. The average column sparsity of the eigenphone matrix is
shown in parentheses.
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Table 5 Average tonal syllable recognition rate (%) after eigenphone-based speaker adaptationusing sparse group lasso

λ3 Number of adaptation sentences

1 2 4 6 8 10

10 53.78 56.57 58.14 59.06 60.05 60.91

(0.61, 0.01) (0.47, 0.0) (0.31, 0.0) (0.22, 0.0) (0.18, 0.0) (0.15, 0.0)

20 54.76 56.74 58.29 59.21 60.18 60.93

(0.62, 0.01) (0.45, 0.0) (0.31, 0.0) (0.22, 0.0) (0.18, 0.0) (0.15, 0.0)

30 54.55 56.86 58.55 59.53 60.20 61.25

(0.63, 0.02) (0.44, 0.0) (0.32, 0.0) (0.23, 0.0) (0.18, 0.0) (0.15, 0.0)

40 54.49 56.65 58.35 59.32 60.11 60.93

(0.63, 0.05) (0.43, 0.0) (0.31, 0.0) (0.23, 0.0) (0.18, 0.0) (0.16, 0.0)

80 54.13 56.04 57.72 58.92 59.90 60.43

(0.78, 0.37) (0.45, 0.02) (0.33, 0.0) (0.23, 0.0) (0.19, 0.0) (0.16, 0.0)

120 54.05 54.95 57.01 58.35 59.38 60.24

(0.91, 0.76) (0.58, 0.21) (0.35, 0.01) (0.23, 0.0) (0.19, 0.0) (0.16, 0.0)

The number of eigenphones (N) was fixed to 100. λ1 = 10.0, λ2 = 0, and λ3 was varied between 10 and 150. the average overall sparsity and column sparsity of the
eigenphone matrix are shown in parentheses as pairs.

transcriptions were obtained using the SI model in the
first pass. Then, speaker adaptation was performed using
the hypothesized transcriptions based on the SI model
(without SAT) or the canonical model (with SAT). The
final results were obtained in a second decoding pass
using the adapted model.
The SI model was trained using the following con-

figurations. The standard SI-284 WSJ training set was
used for training, which consists of 7,138 WSJ0 utter-
ances from 83 WSJ0 speakers and 30,275 WSJ1 utter-
ances from 200 WSJ1 speakers. The whole training set
contains about 70 h of read speech in 37,413 train-
ing utterances from 283 speakers. The acoustic features
are the same as that of the Mandarin Chinese task.
There were 22,699 crossword triphones based on 39 base
phonemes, and these were tree-clustered to 3,339 tied
states. At most 16 Gaussian components were estimated
for each tied state, resulting in a total of 53,424 Gaussian
components.
The WSJ1 Hub 1 development test data (denoted by

‘si_dt_20’ in the WSJ1 corpus) were used for evaluation.
For each of the 10 speakers, 40 sentences were selected
randomly for testing, resulting in 52 min of read speech
in 400 utterances. HDecoder was used as the decoder
and the standard WSJ 20K-vocabulary trigram language
model was used for compiling the decoding graph.We use
word error rate (WER) to evaluate the recognition results.
TheWER of the SI model is 14.71%.
Unsupervised speaker adaptation was performed with

varying amounts of adaptation data. The testing data of
each speakerwas grouped into batches, with the batch size
varying from 2 to 20 sentences. Different batches of data
were used for adaptation and evaluation independently.

The following five adaptation methods were tested for
comparison:

1. EV: The standard eigenvoice method.
2. MLLR: The standard MLLR method.
3. SAT + MLLR: The standard MLLR method with

speaker-adaptive training.
4. EP: The eigenphone method with or without

regularization.
5. SAT + EP: The eigenphone method with

speaker-adaptive training.

For the eigenvoice method, the number (K ) of the eigen-
voices was varied between 20 and 150. The best results
were obtained with K = 100 and K = 120 for two
and four adaptation sentences, respectively. When the
amount of adaptation data is more than six sentences,
K = 150 yields the best performance. For the MLLR
method, the best results were obtained with a regression
class tree using 32 base classes and three-block-diagonal
transformation matrices. For the eigenphone method, the
dimension (N) of the phone variation subspace was set to
100. Different regularization methods were tested with a
wide range of weighting factorsa. Again, the best results
were obtained with the SGL method with λ1 = 10 and
λ3 = 30. The results are summarized in Table 6, where
‘ML-EP’ denotes the eigenphone method with maximum
likelihood estimation and ‘SGL-EP’ denotes the SGL reg-
ularized eigenphone method. For the sake of brevity, only
the best results of each method are shown in the table.
It can be seen that the eigenvoice method performs best

when the amount of adaptation data is limited to two sen-
tences. But, it cannot achieve the performance of other
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Table 6 Word error rate (%) after unsupervised speaker adaptation on theWSJ task

Methods Number of adaptation sentences

2 4 6 8 10 20

EV 13.88 13.82 13.76 13.68 13.64 13.58

K = 100 K = 120 K = 150 K = 150 K = 150 K = 150

MLLR 14.44 13.86 13.70 13.56 13.43 13.22

SAT + MLLR 13.96 13.41 13.37 13.35 13.26 13.06

ML-EP 16.28 14.24 13.75 13.47 13.41 13.06

SAT + ML-EP 16.80 14.24 13.51 13.17 13.12 12.70

SGL-EP 14.05 13.72 13.52 13.41 13.37 13.00

SAT + SGL-EP 13.92 13.36 13.29 13.11 13.03 12.70

The WER of the SI model is 14.71%. For the sake of brevity, only the best results of each adaptation method are shown in the table. For MLLR, the best results were
obtained at a prior weighting factor of 10 (for MAP) and 32 regression classes with a three-block-diagonal transformation matrix (for MLLR). For the eigenphone
method, the number of eigenphones (N) was fixed to 100. The weighting factors of the SGL regularization method were set to λ1 = 10 and λ3 = 30.

methods when more adaptation data become available.
The ‘ML-EP’ method outperforms the MLLR method
whenmore than six adaptation sentences are used. Severe
over-fitting occurs when the amount of adaptation data
is less than four sentences. With sparse group lasso reg-
ularization, the robustness of the eigenphone method
is improved significantlyb. Compared with the ‘ML-EP’
method, the relative improvements are 13.7%, 3.7%, and
1.7% with two, four, and six adaptation sentences, respec-
tively. With more adaptation data, the relative improve-
ments are negligible.
Combined with SAT, significant performance improve-

ment is observed for all testing methods, except for the
‘SAT + ML-EP’ method with insufficient adaptation data
(less than four sentences). Again, the performance degen-
eration is due to severe over-fitting. The ‘SAT + SGL-EP’
method performs best under all testing conditions. The
relative improvements over the ‘SAT + MLLR’ method
and the ‘SAT+ML-EP’ method are 0.3%, 0.4%, 0.6%, 1.8%,
1.7%, and 2.8% and 17.1%, 6.2%, 1.6%, 0.5%, 0.7%, and
0.0% with 2, 4, 6, 8, 10, and 20 adaptation sentences,
respectively.

6 Conclusion
In this paper, we investigate various regularization meth-
ods to improve the robustness of the estimation of the
eigenphone matrix in eigenphone-based speaker adapta-
tion. The l1 norm regularization (lasso) introduces sparse-
ness, which reduces the number of free parameters and
improves generalization. The squared l2 norm penalizes
large values of thematrix, thus alleviating over-fitting. The
column-wise unsquared l2 norm regularization (group
lasso) forces many columns of the eigenphone matrix
to be zero, thus preventing the dimension of the phone
variation subspace from being higher than necessary.
For nonzero columns, the group lasso is equivalent to

the adaptively weighted column-wise squared l2 norm
regularizer. A unified framework for solving the various
regularized matrix estimation problems is presented, and
the performances of these regularizationmethods, includ-
ing two combinations of them, i.e., elastic net and sparse
group lasso, are compared for a supervised speaker adap-
tation task as well as an unsupervised speaker adaptation
task using varying adaptation data. Compared with the
maximum likelihood estimation method, significant per-
formance improvements are observed using any of the
regularization methods. Among them, the sparse group
lasso method yields best results, which combines the
advantages of the lasso and the group lasso methods in
a consistent way. The group lasso plays an important
role in case of limited amounts of adaptation data, with
the performance improvement attributed to its column-
wise adaptive shrinkage property. With large amounts of
adaptation data, lasso seems to be more important than
group lasso. Combined with speaker-adaptive training,
performance is further improved.
When the dimension (N) of the phone variation sub-

space is larger than the feature dimension D and the
adaptation data is sufficient, the columns of the eigen-
phone matrix V form an over-complete dictionary. The
corresponding coordinate vector for each Gaussian com-
ponent should be sparse. However, the matrix L obtained
by PCAwill not necessarily show any sparsity. Future work
will focus on estimation of a sparse coordinate matrix at
training time to obtain more performance gain.

Endnotes
aλ1, λ2 and λ3 were varied between 0 and 1,000 at a

step size of 10, respectively.
bAgain, all significance tests show that the differences

between the results of the ‘ML-EP’ and ‘SGL-EP’
methods are significant under all testing conditions.
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