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Abstract

We present a feature enhancement method that uses neural networks (NNs) to map the reverberant feature in a
log-melspectral domain to its corresponding anechoic feature. The mapping is done by cascade NNs trained using
Cascade2 algorithm with an implementation of segment-based normalization. Experiments using speaker
identification (SID) and automatic speech recognition (ASR) systems were conducted to evaluate the method. The
experiments of SID system was conducted by using our own simulated and real reverberant datasets, while the
CENSREC-4 evaluation framework was used as the evaluation for the ASR system. The proposed method could
remarkably improve the performance of both systems by using limited stereo data and low speaker-variant data as
the training data. From the evaluation using SID, we reached 26.0% and 34.8% of error rate reduction (ERR) relative to
the baseline by using simulated and real data, respectively, by using only one pair of utterances for matched
condition cases. Then, by using combined dataset containing 15 pairs of utterances by one speaker from three
positions in a room, we could reach 93.7% of average identification rate (three known and two unknown positions),
which was 42.2% of ERR relative to the use of cepstral mean normalization (CMN). From the evaluation using ASR, by
using 40 pairs of utterances as the NN training data, we could reach 78.4% of ERR relative to the baseline by using
simulated utterances by five speakers. Moreover, we could reach 75.4% and 71.6% of ERR relative to the baseline by
using real utterances by five speakers and one speaker, respectively.

Keywords: Dereverberation; Feature enhancement; Cascade neural network; Stereo training data; Speech
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1 Introduction
The use of distant-talking microphones for automatic
speech recognition (ASR) system or automatic speaker
identification (SID) system can improve user convenience.
The use of such microphones is essential for certain appli-
cations, e.g., the application of ASR and/or SID for smart
home, where it will be not practical if the users have to
hold or wear microphone anytime they want to inter-
act with the system. However, the use of distant-talking
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microphones will make the captured signal be vulnera-
ble to the phenomenon known as reverberation, where
the signal not only travels directly from the speaker to the
microphone but also through reflections, which can be
seen as delayed and attenuated versions of the direct sig-
nal. Thus, reverberation will cause smearing effect because
the microphone captures the currently spoken utterance
along with other utterance spoken in the past [1]. Because
of this signal degradation, the use of reverberant signal
captured by the microphone will degrade the ASR or
SID system performance, which is usually trained using
anechoic speech data.
Several approaches already proposed to deal with

this reverberation problem from ASR point of view.
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According to [2] in which the state-of-the-art in reverber-
ant speech processing is discussed, there are two classes
of approaches in dealing with reverberation problem,
i.e., front-end-based and back-end-based approaches. The
front-end-based approaches attempt to remove the effect
of reverberation from the observed feature vectors. It
can be divided into linear filtering, spectrum enhance-
ment, and feature enhancement. The linear filtering dere-
verberates time-domain signals or STFT coefficients,
e.g., [3,4], the spectrum enhancement dereverberates the
corrupted power spectra of signal, e.g., [5-7], and the
feature enhancement dereverberates the corrupted fea-
ture vectors, e.g., [8-10]. Meanwhile, the back-end-based
approaches attempt to modify the acoustic model and/or
decoder so that they are suitable for reverberant environ-
ment, e.g., [11,12].
Among the front-end-based approaches, there are

single-channel approaches (by using single microphone)
and multi-channel approaches (by using microphone
array). Many recently proposed dereverberation
researches focus on the use of microphone array, e.g.,
multi-channel linear prediction [13], minimum vari-
ance distortionless response (MVDR) beamformer [14],
multi-channel least mean squares (LMS) [15]. Compar-
ing to the use of single microphone, the main benefit of
microphone array is the spatial information it can pro-
vide. Despite the benefits of microphone array, the use
of single microphone is much easier and cheaper to be
implemented for real applications. Thus, the research on
single-channel dereverberationmethod is still worth to be
considered.
Many works focused on feature enhancement approach.

Several single-channel feature enhancement methods
have been proposed. Some of them do not need stereo
data at all, e.g., cepstral mean normalization (CMN)
[16,17], long-term feature normalization [18], vector Tay-
lor series (VTS) [19], particle filter [8,20], and extended
Kalman filter [9,21]. Meanwhile, some of them assume
that stereo training data can be acquired. In the context
of distant SID or ASR system, stereo data are simultane-
ously recorded pairs of close-talking and distant-talking
utterances. In general, the stereo training data is used to
train a mapping function from the distant-talking utter-
ance to its corresponding close-talking utterance. Several
existing approaches which need stereo training data will
be reviewed in Section 2.
This research focused on developing a single-channel

dereverberation method for automatic speaker identifi-
cation and speech recognition under real environmental
conditions by doing feature enhancement and assuming
that stereo data can be acquired. In order to increase its
feasibility for real-world applications, the method should
have good performance by using a limited number of
stereo data.

We proposed a single-channel non-linear regression-
based dereverberation method using cascade neural net-
works (NNs). The NNs were trained on stereo data to
compensate the reverberation effect by mapping a seg-
ment of reverberant 24-dimensional log-melspectral fea-
ture vectors to its corresponding anechoic feature vector.
Two most important parts of the proposed method are
the segment-based normalization and the feature map-
ping using NN. The segment-based normalization is done
by normalizing the current frame of the anechoic and
the reverberant feature and also preserving the power
envelope of reverberant input segment. For the feature
mapping, cascade NNs trained using the Cascade2 algo-
rithmwith the Resilient Backpropagation (RPROP) weight
update algorithm, which is a variation of batch backprop-
agation algorithm, were used. These two most important
parts are most likely the reason why the proposedmethod
could generalize and perform remarkably well for a lim-
ited number of stereo data (one or five pairs of utterances;
corresponds to less than 1 min of utterance).
The proposed method was evaluated on SID and ASR

systems. Both evaluations were done by using simulated
and real data. The evaluation using SID system used our
own simulated and real data, while the evaluation using
ASR system used simulated and real data fromCENSREC-
4 [22]. The proposed method could perform very well by
using only few stereo data and also low speaker-variant
data as the NN training data.
The experimental result of SID using simulated data

shows that in matched condition cases, the error rate
reduction (ERR) relative to the baseline by using only one
pair of utterances could reach 26.0% when single NN (‘1
NNs’) configuration was used. Meanwhile, by using 15
pairs of utterances and multiple NNs (‘24 NNs’) configu-
ration, the ERR reached 62.6%. Also in matched condition
cases, the experimental result using real data shows that
by using ‘6 NNs’ configuration and only one pair of utter-
ances for the NN training data, we could reach 34.8% of
ERR relative to the use of CMN. Then, by combining the
training data from known positions in a room, we could
train NNs which performed well for unknown positions
in the same room. By using multiple NNs (‘24 NNs’) and
15 pairs of utterances by one speaker from three posi-
tions, we could reach 93.7% of average identification rate
over three known and two unknown positions, which was
42.2% of ERR relative to the use of CMN.
The experimental result of ASR using simulated data

shows that we could reach 78.4% of ERR relative to the
baseline by using dataset containing 40 pairs of utterances
by five speakers as the NN training data. Meanwhile, by
using the same number of real reverberant data, we could
reach 75.4% and 71.6% of ERR relative to the baseline by
using dataset containing utterances by five speakers and
one speaker, respectively.
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2 Related works
The most popular feature enhancement method using
stereo data is stereo-based piece-wise linear compen-
sation for environments (SPLICE), which estimates the
clean cepstral feature from the noisy feature using a
Gaussian mixture model (GMM) of noisy feature [23]. In
general, SPLICE tries to represent a non-linear relation by
using piece-wise linear relation in each subspace of noisy
feature. SPLICE could perform well for both simulated
and real noisy data [24]. However, SPLICE is designed
specifically for dealing with the noise problem.
For the reverberation problem, in [25], 13 multi-layer

perceptron (MLP) NNs were trained using stereo data
to map the 13-dimensional reverberant cepstral feature,
where one NN was used for one dimension of feature, to
its corresponding anechoic feature. The input of each NN
was a sequence of cepstral feature coefficients from nine
consecutive frames, and the output was a cepstral fea-
ture coefficient. The approach was evaluated using vector
quantization (VQ)-based speaker identification method
and could reach 80.2% of ERR relative to baseline.
In [26], a linear regression by least squares method

(LSM) was used to do a mapping of melspectral fea-
ture vectors from a four-frame sequence of reverberant
speech to a frame of clean speech. Several schemes of
dynamic time warping (DTW) were introduced because
there was only non-stereo dataset for the experiments.
The non-stereo dataset contained close-talking utterances
recorded from the distance of 25 cm and distant-talking
utterances recorded from various positions in a room.
These close- and distant-talking utterances were not
recorded simultaneously, although the speakers and the
utterances were the same. The DTW was used to align
frames of a distant-talking utterance to frames of its cor-
responding close-talking utterance before they were used
as the training data. Nonetheless, the approach should be
also worked on stereo dataset.
In [10,27], a joint sparse representation (JSR) technique

was used to capture the relationship between clean and
reverberant speech. The dictionary for clean feature space
and the dictionary for reverberant feature space were
jointly trained using the stereo data in order to have com-
mon representation coefficients. Basically, the approach
did a mapping of log-melspectral feature vectors from
N frames of reverberant speech to N frames of esti-
mated clean speech. In [27], besides the 24-dimensional
log-melspectral feature vectors, the mapping included the
log-energy coefficients. In the same paper, the sequence of
N frames included the use of left and right context (past,
current, and future frames).
Stereo data also found to be used in linear filtering

approaches. In [28], the dereverberation was done using
linear and binary-weighted least squares techniques on
time and fast Fourier transform (FFT) domain. The stereo

data was needed to calculate the inverse filter coefficients,
which then was used to transform N frames of reverber-
ant complex-valued FFT coefficient vectors toN frames of
estimated clean FFT coefficient vectors. The experiments
were done using 512-, 1,024-, and 2,048-dimensional vec-
tors. The length of vector corresponds to the length of
DFT.
Recently, in [29,30], a denoising autoencoder (DAE),

which is one of deep neural network (DNN) approaches,
was used to do a mapping of coefficient vectors from a
sequence of reverberant speech to a sequence of clean
speech. They also introduced the use of short and long
window. The short window is used to extract 256 dimen-
sions of power spectral coefficients and the log energy.
On the other hand, the long window is used to extract 24
dimensions of melspectral coefficients and the log energy.
Thus, by using both windows, the DNN was used to map
from and to 2,538-dimensional vectors, which are con-
structed by power spectral, melspectral, and log-energy
coefficients of a nine-frame segment. In addition, DAE
was also used for speech enhancement by mapping the
power spectral coefficients [31] and the melspectral coef-
ficients [32]. These DNN-based approaches are effective,
but they require much training data for training a huge
number of parameters.
In summary, the approaches proposed in [25,26] did a

mapping from a N-frame segment to a one-frame seg-
ment. Meanwhile, the approaches proposed in [10,27-30]
did a mapping from a N-frame segment to a N-frame
segment. The method proposed in this work does a map-
ping from a N-frame segment to a one-frame segment
of log-melspectral coefficients by using cascade NNs and
requires only few training data. The NN is used because
it should be able to capture a non-linear relation across
the frames, which is caused by the insufficiency of analy-
sis window (frame) length in capturing the reverberation
effect and other complex factors.

3 Overview of neural network
3.1 Artificial neural network
NN, or more properly called artificial neural network
(ANN), is a computational model inspired by the bio-
logical nervous systems, such as the brain. In a simple
way, a biological nervous system consists of intercon-
nected webs of neurons, where each neuron has dendrites,
soma, and axon. The dendrites receive input signals and
when the soma feels that the input signals are strong
enough, it emits an output signal through the axon.
This signal then can be sent to other neuron’s dendrites
through the synapses, which are the end points of axon’s
branches.
How a biological neuron works is modeled by an

artificial neuron, as depicted by Figure 1. The neuron has
inputs xn with their associated weights wn. The weighted



Nugraha et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:13 Page 4 of 31
http://asmp.eurasipjournals.com/content/2014/1/13

Figure 1 Artificial neuron [33].

inputs are integrated in the neuron, which in most cases
is simply done by summation, and then evaluated by
an activation function f , e.g., hyperbolic tangent func-
tion, to determine the output. An ANN is simply a net-
work that consists of interconnected artificial neurons and
has three important elements, i.e., the structure of the
nodes/neurons (how the inputs are integrated, the acti-
vation function), topology/architecture (the way artificial
neurons interconnected), and the training algorithm (to
determine the weights in the network) [33].
Various types of NN are defined based on their archi-

tectures. The architecture itself is a combination of their
framework and their interconnection scheme [34].
The framework is defined by the number of clusters

and the number of neurons in each cluster. The clus-
ters are called layers if they are ordered and are called
slabs otherwise. There are input, hidden, and output
clusters, where each cluster contains one or more neu-
rons. The neurons within a cluster are not necessarily
ordered.
The interconnection scheme is mainly defined by the

connectivity (describes which neurons are connected) and
the types of connections. In layered NN, connections can
be divided into interlayer, intralayer, and supralayer con-
nections. Interlayer connection connects neurons from
adjacent layers, intralayer connection connects neurons
within a layer, and supralayer connection connects neu-
rons from different (non-adjacent) layers. In slabbed NN,
where the clusters are not ordered, there are only interslab
connection, which connects neurons from different slabs,
and intraslab connection, which connects neurons within
a slab. Further, in regard to the directionality, connec-
tions can be divided into symmetric (bidirectional) and
asymmetric (unidirectional) connections.

3.2 Conventional multi-layer perceptron and cascade
networks

Both conventional MLP and the cascade networks used
in the proposed method may use the same structure of
neurons. The main differences between them are in the
architecture and how to build the architecture, which then
cause a difference in the training algorithm.

3.2.1 Conventional MLP network
In conventional MLP approach, the NN is fully defined in
advance before the training is started. The NN is a layered
NN with asymmetric interlayer connections (Figure 2A).
The NN contains an input layer, one or more hidden lay-
ers, and an output layer. Except the output layer, each
layer commonly contains more than one neuron. The
training (weight update) algorithm is then used to update
the previously initialized weights and determine the most
appropriate weights based on the training data. Back-
propagation can be regarded as the most popular weight
update algorithm for training MLP. It propagates an input
through the network, then propagates back the error and
adjusts the weights to minimize the error. The algorithm
can be used in both an incremental training, in which the
weights are updated for each training datum in the train-
ing set, and a batch training, in which the weights are
updated only after all training data in the training set are
presented.

3.2.2 Cascade network
Besides the common approach above, there are dynamic
approaches in which the architecture of NN is altered
during the training by adding neurons and/or clusters.
Thus, the training algorithm not only consists of the
weight update algorithm but also consists of the architec-
ture algorithm, e.g., cascade. Two most common cascade
algorithms are Cascade-Correlation (CasCor) and Cas-
cade2 [35]. Cascade2 algorithm is a variation of CasCor
algorithm. Instead of using covariance maximization as
in CasCor, Cascade2 uses direct error minimization. By
doing so, Cascade2 is better algorithm for regression task,
while CasCor is better for classification task [36].
In cascade algorithm, the NN can be regarded as layered

NN with asymmetric interlayer and supralayer connec-
tions (Figure 2B). Usually, the NN contains an input layer,

Figure 2 The architectures of conventional MLP and cascade NN
depicted in conventional MLP representation. (A) Conventional
MLP: layered NN with asymmetric interlayer connections. (B) Cascade
NN: layered NN with asymmetric interlayer and supralayer
connections.
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many hidden layers, and an output layer. Different from
conventional MLP approach, each hidden layer in cas-
cade algorithm contains one hidden neuron. The other
difference is that in the cascade NN, every hidden neuron
and also the output neurons are directly connected to the
input neurons. Meanwhile, in a conventional MLP, only
hidden neurons of the first hidden layer are directly con-
nected to the input neurons and the output neurons are
directly connected only to the hidden neurons of the last
hidden layer.
Before the training of a cascade NN is started, the NN

only contains an input layer and an output layer with inter-
layer connections connect neurons from these two layers.
The NN is then grown by adding hidden neurons/layers
during the training. Each newly added hidden neuron con-
nects to the neurons from input layer and output layer.
The newly added hidden neuron also connects to the pre-
viously added hidden neuron. The hidden neuron addition
is controlled by the cascade algorithm and done after the
weight update algorithm cannot find a proper weight to
generate the correct output by using the existing architec-
ture. The same backpropagation weight update algorithm
as for conventional MLP training can also be used for
cascade NN training.
According to [37] and [35], the cascade algorithm offers

several advantages, including:

• The algorithm will automatically build a reasonably
small network, so there is no need to define the NN
in advance,

• The algorithm learns fast because it employs weight
freezing to overcome moving target problem by
training one unit at a time instead of training the
whole network at once as in conventional MLP, and

• The algorithm can build deep network (high-order
feature representation) without dramatic slowdown
as seen in conventional MLP with more than one
hidden layers.

The deep network generated by cascade algorithm can
represent very strong non-linearity. It is good for some
problems but may be bad for other problems. It can be
regarded as overfitting problem caused by the use of too
many layers and neurons. As explained in [37], CasCor
employs ‘patience’ parameter to stop the training when
the error has not changed significantly for a period of
time. However, according to [35], overfitting will still
occurr if the NN is allowed to grow too much. Therefore,
we need to define the proper maximum number of hid-
den neurons. Besides using less hidden neurons, we can
also use more training data to minimize the overfitting
possibility.
For further details of cascade NN in general and Cas-

cade2 algorithm in particular, please refer to [35].

4 The estimation function
4.1 Reverberationmodel
On the time domain, the relation between anechoic and
reverberant signal (regardless the noise) can be expressed
as

y(t) = s(t) ∗ h(t), (1)

where s(t) and y(t) are the clean and reverberant signals,
respectively, and h(t) is the room impulse response (RIR),
which defines the room transfer function (RTF).
The relation between anechoic and reverberant signal in

log-melspectral domain should be represented as a non-
linear model as shown in [12,21]. However, for simplicity,
we defined it as

Y (t) =
N∑
i=0

αiS(t − i) (2)

= α0S(t) +
N∑
i=1

αiS(t − i), (3)

where S(t) and Y (t) represent the log-melspectral coef-
ficients of anechoic and reverberant signal, respectively,
for frame index t. While, α0, α1, . . . , αN represent the
RTF. This formulation was introduced in [26] and also
employed in [38-40].
The first term of Equation 3 corresponds to the direct-

path signal captured by the microphone and is repre-
sented by the solid line in Figure 3. Meanwhile, the second
term corresponds to the sum of signal reflections and are
represented by the dotted lines in Figure 3. The reflection
can be regarded as an attenuated and delayed version of
the direct signal.

4.1.1 Causal model
From Equation 3, S(t) could be expressed as

S(t) = 1
α0

Y (t) −
N∑
i=1

αi
α0

S(t − i), (4)

and by recursively substituting the last term, S(t) could be
expressed as

S(t) = 1
α0

Y (t) −
N∑
i=1

αi
α0

1
α0

Y (t − i)

+
N∑
i=1

αi
α0

N∑
j=1

αj

α0
S(t − i − j), (5)

S(t) = 1
α0

Y (t) −
N∑
i=1

αi

α2
0
Y (t − i)

+
N∑
i=1

N∑
j=1

αiαj

α3
0
Y (t − i − j) − . . . . (6)
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Figure 3 Illustration of reverberation in a closed room. The solid line represents the direct-path signal. The dotted lines represent the reflections.

The first term of Equation 6 considers only the current
frame Y (t), while the succeeding terms consider the left
context. The second term considersY (t−N) until Y (t−1),
the third term considers Y (t − 2N) until Y (t − 2), the
fourth term considers Y (t−3N) until Y (t−3), and so on.
RIR is characterized by reverberation time (T60), which

is the time required for reflections of a direct-path signal
to decay by 60 dB or one-millionth of the original energy.
If N is selected such that the N-segment covers the T60,
wemay limit the calculation up to the frameN because the
energy of reflections in the frames after N is very low and
negligible. If the practicality is considered, N should be
a trade-off between the dereverberation performance and
the computational cost. A longer segment may capture the
reverberation effect better which then potentially improve
the dereverberation, but the computational cost for pro-
cessing this segment will be higher. In order to simplify the
equation, βi is used for representing the variables formed
by the combination of αi, e.g. β0 = α−1

0 , β1 = −α1α
−2
0 ,

β2 = −α2α
−2
0 +α2

1α
−3
0 , β3 = −α3α

−2
0 + (2α1α2 −α3

1)α
−3
0 ,

and so on. Thus, the estimated anechoic coefficient Ŝ(t)
could be expressed as a function of reverberant signal Y (t)

Ŝ(t) = β0Y (t) +
L∑

k=1
βkY (t − k) + ε, (7)

Ŝ(t) ≈
L∑

k=0
βkY (t − k), (8)

where β0, β1, . . . , βL denotes the weights which are used
to compensate the RTF and L denotes the number of past
frames in the segment. L is used to substitute N in order
to indicate that the frames are the left context. By using
Equation 8, we could estimate current source signal S(t)
by using an (L+1)-frame segment of observed signal con-
sisting of current observed signal Y (t) and L frame(s) of
past observed signal.

4.1.2 Non-causal model
By considering a typical RIR, intuitively, we know that the
information of current frame will remain in its reflections
in the future, especially in its early reflections part where
the reflections still have considerable amount of energy.
Let 0 < n < N and N > 1, Equation 3 can be rewritten

as

Y (t) =
n−1∑
i=0

αiS(t − i) + αnS(t − n)

+
N∑

i=n+1
αiS(t − i), (9)

and S(t − n) could be expressed as

S(t − n) = 1
αn

Y (t) −
n−1∑
i=0

αi
αn

S(t − i)

−
N∑

i=n+1

αi
αn

S(t − i). (10)

Then, by substituting S(t − i) using the causal model on
Equation 8, S(t − n) could be expressed as

S(t − n) = 1
αn

Y (t) −
n−1∑
i=0

αi
αn

N∑
j=0

βjY (t − i − j)

−
N∑

i=n+1

αi
αn

N∑
j=0

βjY (t − i − j). (11)

Equation 11 comprises three terms. The first term con-
siders only Y (t). The second term considers the left
context, which is Y (t) until Y (t − n + 1); the current
frame, which is Y (t − n); and the right context, which is
Y (t − n− 1) until Y (t − n−N + 1). Meanwhile, the third
term considers only the right context, which is Y (t−n−1)
until Y (t−2N). In order to simplify the equation, γi is used
to substitute the variables formed by the combination of αi
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and βi. Thus, the estimated anechoic coefficient Ŝ(t − n)
could be expressed as

Ŝ(t − n) =
n−1∑
k=0

γkY (t − k) + γnY (t − n)

+
2N∑

k=n+1

γkY (t − k) + ε. (12)

Then, by making generalization on Equation 12, the
estimated anechoic coefficient Ŝ(t) could be expressed as

Ŝ(t) =
−1∑

k=−R
γkY (t − k) + γ0Y (t)

+
L∑

k=1

γkY (t − k) + ε, (13)

Ŝ(t) ≈
L∑

k=−R

γkY (t − k), (14)

where γK , . . . , γ−1, γ0, γ1, . . . , γL denotes the weights
which are used to compensate the RTF, L denotes the
number of past frames in the segment, and R denotes
the number of future frames in the segment. L and R are
used to indicate that the frames are the left context and
right context, respectively. By using Equation 14, we could
estimate current source signal S(t) by using an (L+1+R)-
frame segment of observed signal consisting of current
observed signal Y (t), L frame(s) of past observed signal
(left context), and R frame(s) of future observed signal
(right context).
Equation 14 could be seen as the general form of

reverberation model. We could get Equation 8 from
Equation 14 by setting R = 0.
Hereafter, we refer to Equation 8 as causal reverber-

ation model and Equation 14 as non-causal reverbera-
tion model (for R > 0). For the causal reverberation
model, the estimation of Ŝ(t) can be seen as removing
the unwanted information (reflections of previous frames)
which is estimated from the left context. While, for the
non-causal reverberation model, besides removing the
unwanted information, the estimation can be seen as gath-
ering more information about the current frame to be
processed, which is estimated from the right context.

4.2 Frame selection
Inspired by the use of window skipping in [41], besides
Equation 14 we also defined

Ŝ(t) ≈
L∑

k=−R
γkY (t − 2k). (15)

Hereafter, we refer to Equation 8 as ‘linear’ frame selec-
tion and Equation 15 as ‘skip1’ frame selection.

In this work, we named the frame selection used in the
experiments using L-C-R notation. L, C, and R show the
number of left context (past), current, and right context
(future) frames, respectively. For example, frame selec-
tion 4-1-0means that four past and one current frames of
reverberant speech are used to estimate the dereverber-
ated version of current frame, and frame selection 4-1-4
means that four past, one current, and four future frames
are used to do the dereverberation.
The use of skipping frame selection could be regarded

as dimensionality reduction strategy by minimizing the
redundant parts caused by the windowing. Therefore,
we could get a representation of longer context of time-
domain signal using smaller number of frames, which is
beneficial for the NN training. For example, if we use 25
ms window with 10 ms shift, 145 ms of context can be
represented by using 13-frame linear frame selection, e.g.,
12-1-0 or 6-1-6, or 7-frame skip1 frame selection, e.g.,
6-1-0 or 3-1-3.

4.3 Assumptions on the log-melspectral feature
In our works, we made several assumptions on the log-
melspectral feature. The first assumption is about the
dependency of certain feature dimension to the other fea-
ture dimensions, and the second is about the RTF of
feature dimension.
On the dependency of feature dimension, we defined

several channel selection, as follows:

• All-dimension selection, where the dimensions are
assumed to be fully dependent on each other.

• Single-dimension selection, where the dimensions are
assumed to be independent on each other and certain
dimension is only affected by the same dimension.

• Neighboring-dimension selection, where certain
dimension is assumed to be affected by the same
dimension and its neighbor dimension.

The estimation function above was derived using the
assumption used in all-dimension selection. However, our
experiments mainly used the single-dimension selection,
which can be expressed as

Ŝd(t) ≈
L∑

k=−R
γd,kYd(t − k), for d = 1, 2, . . . ,D, (16)

where d is the feature dimension number andD is the total
number of feature dimension.
By using the single-dimension selection, we could

define several assumptions on the transformation of fea-
ture dimension caused by the RTF. In our case, the
assumptions on the transformation affects the number of
NNs that should be used. Thus, we defined several NN
configurations as follows:
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• Single NN configuration, where it is assumed that
the transformation on each dimension is the same as
each other, so one NN is used to transform all
dimensions of feature.

• Basic multiple NNs configuration, where it is
assumed that the transformation on each dimension
is different from each other, so one NN is used to
transform one specific dimension.

• Modified multiple NNs configuration, where it is
assumed that the transformation on certain several
neighboring dimensions are the same, one NN is
used to transform more than one dimension
(neighboring dimensions).

The basic multiple NNs configuration, in which one
transformation function (in the form of NN) is used to
transform one dimension, corresponds to Equation 16.
Meanwhile, the single NN configuration, in which one
transformation function (in the form of NN) is used to
transform all dimensions, corresponds to Equation 17.
Note that Equations 16 and 17 are linear mapping func-
tions, while transformation by NN is a non-linear map-
ping. As shown in [26], the use of linear mapping is not
good enough to do dereverberation.

Ŝd(t) ≈
L∑

k=−R

γkYd(t − k), for d = 1, 2, . . . ,D. (17)

5 The proposed dereverberationmethod
Figure 4 shows the block diagram of proposed derever-
beration method. In general, the method can be divided
into segment-based normalization, feature scaling, and
feature mapping using NNs. The inputs of the method
are Y (t − L), . . . ,Y (t − 1),Y (t),Y (t + 1), . . . ,Y (t + R),
which are past frames, current frame, and future frames
of reverberant log-melspectral coefficient vector, and the

output is Ŝ(t), which is the estimated current anechoic
log-melspectral coefficient vector.

5.1 Segment-based normalization
Segment-based normalization is employed to deal with
the power difference between the anechoic speech sig-
nal and the reverberant signal captured by a distant-
talking microphone and to normalize the loudness of
speech utterance. In the NN training stage, it is done by
normalizing the current reverberant feature vector and
the current anechoic feature vector (which is the tar-
get of training) to the normalization target. Besides, the
segment-based normalization is employed to preserve the
relative variation of power envelope in a segment by nor-
malizing the past frames relative to the current frame.
The normalization is done using Equations 18 and 19
below.

δ(t) = � − 1
D

D∑
d=1

Yd(t), (18)

Ȳd(t − k) = Yd(t − k) + δ(t), for d = 1, 2, . . . ,D,
for −R ≤ k ≤ L,

(19)

where δ(t) is the normalization factor, Ȳd(t) is the nor-
malized log-melspectral coefficient for feature dimension
d and time index t,D is the number of feature dimensions,
and � is the normalization target.
The mean of NN output S̄(t) should be equal to the

normalization target because the target of NN train-
ing was also normalized. Therefore, the denormalization
(Equation 20) is used to recover its original mean of power.

Ŝj(t) = S̄j(t) − δ(t). (20)

Figure 4 Block diagram of proposed dereverberation method.
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Actually, the use of normalization factor δ(t) calcu-
lated from the reverberant feature vector (distant-talking
speech utterance) is not the best way to calculate the esti-
mation of clean feature vector (close-talking speech utter-
ance) because the power levels of clean and reverberant
signals are most likely not identical due to the influence
of the RIR. However, the distant-talking speech utterance
is the only input for the dereverberation method, and we
assume that the distance is unknown, so the use of nor-
malization factor δ(t) is the most reasonable way we can
do to recover the power level of a frame relative to its sur-
rounding frame. Thus, the estimation Ŝ(t) in Equation 20
can be regarded as an attenuated close-talking speech
utterance. Although, it is not the best approach, the denor-
malization could remarkably improve the output, as can
be seen in Figure 5.
Figure 5 shows spectrograms of an input and outputs

of a dereverberation process. Utterance-based normal-
ization (based on maximum value) was done in creating
the spectrogram to ease the observation because there
is power difference between close-talking speech utter-
ance (clean feature vectors) and distant-talking speech
utterance (reverberant feature vectors). Figure 5A shows
the feature vectors of close-talking utterance, which was
recorded from the distance of 25 cm. Figure 5B shows the
feature vector of corresponding distant-talking utterance,
which was recorded from the distance of about 4.0 m.
Figure 5C,D are the dereverberated feature vectors with-
out denormalization and with denormalization, respec-
tively. We can observe that by using denormalization,
we could get better estimation of the clean feature vec-
tors, especially for non-speech segments. In Figure 5C,D,
the difference of non-speech segments can be easily
observed, for example, between frames 290 and 330
(in frames).

5.2 Feature scaling
The feature scaling consists of scaling and de-scaling
processes. In general, the scaling and de-scaling can be
regarded as the pre-processing and post-processing for
the NNs. The scaling is done so that the NN input and
output have values ranging from about -1 until 1. The con-
stants τ and κ were used for this purpose, and the value
of these constants were determined empirically from pre-
liminary experiments. In contrast, the de-scaling is used
to recover the log-melspectral coefficient value from its
scaled value. The scaling and de-scaling are done using
Equations 21 and 22, respectively.

Ȳ ′
d(t − k) = Ȳd(t − k) + τ

2κ
, for −R ≤ k ≤ L, (21)

S̄d(t) = S̄′
d(t) ∗ 2κ − τ . (22)

5.3 Feature mapping using neural networks
In matrix form, Equation 14 could be written as

Ŝ = G Y , (23)

where Ŝ denotes the estimated anechoic feature vector,
Y denotes the supervector which consists of reverberant
feature vectors, and G denotes the transformation matrix
which represents the RTF compensation. In our works, a
non-linear regression is done to determine the function G
such that

argmin
G

‖S − (G ⊗ Y )‖2, (24)

where S is the anechoic (reference) feature vector and ⊗
denotes a non-linear transformation. The regression is
done by NN training algorithm and the NNs resulted
from the training are used as the transformation func-
tion G. Thus, the NNs are the functions for mapping
the reverberant feature vectors Y to the anechoic feature
vector S.
We use cascade NNs trained using the Cascade2 algo-

rithm. The algorithm is chosen because our task is a
regression task and Cascade2 is better algorithm for the
task than CasCor [36].
Figure 6 shows an illustration of cascade NN that

we used in our works, with N input neurons, M hid-
den neurons, and one output neuron. Figure 7 shows
the same NN in conventional MLP representation. The
input neurons are represented by y1, y2, . . . , yN , the hid-
den neurons are represented by h1, h2, . . . , hM, and the
output neuron is represented by s. Besides, we also use
one bias neuron b. The neurons yi and b are con-
nected to h1, h2, . . . , hM, s and the neuron s is connected
to y1, y2, . . . , yN , h1, h2, . . . , hM, b. The connection weight
between neuron n1 and n2 is represented by w(n1, n2).
The NN input y1, y2, . . . , yN in Figure 6 correspond to

Ȳ ′
d(t − L), . . . , Ȳ ′

d(t − 1), Ȳ ′
d(t), Ȳ

′
d(t + 1), . . . , Ȳ ′

d(t + R) in
Figure 4, which are the scaled value of the dereverbera-
tion input segment. While, the NN output s corresponds
to S̄′

d(t), which is the scaled value of the estimated clean
log-melspectral coefficient for frame t and dimension d.
We use the implementation of the Cascade2 algorithm

with RPROP (resilient propagation) weight update algo-
rithm, which is an advanced variation of batch backpropa-
gation algorithm [35,42], in Fast Artificial Neural Network
library (FANN) [43,44]. A linear activation function is
used for the output neuron, while the hidden neurons use
a symmetric sigmoid (tanh) function. For defining these
hidden neurons, we use four options of steepness value,
i.e., 0.25, 0.50, 0.75, and 1.00. The training algorithm will
choose the best steepness value for each hidden neuron.
Equation 25 expresses the linear activation function and
Equation 26 expresses the tanh activation function, where
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Figure 5 An example of dereverberation input and its outputs, with its clean version as the reference. (A) Clean feature vectors.
(B) Reverberant feature vectors. (C) Dereverberated feature vectors. (D) Denormalized dereverberated feature vectors.
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Figure 6 Illustration of the cascade neural network architecture used in this work.

xaf and yaf are the input and output of activation function,
respectively, and z is the steepness.

yaf = zxaf , (25)

yaf = tanh(zxaf ) = 2
1 + exp(−2zxaf )

− 1. (26)

Figure 7 Illustration of the cascade neural network architecture
used in this work depicted in conventional MLP representation.

Thus, the function of our output neuron s, which corre-
sponds to Ŝ, can be expressed as

s = z

⎛
⎝ N∑

i=1
yiw(yi, s) +

M∑
j=1

hjw(hj , s) + w(b, s)

⎞
⎠ , (27)

where z is the activation function steepness, yi are the
input neurons, which corresponds to Y , w(n1, n2) are
the connection weights between neurons n1 and n2, b is
the bias neuron, and hj are the hidden neurons, whose
function can be expressed as

hj =
{
tanh (zp) for j = 1,
tanh (zq) else, (28)

in which

p =
N∑
i=1

yiw(yi, hj) + w(b, hj), (29)

q =
N∑
i=1

yiw(yi, hj) +
j−1∑
k=1

hkw(hk , hj) + w(b, hj). (30)

By using a linear activation function for the output neu-
ron in the CasCor algorithm, it means that, initially, we
use a linear regression to fit the transformation function.
Then, it becomes a non-linear regression when the train-
ing process starts to add hidden neuron to the network.
We use several termination criteria for the training,

i.e., maximum number of hidden neurons, maximum and
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minimum epochs for candidates and output training, and
mean squared error. The number of hidden neurons is
set proportionally to the number of NN inputs (neurons).
Therefore, the size of network depends on the length of
input segment. For the default configuration, we set the
maximum number of hidden neurons to be equal to twice
of the number of NN inputs (M ≤ 2N). The number
of hidden layers will be equal to the number of hidden
neurons.
By using the above termination criteria of hidden neu-

ron number, our NN will be compact. For example, if
we use nine-frame segment of input, we use in total 29
neurons, consisting of 9 input neurons, 1 bias neuron,
18 hidden neurons, and 1 output neuron. In addition,
from our experiments, we could have good performance
by training this compact NN using relatively few training
samples. It fits the statement in [37] that the CasCor algo-
rithm can learn fast while still create a reasonably small
network that generalizes well.

6 Evaluation using automatic speaker
identification system

6.1 Overview of the automatic speaker identification
system

Figure 8 depicts the general experimental setup used in
the evaluation using the SID system. The NN training
and featuremapping used 24-dimensional log-melspectral
feature, while the speaker model training and identifi-
cation used 12-dimensional melcepstral feature (MFCC).
For these experiments, we needed to create three datasets,
i.e., speaker model training dataset, NN training dataset,
and testing dataset.
The figure also shows the use of CMN after cep-

stral feature extraction. For the experiments using real
dataset, it is necessary to use CMN because we need to
remove the noise and reverberation in the close-talking
utterances used to train the speaker models. However,
it may not necessary for the experiments using simu-
lated dataset because we have anechoic utterances to
train the speaker models. Nevertheless, we used CMN in
the experiments using simulated dataset. For the exper-
iments using real dataset, we experimented on the use
of speaker models trained using original MFCC and also
normalized MFCC (by CMN). Meanwhile, for the exper-
iments using simulated dataset, we experimented on the
use of speaker models trained using normalized MFCC
only.
The SID system used speaker-specific GMMs as the

speaker models [45]. Each speaker was represented by a
D-variate GMM as

λ = {ci,μi,�i}, for i = 1, 2, . . . ,M, (31)

where ci is the mixture weight, μi is the mean vector, �i is
the covariance matrix, and M is the component number.
In our experiments, M = 32 was used. GMM parameters
were estimated using the standard maximum likelihood
(ML) estimation method via the expectation maximiza-
tion (EM) algorithm. For a sequence of T test vectors
X = x1, x2, . . . , xT , the GMM likelihood can be calculated
using

L(X|λ) = log p(X|λ) =
T∑
t=1

log p(xt|λ). (32)

GMM is used to model the speaker identity because
the Gaussian components can represent some general
speaker-dependent spectral shapes and the Gaussian mix-
tures can model arbitrary densities [46]. In this work,
we focused on developing a dereverberation approach,
instead of improving the identification accuracy based on
discriminative classification approach, so the use of GMM
approach should be sufficient for our purpose in evaluat-
ing the proposed dereverberation method. Consideration
of the state-of-the-art in speaker identification is beyond
the scope of this work.
Voice activity detection (VAD) was also employed to

remove the silence parts in the beginning and ending of
recordings. For the simulated reverberant data, the VAD
was done automatically on the melcepstral domain based
on the frame log-energy coefficients. While, for the real
reverberant data, the VAD was done manually by hand
because the SNRs were low in utterances recorded from
very distant position, e.g., from 4.0 m, and made our
current automatic VAD unreliable.

6.2 Experiments using simulated reverberant data
6.2.1 Dataset description
The clean speech data was taken from the newspaper
reading part of JNAS database [47]. The speech data of
100 male speakers were used. In average, each speaker has
105 utterances. The RIR and noise data were taken from
Aurora-5 [48], while the simulation program was SImula-
tion of REal Acoustics (SIREAC) [49,50]. The simulation
programwas used to generate the reverberant speech data
from the clean speech and the RIR. The program can also
add additive noise to the signal.
We created the simulated reverberant data by using the

RIR of ‘office’ and ‘livingroom’ with reverberation time
(T60) of 400ms. Besides, we also created a simulated noisy
reverberant data by adding noise of ‘office’ with signal-to-
noise ratio (SNR) of 20 and 10 dB to the ‘office’ reverberant
data.
6.2.2 Experimental setup
The GMMs for the speaker identification system was
trained using 500 clean utterances (100 speakers, 5 utter-
ances for each speaker). The utterances were selected
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Figure 8 General experimental setup in the evaluation using SID system. The CMN was only used in some experiments.

randomly but constrained by the file size requirement so
that the average duration of the utterances after VAD was
about 3 s. CMN was also employed as pre-processing of
GMM training data.
A pool of training data was created for each environ-

ment. This pool of data consisted of 25 pairs of clean
utterance and simulated (noisy) reverberant utterance.
The utterances were selected randomly but constrained
by the file size requirement so that the average dura-
tion of the utterances after VAD was about 7 s. From
this pool of training data, ‘1u’ (1 pair of utterances by 1
speaker), ‘5u’ (5 pairs of utterances by 5 speakers), ‘10u’
(10 pairs of utterances by 10 speakers), and ‘15u’ (15 pairs
of utterances by 15 speakers) NN training datasets were
created.
A testing dataset was also created for each type of sim-

ulated (noisy) reverberant data. Each dataset consisted
of 1,000 simulated (noisy) reverberant utterances (100
speakers, 10 utterances for each speaker). The utterances
were selected randomly but constrained by the file size
requirement so that the average duration of the utterances
after VAD was about 5 s. Note that the utterances in the
testing dataset contained different contents (sentences)
from the utterances used to train the GMMs.
The experiments were done by using causal reverbera-

tion model (using left context only) and non-causal rever-
beration model (using left and right context) on known
environments (matched conditions). We did experiments
on the use of single NN (1 NN for 24 feature dimensions)
and multiple NNs (1 NN for 1 feature dimension) config-
urations. In addition, we did experiments using linear and
skip1 frame selection.
The NN training used random weight initialization, and

variations in the final NN were not unexpected. All exper-
imental results below show the average of three experi-
mental results, where each experiment consists of training
phase and testing phase.

6.2.3 Experimental results
The baseline for each type of simulated (noisy) reverber-
ant data is shown in Table 1. For the noisy reverberant, we
only experimented on the RIR of ‘office’, so the baseline
for the RIR of ‘livingroom’ is not available. The identi-
fication rate for the clean version of testing dataset was
98.0%. Note that we can regard this baseline as the result
of enhancement using CMN because it was used as pre-
processing of GMM training data.
We used several frame selection numbers in the exper-

iments. In the experimental result tables, we divided the
frame selection numbers into three groups, i.e., (1) left
context only (L), (2) left and right context (L+R), and
(3) left and shorter right context (L+sR). Group L rep-
resents the causal reverberation model, while group L+R
and group L+sR represent the non-causal reverberation
model. Our hypothesis in deriving the non-causal model
was that the early reflections part still has considerable
amount of energy. That was why the addition of short right
context to the left context should be enough. The italicized
text in Tables 2 and 3 represents the best performance
for each training data number in a frame selection num-
ber group. The bold and italicized text represents the best
performance for each training data number regardless the
frame selection number group.
For a limited number of stereo data, we believed that the

performance of feature mapping depends on the context

Table 1 Speaker identificationbaseline for each type of
simulated (noisy) reverberant data

RIR Speaker identification rate (%)

Type T60 (ms) Clean
Reverb. Noisy reverberant

SNR = ∞ SNR = 20 dB SNR = 10 dB

Office
400 98.0

74.3 55.3 20.6

Livingroom 70.9 - -
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Table 2 Experimental results by using simulated reverberant data

NN conf. RIR Frame sel. type

Speaker identification rate (%)

Left context only (L) Left+right context (L+R) Left+short right context (L+sR)

Frame sel.
Training data

Frame sel.
Training data

Frame sel.
Training data

1u 5u 10u 15u 1u 5u 10u 15u 1u 5u 10u 15u

Multiple NNs

Office

Linear

3-1-0 71.6 76.7 76.8 77.0 – – – – – – – – – –

7-1-0 59.9 79.6 81.7 81.9 3-1-3 70.0 82.3 82.7 83.1 – – – – –

15-1-0 33.4 65.3 78.8 80.9 7-1-7 55.5 76.9 83.3 85.1 7-1-3 56.2 81.3 85.4 85.8

Skip1

3-1-0 74.4 79.5 79.4 80.1 – – – – – – – – – –

7-1-0 57.1 81.3 82.4 84.0 3-1-3 69.2 83.8 85.8 86.1 – – – – –

– – – – – 7-1-7 52.7 72.0 82.2 85.0 7-1-3 59.1 83.1 85.7 87.1

Livingroom

Linear

3-1-0 60.1 69.6 70.6 70.8 – – – – – – – – – –

7-1-0 52.3 76.0 78.1 78.9 3-1-3 52.3 75.4 75.8 75.7 – – – – –

15-1-0 23.6 58.4 72.2 76.5 7-1-7 35.5 62.4 74.4 78.4 7-1-3 32.5 74.1 79.4 81.1

Skip1

3-1-0 63.2 74.0 74.1 74.5 – – – – – – – – – –

7-1-0 39.8 75.5 78.8 79.7 3-1-3 52.4 77.8 79.5 79.1 – – – – –

– – – – – 7-1-7 25.6 61.3 74.6 79.2 7-1-3 32.5 72.2 79.6 82.1

Single NN Livingroom

Linear

3-1-0 64.9 71.6 70.6 71.3 – – – – – – – – – –

7-1-0 71.8 75.4 75.4 75.4 3-1-3 72.0 75.4 74.9 74.0 – – – – –

15-1-0 70.5 77.0 77.2 77.7 7-1-7 73.6 77.5 79.2 78.4 7-1-3 76.9 77.8 78.8 78.6

Skip1

3-1-0 71.1 73.4 74.3 74.4 – – – – – – – – – –

7-1-0 72.6 75.9 76.1 76.2 3-1-3 73.7 76.2 76.2 77.0 – – – – –

– – – – – 7-1-7 71.4 79.3 79.5 79.9 7-1-3 74.6 79.6 79.7 79.7
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Table 3 Experimental results by using simulated noisy reverberant data (RIR = ‘office’)

NN conf. RIR Frame sel. type

Speaker identification rate (%)

Left context only (L) Left+right context (L+R) Left+short right context (L+sR)

Frame sel.
Training data

Frame sel.
Training data

Frame sel.
Training data

1u 5u 10u 15u 1u 5u 10u 15u 1u 5u 10u 15u

Multiple NNs

20 dB

Linear

3-1-0 53.0 59.0 63.5 61.8 – – – – – – – – – –

7-1-0 38.9 60.5 62.9 64.6 3-1-3 42.3 64.9 66.6 65.4 – – – – –

15-1-0 15.3 40.7 55.1 60.5 7-1-7 24.7 50.8 61.8 65.7 7-1-3 27.8 58.6 65.8 67.0

Skip1

3-1-0 48.6 58.8 63.4 62.2 – – – – – – – – – –

7-1-0 32.1 60.5 61.8 62.9 3-1-3 46.3 63.1 66.0 67.0 – – – – –

– – – – – 7-1-7 22.7 45.8 57.3 62.9 7-1-3 27.6 54.1 66.2 67.1

10 dB

Linear

3-1-0 20.7 34.8 32.0 35.7 – – – – – – – – – –

7-1-0 18.3 34.1 37.6 38.4 3-1-3 25.6 37.4 38.6 41.1 – – – – –

15-1-0 3.2 20.4 31.7 33.9 7-1-7 6.1 25.2 36.9 41.0 7-1-3 10.1 32.3 40.8 42.8

Skip1

3-1-0 31.9 32.1 34.1 35.1 – – – – – – – – – –

7-1-0 13.2 32.0 36.5 37.0 3-1-3 20.7 37.3 39.8 41.3 – – – – –

– – – – – 7-1-7 6.2 19.8 31.4 37.2 7-1-3 8.1 32.5 37.5 41.2
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length represented by the frame selection. Based on the
context length it represents, the frame selection numbers
used in these experiments could be divided into:

• Short context (<100 ms): linear 3-1-0 (55 ms of
context), linear 7-1-0 (95 ms), linear 3-1-3 (85 ms),
and skip1 3-1-0 (85 ms).

• Medium context (100 to 200 ms): linear 15-1-0 (175
ms), linear 7-1-7 (165 ms), linear 7-1-3 (125 ms),
skip1 7-1-0 (165 ms), and skip1 3-1-3 (145 ms).

• Long context (>200 ms): skip1 7-1-7 (305 ms), skip1
7-1-3 (225 ms).

In general, the feature mapping using short context
could perform well. It could be improved by using
medium or long context as long as the NN training data
is sufficient because the use of longer context will make
the NN vulnerable to high variance (overfitting) prob-
lem, where the use of more NN training data might
help.
We can observe that the skip1 frame selection could

almost always outperform the linear frame selection for
the simulated noiseless reverberant data (Table 2). While
for the simulated noisy reverberant data (Table 3), the lin-
ear frame selection was better, although the skip1 frame
selection could be better for some cases.
We can also observe that we could get better perfor-

mance by adding the right context. The use of left con-
text only (group L) was the best for the small training
dataset (‘1u’), but for the other training datasets, the use of
right context (group L+R and L+sR) could perform better.
Whenmultiple NNs configuration is used, the group L+sR
could always be the best for the ‘15u’ dataset and almost
always be the best for the ‘10u’ dataset.
In Table 2, we can observe that the single NN (1 NN)

configuration was better than the multiple NNs (24 NNs)
configuration for the ‘1u’ and ‘5u’ training datasets. For
the bigger datasets, the best performance of single NN
configuration could not surpass the best performance
of multiple NNs configuration. In fact, the addition of
training data number did not affect the performance of
single NN configuration and we can observe it on each
frame selection number. By using single NN configura-
tion, it means that the NN training dataset contains the
data of 24 dimensions of log-melspectral features and
the NN training generalized the RTF of these 24 fea-
ture dimensions. For small training dataset, it is beneficial
because we could have sufficient training dataset for train-
ing an NN. At least, it could prevent us from overfitting
problem. However, if we have much more training data,
the RTF generalization over 24 dimensions is not good
enough because the RTF should be frequency-dependent.
Consequently, the performance of single NN can not
surpass the performance of multiple NNs when many

training data were used. Therefore, the multiple NNs
configuration should be the best choice, especially if the
NN training data is sufficient. For the single NN con-
figuration, the combination of the use of left and right
context with skip1 frame selection was almost always
give the best performance for each NN training data
size.

6.3 Experiments using real reverberant data
6.3.1 Dataset description
The real reverberant data used in these experiments was
recorded in a recording room whose dimensions were
about 5× 6.4× 2.65 m, as depicted in Figure 9 [51,52].
There were eight T-shape microphone arrays installed in
the room, and each array was consisted of four micro-
phones. Half of the arrays were installed on the ceiling,
and the other half were on the wall. There was no material
that was intentionally installed to reduce reverberation or
noise, except the materials for microphone array that was
used to place the microphones. The reverberation time
was approximately 330 ms and the background noise was
approximately 35 dBA, measured from the middle of the
room (denoted by ‘RIR’ in Figure 9). The recording pro-
cess was done using 32-channel recording system with 16
kHz sampling rate.
We created two real reverberant datasets in the record-

ing room as described above. Both datasets consisted of
close-talking utterances, which were recorded from the
distance of 25 cm, and distant-talking utterances, which
uttered from five different positions (P01 to P05) and
captured by eight microphone arrays. However, for the
experiments which are presented here, we only considered
the first microphone of microphone array A (hereafter,
simply referred as microphone A). Figure 9 shows the
speaker positions, the microphone A position, and also
rough distance between the speaker and the microphone.
The distances from P01, P02, P03, P04, and P05 to

microphone A were about 4.0, 2.5, 2.2, 2.2, and 1.5
m, respectively. Theoretically, the direct-to-reverberant
ratios (DRRs) of these distant-talking recordings were
small because the distances were greater than the critical
distance for the room, which is around 0.9 m (calculated
using approximation of Sabine’s formula [53]).
The first dataset was a non-stereo dataset. It con-

tained two sessions of 20 speakers’ recordings where
each speaker uttered 10 utterances from each position
in each session. In this dataset, there were also close-
talking utterances (25 cm), but they were not simul-
taneously recorded with the distant-talking utterances.
Besides, there were also utterances recorded from the dis-
tance of 50 cm, but we did not use this data. Thus, for
these experiments, there were 2,000 distant-talking utter-
ances (2 sessions× 20 speakers× 10 utterances× 5 posi-
tions) and 400 close-talking utterances (2 sessions× 20
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Figure 9 Illustration of the recording roomused in acquiring the real reverberant data. ‘P01’ until ‘P05’ denote the speaker positions, while ‘A’
denotes the microphone position. The arrows represent the face direction of the speakers.

speakers× 10 utterances). This dataset was also used
in [26].
The second dataset was a stereo dataset, where the

close-talking and distant-talking utterances were recorded
simultaneously. It contains one session of three speakers’
recordings where each speaker uttered 10 utterances from
each position. Thus, for these experiments, there were
150 pairs of distant-talking and close-talking utterances
(1 session× 3 speakers× 10 utterances× 5 positions).

6.3.2 Experimental setup

The GMMs for the SID system were trained using 10
close-talking utterances from the non-stereo dataset for
each speaker. We used two schemes for training the
GMMs. Consequently, there were also two schemes in
creating the testing dataset which consisted of 200 distant-
talking utterances (20 speakers× 10 utterances) for each
position.

• First scheme: the training data for GMMs consisted
of the first five utterances (utterance A0-A4) from
two sessions, while the testing data consisted of the
second five utterances (utterance A5-A9) from two
sessions.

• Second scheme: the training data for GMMs
consisted of 10 utterances (utterance A0-A9) from
the first session, while the testing data consisted of 10
utterances (utterance A0-A9) from the second
session.

By using the first scheme, we could show that the SID
system was text-independent because the sentences of the
training dataset and testing dataset were completely dif-
ferent. However, the second scheme could represent a real
application better, where the data of an earlier session was
used as the training dataset and the later session was used
as the testing dataset, although the contents of training
and testing utterances are the same.
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The NN training datasets were created using utterances
from the stereo dataset. Although they were recorded
from the distance of 25 cm, we regarded the close-talking
utterances as our clean speech signals and tried to map
the distant-talking utterances to close-talking utterances
using NNs. The NN training datasets were created for
each position and consisted of one or five pairs of utter-
ances (utterance A0-A4) from each speaker. We defined
three kinds of dataset, i.e., ‘1s.1u’ (1 pair of utterances, 1
speaker), ‘1s.5u’ (5 pairs, 1 speaker), and ‘3s.15u’ (15 pairs,
3 speakers). The average duration of the training utter-
ances after VAD was about 6.3 s. Thus, the ‘1s.1u’, ‘1s.5u’,
and ‘3s.15u’ datasets correspond to about 6.3, 32, and 94 s
of speech signal, respectively.
We did preliminary experiments by using small NN

training dataset, including ‘1s.1u’ dataset, which con-
tained only one pair of utterances. By using this con-
straint, we experimented on modified multiple NN by
modifying our assumptions on the transformation of each
feature dimension. In these experiments, we only consid-
ered position P01, P02, and P05.
In the next experiments, we divided the data into known

conditions/positions (P01, P03, P05) and unknown condi-
tions/positions (P02 and P04). By using the known con-
ditions, we created position-specific and combined NN
training data. Then, the NNs were used to dereverberate
the known conditions and also the unknown conditions.
Besides, we tried to employ a decision-making process

on which known condition was the most similar to the
condition of particular input (utterance) by using envi-
ronment models (GMMs), which were trained using the
same data for training the position-specific NNs. It can
also be seen as a way to choose the best NN sets to be
used. Let Yt =[Yt,1 Yt,2 · · · Yt,d]T be a d-dimensional
log-melspectral feature vector for frame t. We created
supervector Ŷt = [Yt+N−1 Yt+N−2 · · · Yt]T and then
normalized it using segment-based normalization (as in
Subsection 5.1) relative to the latest frame (Yt+N−1). In
the experiments, we used d = 24 and N = 8. Thus,
the supervector Ŷt was a 192-dimensional feature vector
and the environment models (GMMs) were trained using
this supervector. By using 32-mixture GMM λ for each
known condition (position), the likelihood of an utter-
ance Y = Y1,Y2, . . . ,YT was determined using Ŷ =
Ŷ1, Ŷ2, . . . , ŶT−N+1 as

L(Y |λ) = log p(Ŷ |λ) =
T−N+1∑
t=1

log p(Ŷ t|λ). (33)

Thus, for each input utterance, we calculate the GMM
likelihood of each known condition (position). Then,
we selected the condition (position) having the highest
likelihood from the likelihood calculation result and used

its position-specific NN sets to do feature mapping on the
input.
In other words, we tried to determine the most appro-

priate position-specific NNs to be used by evaluating
segments of the input utterance using the environment
models (GMMs). The GMM itself tried to model the RTF
for each known reverberant environment (position). It
is impossible to capture the characteristic of reverber-
ant environment (RTF) by using a single frame, so we
used the GMM to model segments (eight-frame, corre-
sponds to 95 ms of context) of reverberant utterances.
However, by using segment, the approach will be text-
dependent because the segment is long enough to capture
one or more phonemes, which are also affected by the
adjacent phonemes beyond the segment length. There-
fore, it is important to do the experiment using the first
scheme of training and testing, where the spoken utter-
ances of training and testing were different. In addition,
it is possible to improve the approach by training and
evaluating using segments which are ended by silence
only.
As comparison, we tried to implement the mapping

method on melcepstrum (MFCC) domain using MLP
network proposed in [25]. Because we only use 12-
dimensional MFCC for the identification, we only created
12MLPs, instead of 13MLPs.Moreover, there was no fur-
ther explanation about the frame selection used in [25],
so we did two implementations, i.e., by using linear frame
selection 8-1-0 and 4-1-4.
All experimental results below show the average perfor-

mance of several experiments. For the preliminary exper-
iments (Fundamental results), the experimental results
of ‘1s.1u’ represent the average of 45 experiments (3
speakers× 5 utterances/speaker× 3 experiment sets) and
the experimental results of ‘1s.5u’ represent the aver-
age of 9 experiments (3 speakers× 3 experiment sets).
For the use of ‘1s.5u’ dataset in the other experiments
(Position-dependent/independent results), we calcu-
lated the average of three experimental results for each
training speaker, and then we average them. Thus, they
also represent the average of nine experiments. While
for all use of ‘3s.15u’ dataset, we calculated the average
of three experimental results. Thus, they represent the
average of three experiments.

6.3.3 Experimental results
Fundamental results Table 4 shows the baseline for the
first and second scheme ofGMM training and testing. The
tables also show the result of CMN enhancement.
The baselines for both schemes were quite low. Note

that the speaker model trained using utterances recorded
from the distance of 25 cm, which most likely contained
noise and reverberation. The CMN was very effective to
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Table 4 Baseline for the speaker identificationexperiments using the real reverberant data

Experiment scheme Method
Speaker identification rate (%)

P01 P03 P05 P02 P04 Avg. known Avg. unknown Avg. all

I
Baseline 45.0 49.0 45.5 44.0 46.0 46.5 45.0 45.9

CMN 83.0 88.0 91.5 93.0 90.0 87.5 91.5 89.1

II
Baseline 45.0 50.5 54.0 55.5 49.5 49.8 52.5 50.9

CMN 84.0 89.5 91.0 91.5 89.5 88.2 90.5 89.1

The known environments include P01, P03, and P05, while the unknown environments include P02 and P04.

remove that distortions and improve the speaker identi-
fication rate. The CMN could reach 79.9% and 77.8% of
ERR relative to the baseline for the first and second testing
schemes, respectively. By using CMN, the identification
rates for the close-talking version of testing dataset were
99.5% and 100% for the first and second schemes, respec-
tively. For the evaluation using SID system, our proposed
method could also perform very well when combined with
CMN and was not effective when it worked alone, as
shown later.
Table 5 shows our first experimental results using the

real reverberant data. The experiments used the first
scheme on creating the GMM training dataset and testing
dataset. Besides, we only considered the utterances from
positions P01, P02, and P05, because these three posi-
tions and microphone A were in-line and the speakers’
utterances were directed to microphone A.
Similar to the experiment results using the simulated

reverberant data, the multiple NNs configuration showed
better performance for the ‘3s.15u’ dataset but worse for
the ‘1s.1u’ and ‘1s.1u’ datasets. Therefore, we tried to look
for a good performance trade-off for all datasets by using

modified multiple NNs configuration, where one NN was
used for more than one dimension of feature. In our
experiments, the number of dimension in each NN was
divided evenly. For example, in six NNs configuration, the
first NN was for the dimension 1-4 of 24-dimensional log-
melspectral feature, the second NNwas for 5-8, and so on.
It meant that we assumed that the RTF for the dimension
1-4 was the same, the RTF for the dimension 5-8 was the
same, and so on.
Table 5 shows the experimental results in terms of ERR

relative to the CMN for the use of causal skip1 3-1-0 frame
selection (corresponds to 85 ms of context). ‘1 NN’ repre-
sents the single NN configuration, and ‘24 NNs’ represents
the original multiple NNs configuration.
We can observe that the use of modified multiple NNs

configuration (‘6 NNs’ and ‘12 NNs’) could be better than
single NN configuration (‘1 NN’) and also original mul-
tiple NNs configuration (‘24 NNs’). The averages of ERR
(relative to the CMN) across the types of dataset for the
‘6 NNs’ and ‘12 NNs’ configuration were 41.7% and 41.1%.
So, the ‘6 NNs’ configuration gave us the best trade-off.
Comparing to ‘1 NN’ configuration, ‘6 NNs’ significantly

Table 5 Experimental results on theuse ofmodifiedmultipleNNs configuration for knownpositions (matchedconditions)

Method Dataset
Error rate reduction (%)

P01 P02 P05 Avg.

Proposed (1 NN) + CMN

1s.1u 30.8 19.4 21.7 24.0

1s.5u 34.7 27.8 23.5 28.7

3s.15u 35.4 33.3 23.5 30.8

Proposed (6 NNs) + CMN

1s.1u 40.8 44.0 19.7 34.8

1s.5u 45.5 62.7 16.3 41.5

3s.15u 51.0 71.4 23.5 48.7

Proposed (12 NNs) + CMN

1s.1u 33.0 33.7 22.9 29.8

1s.5u 40.6 54.0 32.0 42.2

3s.15u 55.2 71.4 27.5 51.4

Proposed (24 NNs) + CMN

1s.1u 17.9 2.5 10.5 10.3

1s.5u 30.2 31.0 22.2 27.8

3s.15u 46.9 42.9 13.7 34.5

The experiments were done by using the first testing scheme and skip1 3-1-0 frame selection. The results are shown in term of ERR relative to the ‘CMN’. The bold text
represents the best average performance for each training data number.
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improved the performance of ‘1s.5u’ and ‘1s.1u’ datasets.
Surprisingly, comparing to ‘24 NNs’ configuration, it also
improved the performance of ‘3s.15u’ dataset. The aver-
ages of ERR (relative to the CMN) for ‘1s.1u’, ‘1s.5u’, and
‘3s.15u’ were 34.8%, 41.5%, and 48.7%, respectively. In ddi-
tion, we could get better performance for ‘3s.15u’ dataset
by using ‘12 NNs’ configuration, where its average ERR
was 51.4%.

Position-dependent/independent results For the next
experiments, we considered the utterances from all
positions but divided the data into known condi-
tions/positions (P01, P03, P05) and unknown condi-
tions/positions (P02, P04). The data of known conditions
is used for training and/or testing, while the data of
unknown conditions is used for testing only.
Table 6 shows the experimental results by using

position-specific training data for the first testing scheme.
In these experiments, the NN sets were trained using the
utterances from one position and then were used to dere-
verberate the utterances from all positions (including the
position used for training).
Table 6 shows that by using ‘1s.5u’ datasets, the aver-

age identification rates of ‘24 NNs’, ‘12 NNs’, and ‘6
NNs’ configurations for matched conditions were 88.4%,
90.3%, and 90.3%. While, by using ‘3s.15u’ datasets, the

average identification rates were 93.2%, 93.7%, and 92.2%.
Besides the experiment using the first scheme, we also
did it using the second scheme. For the ‘1s.5u’ datasets,
the ‘6 NNs’ configuration performed best in the first
and second schemes. Meanwhile, for the ‘3s.15u’ datasets,
the ‘12 NNs’ configuration performed best in the first
scheme and the ‘24 NNs’ performed best in the second
scheme.
From Table 6, we can also observe that the use of

utterances from one position could perform reasonably
well for the other (unknown) positions in the room. We
can observe that by using more training data, we could
improve the performance. Comparing to the identification
rate of CMN (Table 4), the total averages of identification
rate were often worse for ‘1s.5u’ datasets but always better
for the ‘3s.15u’ datasets. It is similar as the experimen-
tal results for the matched conditions as discussed above.
Besides, we can observe that the use of utterances from
position P05 as NN training data could perform better
than, or at least could perform as good as, the use of utter-
ances from other positions. Moreover, by using a small
dataset (‘1s.5u’) of position P05, we could get a reasonably
good performance.
For Tables 7 and 8, we combined the utterances from

known positions (P01, P03, P05) into a training dataset.
Therefore, we created ‘1s.15u’ dataset (‘1s.5u’ dataset× 3

Table 6 Experimental results by using position-specific training data

Method Dataset
Speaker identification rate (%)

P01 P03 P05 P02 P04 Avg. known Avg. unknown Avg. all

Proposed (24
NNs) + CMN

P01
1s.5u 85.8* 86.0 85.9 87.1 85.5 85.8 86.1 86.1

3s.15u 91.8* 91.8 92.0 93.2 90.0 91.8 91.8 91.8

P03
1s.5u 84.0 86.8* 85.2 88.1 88.6 86.8 86.5 86.5

3s.15u 90.3 92.7* 93.5 94.8 92.8 92.7 92.9 92.8

P05
1s.5u 88.8 91.2 92.7* 93.3 89.7 92.7 90.8 91.1

3s.15u 90.3 93.0 95.0* 96.2 91.7 95.0 92.8 93.2

Proposed (12
NNs) + CMN

P01
1s.5u 88.8* 88.6 88.6 89.9 90.4 88.8 89.4 89.3

3s.15u 93.5* 94.3 94.2 95.0 93.3 93.5 94.2 94.1

P03
1s.5u 87.8 89.6* 89.3 90.7 92.3 89.6 90.0 89.9

3s.15u 91.5 94.7* 94.3 95.0 94.2 94.7 93.8 93.9

P05
1s.5u 89.9 92.5 92.4* 94.2 92.7 92.4 92.3 92.3

3s.15u 91.5 93.2 92.8* 96.5 92.7 92.8 93.5 93.3

Proposed (6
NNs) + CMN

P01
1s.5u 89.5* 88.4 87.9 90.9 91.7 89.5 89.7 89.7

3s.15u 92.2* 91.7 91.0 94.7 93.3 92.2 92.7 92.6

P03
1s.5u 89.1 89.7* 88.4 91.0 92.7 89.7 90.3 90.2

3s.15u 91.5 92.0* 92.0 95.0 93.8 92.0 93.0 92.9

P05
1s.5u 90.1 91.4 91.7* 94.7 93.4 91.7 92.4 92.3

3s.15u 92.5 93.2 92.3* 96.3 94.2 92.3 94.0 93.7

The known environments include P01, P03, and P05, while the unknown environments include P02 and P04. The experiments were done by using the first testing
scheme and skip1 7-1-0 frame selection. The asterisks (*) indicate known positions (matched conditions). The bold text represents the best average performance for
each training data number.



Nugraha et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:13 Page 21 of 31
http://asmp.eurasipjournals.com/content/2014/1/13

Table 7 Experimental results by using combined training data (three known positions) on the first testing scheme

Method Dataset
Speaker identification rate (%)

P01 P03 P05 P02 P04 Avg. known Avg. unknown Avg. all

Prop. (24 NNs) + CMN combd
1s.15u 88.9 90.4 93.9 93.8 90.2 91.1 92.0 91.4

3s.45u 90.5 93.7 94.5 96.2 92.0 92.9 94.1 93.4

Prop. (12 NNs) + CMN combd
1s.15u 90.9 92.5 93.0 94.2 92.2 92.1 93.2 92.6

3s.45u 93.5 94.8 94.2 96.2 93.2 94.2 94.7 94.4

Prop. (6 NNs) + CMN combd
1s.15u 90.8 91.2 91.6 94.4 93.8 91.2 94.1 92.4

3s.45u 92.7 92.2 92.5 96.0 94.0 92.4 95.0 93.5

The known environments include P01, P03, and P05, while the unknown environments include P02 and P04. The experiments were done by using skip1 7-1-0 frame
selection. The bold text represents the best average performance for each training data number.

positions) and ‘3s.45u’ dataset (‘3s.15u’ dataset× 3 posi-
tions). From Table 6, the use of 15 pairs of utterances as
NN training data (‘15u’) seems enough for our method
to perform well. So, one possibility that may make a
difference of performance between ‘1s.15u’ and ‘3s.45u’
datasets is speaker variation in the NN training data.
However, these two types of combined datasets could per-
form well, and the performance difference between both
datasets was not significant. For the first scheme, the total
average identification rates were 91.4% to 94.4%, which is
21.1% to 48.6% of ERR relative to the CMN. Meanwhile,
for the second scheme, the total average identification
rates were 92.6% to 94.8%, which corresponds to 32.1%
to 52.3% of ERR relative to the CMN. Thus, eventually,
the similarity of utterances’ content between training and
testing data was affecting the performance. In addition,
similar as experimental results shown in Table 6, the ‘12
NNs’ and ‘24 NNs’ configurations performed best in the
first and second schemes, respectively.
The identification rates for unknown conditions were

also improved. It shows that by combining the training
data from known positions in a room, we could train NN
sets which generalize well, so that the NN sets could also
perform well for unknown positions in the same room.
Table 9 shows the performance of GMM as position-

specific NNs selector. We can compare it to the perfor-
mance of combining training data approach (Table 7). For
‘6 NNs’ configuration, both approaches showed similar

performance. However, for ‘12 NNs’ and ‘24 NNs’ con-
figuration, the combining training data approach could
perform better. Besides, we could also compare it to the
results of matched condition cases in Table 6.
Table 9 shows that by using ‘1s.5u’ datasets, the aver-

age identification rates of ‘24 NNs’, ‘12 NNs’, and ‘6
NNs’ configurations for known conditions were 90.5%,
91.4%, and 91.1%. Meanwhile, by using ‘3s.15u’ datasets,
the average identification rates were 92.4%, 93.0%, and
92.2%. Thus, we could see that the use of environment
models (GMMs) as NNs selector could actually perform
well because it could perform as good as the matched
condition case, especially for the small datasets (‘1s.5u’).
However, the combining training data approach (Table 7)
was slightly better than the use of environment models
(GMMs).

Comparison to the feature mapping onMFCC domain
In addition, we implemented the mapping method on
melcepstrum (MFCC) domain by MLP network as pro-
posed in [25] and experimented by using position-specific
training data. For the first testing scheme, the average
identification rates of ‘linear 8-1-0’ and ‘linear 4-1-4’ frame
selections for matched conditions were 69.7% and 76.2%
by using ‘1s.5u’ datasets and 78.5% and 82.1% by using
‘3s.15u’ datasets. Meanwhile, for the second scheme, they
were 74.1% and 78.9% by using ‘1s.5u’ datasets and 79.2%
and 83.0% by using ‘3s.15u’ datasets. Thus, our proposed

Table 8 Experimental results by using combined training data (three known positions) on the second testing scheme

Method Dataset
Speaker identification rate (%)

P01 P03 P05 P02 P04 Avg. known Avg. unknown Avg. all

Prop. (24 NNs) + CMN combd
1s.15u 89.7 92.4 94.6 96.9 91.0 92.2 94.0 92.9

3s.45u 91.5 92.8 95.8 99.0 92.7 93.4 95.8 94.4

Prop. (12 NNs) + CMN combd
1s.15u 89.5 92.4 93.6 96.1 91.6 91.8 93.9 92.6

3s.45u 90.5 92.2 94.5 98.0 92.5 92.4 95.3 93.5

Prop. (6 NNs) + CMN combd
1s.15u 90.5 90.8 93.7 94.8 93.5 91.7 94.2 92.7

3s.45u 91.5 92.0 95.0 96.0 93.0 92.8 94.5 93.5

The known environments include P01, P03, and P05, while the unknown environments include P02 and P04. The experiments were done by using skip1 8-1-0 frame
selection. The bold text represents the best average performance for each training data number.
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Table 9 Experimental results by using environmentmodels (GMMs) as NNs selector

Method Dataset
Speaker identification rate (%)

P01 P03 P05 P02 P04 Avg. known Avg. unknown Avg. all

GMM32 + Prop. (24 NNs) + CMN P01/3/5
1s.5u 88.6 90.2 92.8 93.4 90.0 90.5 91.7 91.0

3s.15u 89.5 93.3 94.3 95.3 91.0 92.4 93.2 92.7

GMM32 + Prop. (12 NNs) + CMN P01/3/5
1s.5u 89.4 92.3 92.4 93.5 92.5 91.4 93.0 92.0

3s.15u 91.7 93.5 93.8 96.5 93.5 93.0 95.0 93.8

GMM32 + Prop. (6 NNs) + CMN P01/3/5
1s.5u 90.4 90.9 91.9 94.3 93.7 91.1 94.0 92.2

3s.15u 92.0 92.7 92.0 96.7 94.2 92.2 95.4 93.5

The known environments include P01, P03, and P05, while the unknown environments include P02 and P04. The experiments were done by using the first testing
scheme and skip1 7-1-0 frame selection. The bold text represents the best average performance for each training data number.

method is much better. In fact, the mapping method by
MLP network could not be better than the use of CMN
alone. Nevertheless, these experiments also show that the
use of right context is beneficial.

7 Evaluation using automatic speech recognition
system

7.1 Overview of CENSREC-4
CENSREC-4 is an evaluation framework for distant-
talking speech recognition in reverberant environments
[22]. The task in CENSREC-4 is grammar-based con-
nected digit recognition. The vocabulary consists of
eleven Japanese numbers: ‘ichi’, ‘ni’, ‘san’, ‘yon’, ‘go’, ‘roku’,
‘nana’, ‘hachi’, ‘kyu’, ‘zero’, and ‘maru’. All recordings are
sampled at 16 kHz.
CENSREC-4 data is divided into ‘basic dataset’ and

‘extra dataset’. The basic dataset contains simulated rever-
berant data made by convolving eight kinds of RIRs with
the clean speech, as shown in Table 10 [22]. In this
dataset, there are two sets of testing data and two sets
of training data. The testing data is divided into test set
A (office, elevator hall, in car, living room) and test set
B (lounge, Japanese-style room, meeting room, Japanese-
style bath). In total, each testing dataset consists of 4,004
utterances by 104 speakers (52 females and 52 males).
Thus, there are 1,001 utterances for each reverberant
environment.

The training data is divided into clean and multi-
condition datasets. The clean dataset consists of 8,440
utterances by 110 speakers (55 females and 55 males).
The multi-condition dataset consists of simulated rever-
berant data generated by convolving four kinds of RIRs
from test set A with the utterances from clean dataset.
Thus, there are 2,110 utterances for each reverberant envi-
ronment. Because of the availability of multi-condition
training data, test set A can be regarded as known rever-
berant environments and test set B can be regarded as
unknown environments.
The extra dataset contains two sets of testing data. The

testing data is divided into test set C, which contains
simulated reverberant data with multiplicative and addi-
tive noise, and test set D, which contains real reverberant
data. The utterances of test set D were recorded in a car,
lounge,meeting room, and office (Table 10) by 10 speakers
(five females and five males) using close- and distant-
talking microphones. The close-talking microphone was
using headset, while the distant-talking microphone was
50 cm away from the speaker. For each environment,
the data is divided into testing dataset (493 utterances)
and adaptation dataset (110 utterances). Thus, the test-
ing dataset of set D contains 1,972 utterances by 10
speakers.
Test sets A and B were used to evaluate the proposed

method on simulated reverberant environments, while

Table 10 Environment conditions for CENSREC-4 data acquisition

Room Test set Room size Mic. distance Reverb. time (T60) Ambient noise (dBA)

Office A/D 9.0× 6.0 m 0.5 m 0.25 s 36.5 dB

Elevator hall A 11.5× 6.5 m 2.0 m 0.75 s 39.0 dB

In car A/D Middle-sized sedan 0.4 m 0.05 s 32.0 dB

Living room A 7.0× 3.0 m 0.5 m 0.65 s 34.0 dB

Lounge B/D 11.5× 27.0 m 0.5 m 0.50 s 52.5 dB

Japanese-style room B 3.5× 2.5 m 2.0 m 0.40 s 30.0 dB

Meeting room B/D 7.0× 8.5 m 0.5 m 0.65 s 48.5 dB

Japanese-style bath B 1.5× 1.0 m 0.3 m 0.60 s 29.5 dB
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test set D was used to evaluate the proposed method on
real reverberant environments. For both evaluations, the
acoustic models were trained using clean and/or multi-
condition training datasets. The acoustic models con-
sist of 18 phoneme models (5 states; 20-mixture GMM),
silence ‘sil’ (5 states; 36-mixture GMM), and short pause
‘sp’ (3 states; 36-mixture GMM).

7.2 Experiments using simulated reverberant data
7.2.1 Experimental setup
The experimental setup for the simulated reverberant data
is depicted by Figure 10. The NN training and the feature
mapping were done using 24-dimensional log-melspectral
feature vectors, while the acoustic model (AM) train-
ing and the recognition were done using 39-dimensional
melcepstral feature vectors consisting of 12-dimensional
MFCC parameters and the log energy, with their delta
and delta-delta parameters. The benefit of CMN use
after our proposed method (feature mapping) was also
investigated.
Some pairs of utterances from set Awere used as theNN

training data. We created multi-condition five-speaker
datasets (‘5s’) as described in Table 11. We selected 5
speakers (2 females and 3 males) from the 110 available
speakers, then randomly selected some pairs of utter-
ances from each environment (4 environments) for each
selected speaker (5 speakers) and combined them tomake
the dataset.
We also created cross validation dataset consisting of

randomly selected 400 utterances from simulated rever-
berant data by 104 speakers. The NN training used ran-
dom weight initialization and variations in the final NN
were not unexpected. Therefore, in our experiments, we
did the NN training five times which resulted five NNs

for each dimension of feature. Then, we selected the NNs
which yielded the lowest MSE for the cross validation
dataset. Finally, the best set of NNs was used in the feature
mapping.
In all experimental results below, the original AMs (refer

to [22]) trained using only clean data and only multi-
condition data are denoted by ‘clean’ and ‘multi’, respec-
tively. The retrained AM is denoted by ‘-rt’. For example,
‘multi-rt’ denotes the AM retrained using dereverberated
multi-condition data, and ‘cln+mlt-rt’ denotes the AM
retrained using clean and processed multi-condition data.
The experiments were done by using causal reverberation
model and skip1 frame selection only.

7.2.2 Experimental results
Table 12 shows the upper bound and the baseline for set A
and set B. In the table, ‘close’ denotes the clean utterances
and represents the upper bound. The table shows that the
use of multi-condition AM and CMN were effective. By
using that combination, we could reach 44.9% of average
ERR relative to the baseline. The baseline (by using clean
andmulti-condition AMs) is the same as shown in [22,54].
The experimental results on the simulated reverberant

data of CENSREC-4 by using Hybrid Delta [55] reached
95.7% and 94.7% of average digit accuracy for sets A and B.
Thus, it reached 95.2% of total average digit accuracy, or
71.3% of average ERR relative to the baseline. Meanwhile,
the DAE-based approach proposed in [29,30] reached
98.4% and 97.0% of average digit accuracy for sets A and
B. Thus, it reached 97.7% of total average digit accuracy,
or 86.2% of average ERR relative to the baseline, which
was better than the ideal case (upper bound) for multi-
condition AM (96.2% of digit accuracy). Both works used
retrained multi-condition AM.

Training

Testing

Figure 10 Setup for the experiments using simulated reverberant data. The CMN was only used in some experiments.
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Table 11 Multi-condition (combined) NN training datasets for the experiments using simulated reverberant data

Dataset name Speaker number
Utterances num. per spk. Total duration of
per env. (pairs of utts.) utterances (seconds)

5s.20u 5 1 61

5s.40u 5 2 110

The total duration of utterances is after removing the silence parts in the beginning and ending of each recording.

Table 13 shows the experimental results of our proposed
approach on set A and set B using ‘5s.20u’. The table
shows the performance of skip1 frame selection with seg-
ment length of nine frames (‘8-1-0’). We can observe that
the use of CMN after our proposed method is not effec-
tive. We can also observe that the use of ‘multi-rt’ AM
was effective and the use of ‘cln+mlt-rt’ AM, which used
more training data, could not improve the performance
further. The best average performance of our proposed
method shown in Table 13 is 96.1%, or 76.6% of ERR rel-
ative to the baseline, which was almost the same as the
ideal case (upper bound) formulti-condition AM. It is bet-
ter than the performance of Hybrid Delta approach, but
worse than the DAE approaches.
We tried to double the number of NN training data

(‘5s.40u’) and also the context length (17 frames, ‘16-1-0’).
By using more training data, the performance could be
improved, but the DAE approaches were still better. The
best average performance of our proposedmethod shown
is 96.4%, which is 78.4% of ERR relative to the baseline.
Comparing to our approach, besides using different NN
architecture, DAE used a bigger neural network, which
was trained using more advanced training algorithm
and also much more NN training data (2,110 pairs of
utterances).

7.3 Experiments using real reverberant data
7.3.1 Experimental setup
The experimental setup for the real reverberant data is
depicted by Figure 11. The features used in these exper-
iments were the same as in the experiments using simu-
lated reverberant data (Subsubection 7.2.1).

Some pairs of utterances from the adaptation set of
set D were used as the NN training data. We created
multi-condition (combined) five-speaker datasets (‘5s’)
and one-speaker datasets (‘1s’) as described in Table 14.
We selected 5 speakers (2 females and 3 males) from
the 10 available speakers. For the five-speaker datasets,
we randomly selected some pairs of utterances from
each environment (four environments) for each selected
speaker (five speakers) and then combined them to make
the dataset. For the one-speaker datasets, we randomly
selected some pairs of utterances from each environ-
ment (four environments) and then combined them to
make the dataset for each selected speaker (five speakers
in total). The total duration of utterances for each speaker
varies from 37 to 84 s (20-utterance datasets) and 75 to
166 s (40-utterance datasets). We also created a multi-
condition (combined) cross validation dataset consists of
randomly selected 200 utterances (50 utterances for each
environment) of 10 speakers.
In addition, slightly different from the experimental

setup shown in Figure 11, we also used environment-
specific five-speaker (‘5s’) and one-speaker (‘1s’) datasets
as described in Table 15 for training the NNs and
environment-specific cross validation datasets for select-
ing the best set of NNs. In fact, the environment-specific
datasets were the datasets which compose the multi-
condition (combined) datasets, for example the multi-
condition (combined) ‘5s.20u’ datasets were composed
by environment-specific ‘5s.5u’ datasets of four environ-
ments. The environment-specific cross validation datasets
were also the datasets which compose the multi-condition
(combined) cross validation dataset.

Table 12 Upper bound and baseline for the experiments using the simulated reverberant data

Method Acoustic model
Digit accuracy (%)

Set A Set B
Avg. set A Avg. set B Avg.

Office EvHall InCar LivingR Lounge JPstyR ConfR BathR

Close (Ideal)
Clean 99.5 99.4 99.5 99.3 99.5 99.4 99.5 99.3 99.4 99.4 99.4

Multi 96.2 96.5 96.1 96.2 96.2 96.5 96.1 96.2 96.2 96.2 96.2

Baseline
Clean 97.5 57.9 95.6 84.4 74.0 89.5 89.8 78.0 83.8 82.8 83.3

Multi 94.3 90.5 94.7 91.5 79.6 93.5 93.4 84.2 92.8 87.7 90.2

CMN
Clean 97.8 66.0 98.7 83.5 87.3 92.2 93.3 81.7 86.5 88.6 87.6

Multi 92.8 91.9 92.5 90.0 92.6 91.9 93.1 81.3 91.8 89.7 90.8
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Table 13 Experimental results on the simulated reverberant data by using NN training dataset ‘5s.20u’

Method Frame Acoustic
Digit accuracy (%)

selection model
Set A Set B

Avg. set A Avg. set B Avg.
Office EvHall InCar LivingR Lounge JPstyR ConfR BathR

Proposed
skip1 8-1-0

Clean 98.6 66.3 98.8 89.8 90.1 95.2 92.7 91.5 88.4 92.4 90.4

(24 NNs)
Multi-rt 97.4 95.6 97.8 97.4 92.1 97.3 96.1 94.5 97.1 95.0 96.1

Cln+mlt-rt 97.6 94.2 98.0 97.0 93.5 97.7 96.5 94.2 96.7 95.5 96.1

Proposed
skip1 8-1-0

Clean 97.7 67.8 98.4 86.0 93.3 93.4 92.4 86.6 87.5 91.4 89.5

(24 NNs) + CMN
Multi-rt 96.6 94.7 96.8 96.2 94.7 96.5 95.9 93.6 96.1 95.2 95.7

Cln+mlt-rt 97.1 94.7 97.1 95.2 94.1 96.2 96.2 92.5 96.0 94.7 95.4

We used clean and multi-condition datasets to train
the new acoustic models. The multi-condition dataset
was dereverberated first using the feature mapping
method. Because of the multi-condition dataset is noise-
less while NN training data is noisy, we implemented
log-melspectral channel mean normalization (hereafter,
referred as LMCN) before the NN training and the feature
mapping to deal with the mismatch. The LMCN, which
works the same as CMN, can be expressed as

c′t,d = ct,d − 1
T

T∑
t=1

ct,d , for d = 1, 2, . . . ,D, (34)

where c′t,d and ct,d are the normalized and original coef-
ficients of frame index t and feature dimension d, T is
the number of frames, and D is the number of feature
dimension.
In all experimental results below, the original AMs

(refer to [22]) trained using only clean data and only
multi-condition data are denoted by ‘clean’ and ‘multi’,
respectively. The retrained AM is denoted by ‘-rt’. Besides

‘multi-rt’ AM, we have ‘clean+multi-rt’ AM, which is
the same as ‘cln+mlt-rt’ AM in the experiments using
the simulated reverberant dataset, and we also cre-
ate ‘clean-rt’ AM specifically for the experiments using
the real reverberant dataset. The difference between
‘clean’ and ‘clean-rt’ AMs was in the cepstal feature
(MFCCs) extraction. The cepstral feature for ‘clean’ was
extracted from the log-melspectral feature (as in standard
MFCC extraction), while the MFCCs for ‘clean-rt’ were
extracted from the normalized log-melspectral feature.
The experiments were done by using causal reverbera-
tion model only. Besides, we mainly used skip1 frame
selection.

7.4 Experimental results
7.4.1 Fundamental results
Table 16 shows the upper bound and the baseline for set
D. In the table, ‘close’ denotes close-talking utterances and
represents the upper bound. The table shows that the use
of multi-condition AM and CMN were effective. By using
that combination, we could reach 40.9% of ERR relative to

Training

Testing

Figure 11 Setup for experiments using real reverberant data. The CMN was only used in some experiments.
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Table 14 Multi-condition (combined)NN training datasets for the experiments using real reverberant data

Dataset name Speaker number
Utterances num. per spk. Total duration of
per env. (pairs of utts.) utterances (seconds)

5s.20u 5 1 54

5s.40u 5 2 108

5s.60u 5 3 162

5s.80u 5 4 213

1s.20u 1 5 70

1s.40u 1 10 138

The total duration of utterances is after removing the silence parts in the beginning and ending of each recording. For the one-speaker datasets (‘1s’), the total
duration is the average from five speakers’ datasets.

the baseline. The baseline (by using clean AM) is the same
as shown in [10,54].
As a comparison, we show the experimental results from

[10] in Table 17. It shows the performance of generalized
spectral subtraction (GSS) and joint sparse representation
(JSR) on the real reverberant dataset of CENSREC-4. In
the GSS approach, the AM was retrained using processed
(dereverberated)multi-condition reverberant data. Mean-
while, the JSR approach worked on clean AM, assumed
that the environment is known, and used 110 pairs of
utterances in training the sparse representation for each
environment. The best performances for both approaches
were when the CMN was employed. The performance of
‘GSS+CMN’ and ‘JSR+CMN’ reached 56.3% and 53.4%,
respectively, of ERR relative to the baseline.
Besides,we also compare our experimental results to the

performance of Hybrid Delta, which is a new scheme for
calculating the delta and delta-delta coefficients of static
MFCC coefficients by using linear-logarithmic hybrid
domain [55]. A multi-condition AM was retrained using
the proposed features. The performance of Hybrid Delta
reached 31.4% of ERR relative to the baseline.
Table 18 shows the experimental results of our proposed

approach on set D using ‘5s.20u’ dataset. The table shows
the performance of linear and skip1 frame selection with
segment length of 9 frames (‘8-1-0’), 17 frames (‘16-1-0’),
and 33 frames (‘32-1-0’). Note that the segment of skip1
8-1-0 represents the same context length to linear 16-1-
0, which is 185 ms, and skip1 16-1-0 represents the same
context length to linear 32-1-0, which is 345 ms.

We can observe the performance difference caused
by the difference of AM used in the recognition. The
‘clean+multi-rt’ AM could perform much better than the
‘multi-rt’ AM. We can observe that the frame selection
used in the feature mapping was affecting the perfor-
mance. The differences of performance between the use
of linear 16-1-0 and the use of skip1 8-1-0 were not
significant, except when we used ‘multi-rt’ AM. Mean-
while, the use of skip1 16-1-0 was better than the use
of linear 32-1-0. Because of the long segment it used,
the use of linear 32-1-0 most likely had high variance
(overfitting) problem. That was also why the use of lin-
ear 32-1-0 was worse than the use of linear 16-1-0.
We can observe that the use of longer segment for lin-
ear frame selection was not effective. However, we can
see the benefit of using longer segment for skip1 frame
selection. The use of 17-frame segment (skip 16-1-0)
could perform better than the use of nine-frame segment
(skip1 8-1-0). As an additional information, the CMN is
not effective when it was used for the retrained AMs,
which may be caused by the fact that the LMCN works
the same as CMN. The difference is only the domain
they work on. LMCN works on log-melspectral domain,
while CMN works on melcepstral domain.
The best average performance of our proposed method

shown in Table 18 is 93.2%, or 74.2% of ERR relative to
the baseline, which is better than the ideal case (upper
bound) for multi-condition AM. It is better than the
performance of GSS and JSR approaches, where both
approaches employ CMN. Comparing to our approach,

Table 15 Environment-specificNN training datasets for the experiments using real reverberant data

Dataset name Speaker number
Utterances num. per spk. Total duration of
per env. (pairs of utts.) utterances (seconds)

5s.5u 5 1 14

5s.10u 5 2 27

1s.5u 1 5 17

1s.10u 1 10 35

The total duration of utterances is after removing the silence parts in the beginning and ending of each recording.
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Table 16 Upper bound and baseline for the experiments using the real reverberant data

Method Acoustic model
Digit accuracy (%)

InCar Lounge MeetR Office Average

Close (ideal)
Clean 97.3 96.5 97.3 98.1 97.3

Multi 90.0 88.7 91.6 89.1 89.9

Baseline
Clean 76.4 43.8 89.2 85.1 73.6

Multi 82.9 74.3 93.3 85.6 84.0

CMN
Clean 84.9 59.8 90.7 93.5 82.2

Multi 80.1 83.1 89.9 84.4 84.4

JSR worked on clean AM, assumed that the environment
is known, and used more training data (110 pairs of utter-
ances). Our best performance is also better than Hybrid
Delta approach. However, we should notice that compar-
ing to our approach, Hybrid Delta do not need stereo
data.
Table 19 shows the experimental results of our proposed

approach on set D using ‘1s.20u’ datasets. We had five
‘1s.20u’ datasets (one dataset for each selected speaker),
and Table 19 shows the average performance of these five
datasets. The table shows that by using only one speaker,
the proposed method could still perform relatively well.
The best average performance of our proposed method
shown in Table 19 is 91.8%, which is 68.9% of ERR relative
to the baseline. It is also better than the performance of
other approaches which were already presented above.

7.4.2 Further results and analyses
Figure 12 tries to analyze the performance by using five-
speaker datasets (‘5s’), ‘clean+multi-rt’ AM, various num-
bers of NN training data, various lengths of segment,
and the use of CMN. The lengths of frame segment
range from 5-frame until 33-frame. Because of the use
of skip1 frame selection, it means that the context length
we considered varies from 145 ms (5-frame) until 985 ms
(33-frames).
In general, CMN did not improve the performance.

We can observe that the use of CMN gave lower per-
formance in most cases, although it was not significant.
If we only observe this experimental results (using real
reverberant data), we may think that the CMN was not
effective because we included the function of CMN as

LMCN. However, the experimental results for simulated
reverberant data (Subsubsection 7.2.2) also show that the
use of CMN after the feature mapping was not effective.
Note that in the experiments using simulated reverberant
data, we did not employ LMCN. This lack of perfor-
mance is also confirmed and shown in [54]. Because of
this lack of performance, Hybrid Delta also did not employ
CMN [55].
We can observe that by limited stereo data, we could get

good performance, as long as we use appropriate segment
length. The small dataset (‘20u’) tends to give the best per-
formance when we used frame selections of skip1 12-1-0
and 16-1-0, while the large dataset (‘80u’) tends to give
the best performance when we used longer frame selec-
tion (skip1 24-1-0). The best average performance of our
proposed method shown in Figure 12 is 93.5%, which is
75.4% of ERR relative to the baseline, reached by using
skip1 24-1-0 on ‘60u’ and ‘80u’ datasets.
Figure 13 tries to analyze the performance by using

one-speaker datasets (‘1s’), ‘clean+multi-rt’ AM, various
numbers of NN training data, various lengths of segment,
and the use of CMN. We can also observe that the limited
stereo data (‘20u’ and ‘40u’) tends to give the best per-
formance when we used frame selections of skip1 12-1-0.
The best average performance of our proposed method
shown in Figure 13 is 92.5%, which is 71.6% of ERR rela-
tive to the baseline, reached by using skip1 12-1-0 on ‘40u’
datasets.
In a real application, the use of one-speaker dataset

is more practical because it is easier to acquire stereo
data of many utterances by one speaker. The performance
was not as good as the performance of five-speaker

Table 17 Experimental results on the real reverberant data usingGSS and JSR [10]

Method Acoustic model
Digit accuracy (%)

InCar Lounge MeetR Office Average

GSS Multi-rt 86.32 76.67 85.65 83.29 82.98

GSS + CMN Multi-rt 88.88 83.07 89.32 92.52 88.45

JSR Clean 84.71 67.32 92.55 95.23 84.95

JSR + CMN Clean 87.62 79.74 90.19 93.30 87.71
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Table 18 Experimental results on the real reverberant data by using NN training data ‘5s.20u’ (combined)

Method Frame selection Acoustic model
Digit accuracy (%)

InCar Lounge MeetR Office Average

LMCN + Proposed (24 NNs)

Linear 8-1-0

Clean 69.4 38.5 78.9 75.3 65.6

Clean-rt 85.9 60.9 90.3 93.7 82.7

Multi-rt 82.4 85.1 90.9 86.0 86.1

Clean+multi-rt 89.6 91.0 94.4 93.5 92.1

Linear 16-1-0

Clean 67.8 35.1 79.4 78.0 65.1

Clean-rt 85.7 58.8 90.7 94.7 82.5

Multi-rt 82.6 84.2 90.2 89.3 86.6

Clean+multi-rt 89.2 90.9 94.4 93.5 92.0

Linear 32-1-0

Clean 67.0 30.0 74.6 77.6 62.3

Clean-rt 84.7 53.0 89.2 94.1 80.3

Multi-rt 78.4 82.0 88.4 87.9 84.2

Clean+multi-rt 86.5 89.2 93.1 92.0 90.2

Skip1 8-1-0

Clean 69.1 38.0 78.4 75.6 65.3

Clean-rt 85.3 61.3 90.9 93.5 82.8

Multi-rt 81.0 82.5 91.2 84.2 84.7

Clean+multi-rt 89.2 90.7 95.1 93.4 92.1

Skip1 16-1-0

Clean 67.2 34.7 75.8 77.6 63.8

Clean-rt 85.2 58.5 89.6 93.6 81.7

Multi-rt 83.2 84.8 91.5 87.1 86.6

Clean+multi-rt 90.0 92.9 95.5 94.3 93.2

The bold text represents the best average performance.

dataset because the lack of speaker variation in the train-
ing data may cause the NNs become speaker-dependent.
However, the experimental results show that by using
one-speaker dataset, we could still get a good robust
speaker-independent system. Figures 12 and 13 show that
the best performance for one-speaker and five-speaker
datasets were 92.3% and 93.2%, respectively, for the
dataset containing 20 pairs of utterances. Meanwhile, for
the dataset containing 40 pairs, the best performance for
one-speaker and five-speaker datasets were 92.5% and
93.5%, respectively.

8 Conclusions
In this work, we propose a single-channel non-linear
regression-based dereverberation method using cascade
NNs. The NNs were trained on stereo data to compen-
sate the reverberation effect by mapping the reverberant
feature in a log-melspectral domain to its corresponding
anechoic feature.
In Section 6, we present the evaluation using SID

system and the proposed method could perform very
well by using only few stereo data (five pairs of utter-
ances) as the NN training data. In Subsection 6.2, we did

Table 19 Experimental results on the real reverberant data by using NN training dataset ‘1s.20u’ (combined)

Method Frame selection Acoustic model
Digit accuracy (%)

InCar Lounge MeetR Office Average

LMCN + Proposed (24 NNs)

Skip1 8-1-0

Clean-rt 84.9 58.5 90.7 93.6 81.9

Multi-rt 80.9 82.7 90.4 83.6 84.4

Clean+multi-rt 89.1 90.7 94.7 93.0 91.8

Skip1 16-1-0

Clean-rt 84.5 55.4 89.5 93.7 80.7

Multi-rt 78.2 80.5 88.5 84.5 82.9

Clean+multi-rt 88.5 90.6 94.0 93.9 91.7

The bold text represents the best average performance.
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Figure 12 Performance analysis on the real reverberant data of CENSREC-4 by using five-speaker datasets (‘5s’). The acoustic model was
retrained by using clean and dereverberated multi-condition data (‘clean+multi-rt’).

experiments using various frame selection types, frame
selection numbers, and training data numbers on several
simulated noiseless and noisy reverberant environments.
In general, the skip1 frame selection could perform bet-
ter than the linear one. The use of longer context (frame
selection number) could improve the performance, but
the data for NN training should be sufficient. The non-
causal reverberation model could perform better than
the causal reverberation model. However, the use of left
context only is still reasonable on a theoretical point of
view. The single NN configuration could perform better
for small training dataset, but the performance could not

surpass the multiple NNs when much more training data
was used, which is most likely because of channel transfor-
mation overgeneralization problem. Note that the RTFs,
which are represented by the NNs, should be frequency-
dependent. For example, the best ERR (regardless the
frame selection) for RIR type of ‘living room’ by using only
1 pair of utterances and single NN reached 26.0%, while
by using 15 pairs of utterances and multiple NN reached
62.6% (Table 2).
In Subsection 6.3, we did experiments on modified mul-

tiple NNs (by modifying our assumptions on the channel
transformation) and using NNs trained using combined

Figure 13 Performance analysis on the real reverberant data of CENSREC-4 by using 1-speaker datasets (‘1s’). The acoustic model was
retrained by using clean and dereverberated multi-condition data (‘clean+multi-rt’).
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training data of known conditions in a room for derever-
berating utterances from unknown condition in the same
room. For a very limited stereo data (e.g., one or five pairs
of utterances), the use of modified multiple NNs config-
uration could improve the performance. By using the ‘6
NNs’ configuration, the skip1 3-1-0 frame selection, and
only one pair of utterances for the NN training data, we
could reach 34.8% of ERR relative to the use of CMN. Our
results also show that by combining the training data from
known positions in a room, we could train NNs which
generalize well, so that the NNs could also perform well
for unknown positions in the same room. In addition, the
use of utterances from one position could perform reason-
ably well for other unknown positions in the same room.
By using multiple NNs and 15 pairs of utterances by 1
speaker from 3 positions, we could reach 93.7% of average
identification rate, which was 42.2% of ERR relative to the
use of CMN.
In Section 7, we present the evaluation using ASR sys-

tem, where CENSREC-4 framework [22] was used. In the
experiments using simulated reverberant data, we could
reach 78.4% of ERR relative to the baseline by using
‘5s.40u’ dataset (5 speakers, 40 pairs of utterances). By
using the same number of utterances (40 pairs of utter-
ances) in the experiments using real reverberant data,
we could reach 75.4% and 71.6% of ERR relative to
the baseline by using ‘5s.40u’ (5 speakers) and ‘1s.40u’
(1 speaker).
Our experimental results could show that by using lim-

ited numbers of stereo data, our proposed method could
perform remarkablywell. However, the need of stereo data
in implementing themethod could be regarded as trouble-
some. Thus, possible future research directions are omit-
ting the need of stereo data and developing unsupervised
dereverberation method.
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