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Abstract

In this paper, unsupervised learning is used to separate percussive and harmonic sounds frommonaural non-vocal
polyphonic signals. Our algorithm is based on a modified non-negative matrix factorization (NMF) procedure that no
labeled data is required to distinguish between percussive and harmonic bases because information from percussive
and harmonic sounds is integrated into the decomposition process. NMF is performed in this process by assuming
that harmonic sounds exhibit spectral sparseness (narrowband sounds) and temporal smoothness (steady sounds),
whereas percussive sounds exhibit spectral smoothness (broadband sounds) and temporal sparseness (transient
sounds). The evaluation is performed using several real-world excerpts from different musical genres. Comparing the
developed approach to three current state-of-the art separation systems produces promising results.

1 Introduction
The separation of percussive and harmonic sounds
remains a challenging problem in music research. Per-
cussive sound pertains to drum instruments, whereas
the harmonic sound pertains to pitched instruments. We
develop a method to separate monaural music signals (for
which spatial information is unavailable), motivated by
the large number of one-channel music recordings such
as live performances or old recordings (from before the
1960s). In a musical context, a listener can effortlessly
distinguish between percussive and harmonic sounds;
therefore, these two types of sounds must have signif-
icantly different characteristics. Ono et al. [1,2] used
Harmonic/Percussive Sound Separation (HPSS) to sepa-
rate harmonic and percussive sounds by exploiting the
anisotropy of harmonic and percussive sounds in a max-
imum a posteriori (MAP) framework. The authors con-
sidered a spectrogram, assuming anisotropic smoothness
[1], i.e., percussive sounds have a structure that is verti-
cally smooth in frequency, whereas harmonic sounds are
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temporally stable and have a structure that is horizontally
smooth in time.
Over the last decade, several approaches have been

developed to separate percussive/harmonic sounds from
monaural polyphonic music [3-6]. The method developed
here offers the following advantages over the method out-
lined in [3]: (i) The method is robust for various sources
and not only for flat spectrum sources, (ii) threshold
choices are not required, (iii) hand-tuning is not neces-
sary, (iv) the method is quite fast (e.g., the developed
method can factorize an input signal lasting 30 s in
approximately 18 s). Unlike the methods given in [4,5], no
labelled data is required by the proposed method because
the percussive/harmonic information is obtained from the
spectro-temporal features used in the factorization stage.
Other recently published state-of-the-art techniques are
presented in [7,8]. In [7], anisotropy [1] is used in Median
Filtering-based Separation (MFS) under two assumptions:
the harmonics are considered to be outliers in a tempo-
ral slice that contains a mixture of percussive and pitched
instruments, and the percussive onsets are considered to
be outliers in a frequency slice. A median operator is used
to remove these outliers becausemedian filtering has been
used extensively in image processing for removing salt
and pepper noise from images [9]. In this manner, the
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extraction of percussive sounds can be seen as the removal
of outliers (overtones from harmonic sounds) in a time
frame of a spectrogram while the extraction of harmonic
sounds can be seen as the removal of outliers (onsets
from percussive sounds) in a frequency bin of a spectro-
gram. In [8], drum source separation is performed using
non-negative matrix partial co-factorization (NMPCF). In
NMPCF, the input spectrogram and a drum-only matrix
(which is picked up from a priori drum recordings) are
simultaneously decomposed. The shared basis vectors in
this co-factorization are associated with the drum charac-
teristics, which are used to extract drum-related compo-
nents from the musical signals.
In this paper, we develop a percussive/harmonic sound

separation approach, which we apply to monaural instru-
mental music (the singing voice is not considered). We do
not consider vocals for the following reasons: (i) Voiced
vocals can show harmonic features modelled by the devel-
oped method (e.g., smoothness in time for sustained
sounds and sparseness in frequency for harmonic sounds)
but can also exhibit harmonic features that are not mod-
elled by the developed method (e.g., non-smoothness in
time, as in the vibrato effect); (ii) vocals may be voiced
(harmonic sounds) and unvoiced (percussive sounds),
and the developed method has not been designed to
distinguish between percussive music instruments and
unvoiced vocals. The novelty of this work lies in modeling
a percussive/harmonic mixture signal using a modified
non-negative matrix factorization (NMF) approximation
that can automatically distinguish between percussive
and harmonic bases. That is, we decompose the mixture
signal using an objective function to integrate spectro-
temporal features, anisotropic smoothness and sparseness
into the decomposition process. Anisotropic smoothness
is related to the difference in the directions of continu-
ity between the spectrograms of harmonic and percus-
sive sounds. The spectrograms of harmonic sounds are
quasi-stationary and are therefore typically smooth in
time, whereas the spectrograms of percussive sounds are
impulsive and are typically smooth in frequency [1,10].
However, anisotropic sparseness is also related to the
difference in the directions of sparseness between the
spectrograms of harmonic and percussive sounds. The
spectrograms of harmonic sounds are typically sparse in
frequency, as in narrowband sounds, whereas the spectro-
grams of percussive sounds are impulsive and are there-
fore typically sparse in time. These features enable us to
model harmonic sounds using the sparseness in frequency
(for spectral peaks) and smoothness in time (for ampli-
tudes that vary slowly in time), whereas percussive sounds
can be modelled using the smoothness in frequency (i.e.,
the energy slowly decreases in frequency) and the sparse-
ness in time (i.e., most of the signal energy is concentrated
over short time intervals), as seen in Figure 1. Therefore,

the signal spectrogram can be reconstructed as the sum
of two different spectrograms that are characterized by
specific percussive/harmonic bases and gains. Our formu-
lation does not require information about the number of
active sound sources neither prior knowledge about the
instruments nor supervised training to classify the bases.
The developed approach is practically useful in the field

of audio engineering applications for music information
retrieval, where the percussive/harmonic separation task
can be used as a preprocessing tool. The extraction of
a harmonic sound source can be used to enhance music
transcription [11] and chord detection [12]. Extracting a
percussive sound source can also enhance onset detec-
tion [2]. Extracting both harmonic and percussive sound
sources is useful for remixing and for audio to score
alignment [13].
We implement an unsupervised approach in which

imposed smoothness and sparseness constraints are
used to automatically discriminate between percussive
and harmonic signals in a NMF framework. Our spe-
cific contribution is the inclusion of sparseness criteria
in a NMF framework for percussive/harmonic separa-
tion. Compared to methods that require some train-
ing (semi-supervised or supervised), our approach pro-
vides a more robust source-to-distortion ratio (as we
will show in Section 3) because the separation process
does not depend on a supervised training. In Section 3,
we show that the developed method produces promis-
ing results in comparison with two unsupervised (i.e.,
untrained) approaches (HPSS and MFS) and a supervised
(i.e., trained) approach (NMPCF) dedicated to percus-
sive/harmonic separation.
The remainder of this paper is organized as follows: In

Section 2, we describe our novel method. In Section 3, the
results are evaluated and compared. Finally, conclusions
and future work are presented in Section 4.

2 Developedmethod
Non-negative matrix factorization (NMF) has been widely
used in the field of digital image processing [14-17] in
recent years and has also been successfully applied to
music analysis [18,19]. Following [5,6,8], we apply NMF to
percussive/harmonic separation, motivated in part by the
aforementioned promising results.
Lee and Seung [20] developed standard NMF, a tech-

nique for multivariate data analysis in which an input
magnitude spectrogram, represented by a matrix X, is
decomposed into the product of two non-negative matri-
cesW and H :

X ≈ WH (1)

where the i-th column of matrix W is a frequency basis
that represents the spectral pattern of a component that
is active in the spectrogram. Additionally, the i-th row
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Figure 1Magnitude spectrogram of an approximately 6-s-long excerpt of monaural mixture signal composed of percussive and
harmonic sounds. The percussive sounds form vertical lines because of their smoothness in frequency and sparseness in time; the harmonic sounds
form horizontal lines because of their sparseness in frequency and smoothness in time; the grey level represents the energy of each frequency.

of matrix H is a temporal gain or activation and repre-
sents the time interval over which the i-th frequency basis
is active. Standard NMF cannot be used to distinguish
between a percussive or harmonic frequency basis. Stan-
dard NMF can only ensure convergence to local minima,
which enables the reconstruction of the signal spectro-
gram but cannot discriminate between percussive and
harmonic frequency bases.
For clarity, the term source refers to a musical instru-

ment, and the term component is used to select a specific
frequency basis.

2.1 Signal representation
The magnitude spectrogram X of a music signal x(t) is
composed of T frames, F frequency bins and a set of
time-frequency units Xf ,t . Each Xf ,t is defined by the
f -th frequency bin at the t-th frame and is calculated
from the magnitude of the short-time Fourier transform
(STFT) using a N-sample Hamming window w(n) and
a time shift J . A normalization process is necessary to
adequately perform percussive/harmonic separation, for
which the algorithm is independent of the norm of the
input signal. Thus, the normalized magnitude spectro-
gram Xnβ is computed taking into account its dependence
on the number of frames, the number of frequency bins
and the constant β used in the β-divergence cost (see
subsection 2.2.1).

Xnβ = X
⎛
⎜⎝

F∑
f=1

T∑
t=1

Xβ

f ,t

FT

⎞
⎟⎠

1
β

(2)

2.2 A modified non-negative matrix factorization for
percussive/harmonic separation

Our formulation attempts to overcome the primary prob-
lem of the standard NMF approach by distinguishing
between percussive and harmonic bases in the factoriza-
tion process. For this purpose, an objective function is
defined to decompose a mixture spectrogram Xnβ into
two separate spectrograms,XP (a percussive spectrogram)
and XH (a harmonic spectrogram) [5,6,8]. Each separated
spectrogram exhibits specific spectro-temporal features
for percussive or harmonic sounds. The factorization
model is given in Equation 3 below:

Xnβ ≈ XP + XH = WPF,Rp HPRp ,T + WHF,Rh
HHRh ,T (3)

where XP , XH , WP , HP, WH and HH are non-negative
matrices. The parameter Rp denotes the number of per-
cussive components, and the parameter Rh denotes the
number of harmonic components used in the factoriza-
tion process.
Next, we detail the decomposition process. This pro-

cess adapts the concept of anisotropy which was initially
appropriated by [1,2] to a NMF framework. Anisotropy is
used to estimate WP , HP, WH and HH by minimizing a
global objective function that depends on a β-divergence
cost, a percussive cost and a harmonic cost.

2.2.1 β-divergence cost
Two different spectrograms XP and XH are constructed as
to minimize the β-divergence cost dβ(x|y) [21] compared
to the input (known and fixed) normalized spectrogram
Xnβ . The Euclidean distance (β = 2), the Kullback-
Leibler (KL) divergence (β = 1) and the Itakura-Saito
(IS) divergence (β = 0) are defined as functions of the
parameter β :
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dβ(x|y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
β(β−1)

∑F
f=1

∑T
t=1

(
xβ

f ,t + (β − 1)yβ

f ,t − βxf ,ty
β−1
f ,t

)
βε(0, 1) ∪ (1, 2]

∑F
f=1

∑T
t=1 xf ,t log

xf ,t
yf ,t − xf ,t + yf ,t β = 1

∑F
f=1

∑T
t=1

xf ,t
yf ,t − log xf ,t

yf ,t − 1 β = 0

(4)

where x = Xnβ and y = XP + XH .
This factorization only considers the β-divergence cost

and cannot automatically determine whether a basis
belongs to a percussive signal or a harmonic signal. To
overcome this drawback, the factorization process is mod-
ified to include specific spectro-temporal features related
to percussive and harmonic sounds. Therefore, our con-
tribution to the analysis of monaural signals is the devel-
opment of a percussive/harmonic separation using an
unsupervised NMF approach. This NMF approach mod-
els the mixture signal using an objective function that
considers the β-divergence cost and common spectro-
temporal features from the percussive/harmonic signals.
Unlike othermethods [4-6,8] that have been developed for
percussive/harmonic separation, our approach does not
use any labelled data to train the NMF bases maintaining
competitive SDR results.

2.2.2 Percussive cost
The percussive cost is used to model percussive sounds
by assuming smoothness in frequency and sparseness
in time. Percussive sounds are typically represented as
broadband signals, which have an energy that is confined
to short time intervals. We define spectral smoothness
(SSM), which is associated with thematrixWP here, in the
same way as continuity is defined in [22]:

SSM = T
Rp

Rp∑
rp=1

1
σWPrp

2

F∑
f=2

(
WPf−1,rp − WPf ,rp

)2
(5)

where a high cost is assigned to large changes in the
frequency between the bases WPf ,rp and WPf−1,rp in adja-
cent frequency bins. Normalization is used to make the
global objective function independent of the signal norm,
i.e., the bases WP are normalized by σWP . The value
σWP of each percussive component rp is calculated as
σWPrp

=
√

1
F

∑F
f=1 W 2

Pf ,rp
. To ensure that each percussive

or harmonic cost has the same weight in the global objec-
tive function, each cost is normalized. Taking SSM into
account, it is normalized by a factor equal to T

Rp . Thus, we
avoid scaling problems that can arise from the number of
frames, the number of frequency bins or the number of
components considered.

Another percussive restriction can be applied to the
temporal distribution of activations. Temporal sparseness
has been previously used in [22,23] as the L1 norm of the
activation gains to penalize solutions with nonzero gains.
The concept of temporal sparseness (TSP) is defined fol-
lowing [22] but is applied to the matrix HP. That is, a high
cost is assigned to nonzero gains assuming that percussive
sounds can be represented as transients with energies that
are concentrated over short time intervals.

TSP = F
Rp

Rp∑
rp=1

T∑
t=1

∣∣∣∣∣
HPrp,t

σHPrp

∣∣∣∣∣ (6)

Similarly to the WP treatment, the activations HP are
normalized by σHP . The value σHP of each percussive com-
ponent rp is calculated as σHPrp

=
√

1
T

∑T
t=1 H2

Prp,t . As

mentioned above, the TSP is normalized by a factor F
Rp

such that the percussive costs are equally weighted.

2.2.3 Harmonic cost
The harmonic cost is used to model harmonic sounds
by assuming smoothness in time and sparseness in fre-
quency. These sounds can be considered to be stable
sounds that exhibit a slow variation in amplitude over time
with most of their energy being concentrated at the spec-
tral peaks. We define temporal smoothness (TSM), which
is associated with the HH matrix here, in the same way as
temporal continuity is defined in [22]. This smoothness is
used to assign a high cost to large changes in time between
the gains HHrh ,t−1 and HHrh ,t

in adjacent frames.

TSM = F
Rh

Rh∑
rh=1

1
σHHrh

2

T∑
t=2

(
HHrh,t−1 − HHrh,t

)2
(7)

Normalization is used tomake the global objective func-
tion independent to the signal norm; Thus, the HH gains
are normalized by σHH . The value σHH of each harmonic
component rh is calculated as σHHrh

=
√

1
T

∑T
t=1 H2

Hrh ,t
.

The harmonic cost TSM is normalized by a factor F
Rh .

Spectral sparseness (SSP) is defined following [22] but
is applied to the matrix WH . SSP assigns a high cost to
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nonzero bases assuming that the harmonic sounds can be
represented as a set of overtones in the frequency.

SSP = T
Rh

Rh∑
rh=1

F∑
f=1

∣∣∣∣∣
WHf ,rh

σWHrh

∣∣∣∣∣ (8)

Similarly to the treatment for HH , the bases WH are
normalized by σWH . The value σWH of each harmonic
component rh is calculated as σWHrh

=
√

1
F

∑F
f=1 W 2

Hf ,rh
.

The harmonic cost SSP is normalized by a factor T
Rh .

2.2.4 Global percussive/harmonic NMF algorithm
The global objective function D, including the β-
divergence, percussive and harmonic costs, is formulated
as follows:

D = dβ

(
Xnβ | (XP + XH)

) + KSSMSSM + KTSPTSP
+ KTSMTSM + KSSPSSP

(9)

Preliminary results do not show significant differences
from initializing KSSM and KTSM with different values;
thus, these parameters are set equal to each other (i.e.,
KSSM = KTSM). The parameters KTSP and KSSP are
treated in the same way (i.e., KTSP = KSSP) because
a similar behaviour is observed for these parameters in
the preliminary studies. To determine if both sparseness
and smoothness affect the performance of the separa-
tion process, we define the parameter KSP = KTSP =
KSSP to represent the sparseness terms and the parame-
ter KSM = KTSM = KSSM to represent the smoothness
terms.
Following [20], we use the so-called multiplicative

update rules (see Equation 10), such that D is non-
increasing while ensuring non-negativity of the bases and
the gains. These rules can be implemented using a gradi-
ent descent algorithm with an appropriate choice of the
step size and are estimated for each scalar parameter Z by
expressing the partial derivatives of the objective function
∂D
∂Z as the division between two positive terms

[
∂D
∂Z

]− and[
∂D
∂Z

]+:

Z = Z �
[

∂D
∂Z

]−
[

∂D
∂Z

]+ (10)

where � is the element-wise product operator and the
fraction is the element-wise division operator.
Substituting the percussive basisWP and the percussive

gain HP into Equation 10, the multiplicative update rules
of the percussive sounds are formulated in Equations 11

and 12. The equations of each term
[

∂dβ

∂WP

]±
,
[

∂SSM
∂WP

]±
,[

∂dβ

∂HP

]±
and

[
∂TSP
∂HP

]±
can be found in the Appendix.

WP = WP �
[

∂dβ

∂WP

]− + KSSM
[

∂SSM
∂WP

]−

[
∂dβ

∂WP

]+ + KSSM
[

∂SSM
∂WP

]+ (11)

HP = HP �
[

∂dβ

∂HP

]− + KTSP
[

∂TSP
∂HP

]−

[
∂dβ

∂HP

]+ + KTSP
[

∂TSP
∂HP

]+ (12)

Substituting the harmonic basis WH and the harmonic
gain HH into Equation 10, the multiplicative update rules
of the harmonic sounds are formulated in Equations 13
and 14. The equations of each term

[
∂dβ

∂WH

]±
,
[

∂SSP
∂WH

]±
,[

∂dβ

∂HH

]±
and

[
∂TSM
∂HH

]±
can be found in the Appendix.

WH = WH �
[

∂dβ

∂WH

]− + KSSP
[

∂SSP
∂WH

]−

[
∂dβ

∂WH

]+ + KSSP
[

∂SSP
∂WH

]+ (13)

HH = HH �
[

∂dβ

∂HH

]− + KTSM
[

∂TSM
∂HH

]−

[
∂dβ

∂HH

]+ + KTSM
[

∂TSM
∂HH

]+ (14)

By iteratively updating the matrices WP, HP, WH , HH
using maxIter iterations, our scheme can automatically
distinguish between the bases belonging to the percussive
or harmonic sounds.

2.2.5 Signal reconstruction
The percussive signal xp(t) is synthesized by using the
magnitude percussive spectrogram XP (see Equation 3)
computed as the product of the factorized bases WP and
the activations HP. To ensure that the reconstruction pro-
cess is conservative, a percussive mask MP is generated
usingWiener filtering [24]. The effect of a percussivemask
is to scale every frequency bin with a ratio that explains
how much the percussive source contributes in the mixed
spectrogram. The phase information related to the per-
cussive signal is computed by multiplying the percussive
mask MP by the complex spectrogram Xc related to the
mixed signal x(t). The harmonic mask MH is taken into
account to similarly compute the harmonic signal xh(t).

MP = X2
P

X2
P + X2

H
(15)

MH = X2
H

X2
P + X2

H
(16)

xp(t) = IDFT (MP · Xc) (17)

xh(t) = IDFT (MH · Xc) (18)
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The developed percussive/harmonic sound separation is
detailed in Algorithm 1.

Algorithm 1 The developed percussive/harmonic sound
separation
1 Compute the normalized magnitude spectrogramXnβ

of the input signal x(t)
2 InitializeWP , HP,WH , HH with random nonnegative

values
3 for iteration=1:maxIter do
4 UpdateWP using the multiplicative update rule

(see Equation 11)
5 Update WH using the multiplicative update rule

(see Equation 13)
6 Update HP using the multiplicative update rule

(see Equation 12)
7 Update HH using the multiplicative update rule

(see Equation 14)
8 end for
9 Reconstruction of the percussive signal xp(t)

(see Equation 17)
10 Reconstruction of the harmonic signal xh(t)

(see Equation 18)

3 Evaluation and comparison
3.1 Test data
The databases are composed of monaural real-world
music excerpts. Each music excerpt contains percussive
and pitched instruments but does not contain a vocal
track. The development database E (Table 1) is taken
from the Guitar Hero game [25,26] and is composed of
five commercial excerpts, each lasting 30 s. The first test
database T1 (Table 2), taken from the Guitar Hero game
[25,26], is composed of 20 commercial excerpts, each last-
ing 30 s. A pseudo-random process, using the standard
uniform distribution, is used to select a starting time fol-
lowed by a 30-s excerpt. The second test database T2
(Table 3) is a public database taken from SiSEC 2010
[27] and consists of four professionally produced music
recordings lasting between 14 and 24 s. All of the sig-
nals were converted from stereo to mono and sampled at
16 kHz with a 16-bit resolution.
In summary, the dataset is composed of three databases.

The development database E (five excerpts) is used to
optimize the parameters (β , KSM, KSP, Rp and Rh) of the
developed method. Two test databases T1 (20 excerpts)
and T2 (4 excerpts) are then used to evaluate the per-
formance of the separation process. Note that the devel-
opment database E is not a part of the test databases
T1 and T2.

Table 1 Identifier, title and artist of the files of the
development database E

Identifier Title Artist

E_01 Two minutes to midnight Iron Maiden

E_02 Bullet with butterfly wings Smashing Pumpkins

E_03 Gamma ray Beck

E_04 Go your own way Fleetwood Mac

E_05 Hotel California Eagles

3.2 Experimental setup
The quality of the audio separation using different frame
sizes N , time shifts J and maxIter iterations is evaluated
in preliminary studies. The experimental results show
approximately the same performance using N > 1024
samples and J < 512 samples; therefore, we use the
values N = 1024 and J = 512 because these values pro-
vide the best trade-off between the performance and the
computational cost. The convergence of the algorithm is
empirically observed. In fact, in all the performed simu-
lations the convergence is achieved after 100 iterations.
For this reason, we choose maxIter = 100. The val-
ues Rp and Rh are initialized to 150 because we initially
supposed that this number of components would be a rep-
resentative number of percussive and harmonic spectral

Table 2 Identifier, title and artist of the files of the first test
database T1

Identifier Title Artist

T1_01 In my place Coldplay

T1_02 La bamba Los Lobos

T1_03 Livin’ on a prayer Bon Jovi

T1_04 No one to depend on Santana

T1_05 Ring of fire Johnny Cash

T1_06 Rooftops Lost prophets

T1_07 So lonely The Police

T1_08 Song 2 Blur

T1_09 Sultans of swing Dire Straits

T1_10 Under pressure Queen

T1_11 Are you gonna go my way Lenny Kravitz

T1_12 Feel the pain Dinosaur Jr

T1_13 Hollywood nights Bob Seger & The Silver Bullet Band

T1_14 Hurts so good John Mellencamp

T1_15 Kick out the jams MC5’s Wayne Kramer

T1_16 Make it wit chu Queens Of The Stone Age

T1_17 One way or another Blondie

T1_18 Shiver Coldplay

T1_19 Shout it out loud Kiss

T1_20 Sympathy for the devil The Rolling Stones
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Table 3 Identifier, title and artist of the files of the second
test database T2

Identifier Title Artist

T2_01 Roads Bearlin

T2_02 The_ones_we_love Another Dreamer

T2_03 Remember_the_name Fort Minor

T2_04 Tour Ultimate NZ Tour

patterns. However, these parameters will be later analyzed
(subsection 3.4.1).
Sound source separation applications, based on NMF

approaches, usually adopt logarithmic frequency dis-
cretization (e.g., uniformly spaced sub-bands on the
equivalent rectangular bandwidth (ERB) scale [28]). As
harmonic signals are organized in a chromatic scale
and using this scale, the musical notes are defined with
semitone resolution, the developed method uses a 1/4
semitone resolution. Therefore, the time-frequency rep-
resentation is obtained by integrating the STFT bins cor-
responding to each 1/4 semitone interval. To obtain the
separated signals, the frequency resolution of the percus-
sive and harmonic masks defined in Equations 15 and 16
must be extended to the resolution of the STFT. Taking
into account that each bin of the STFT belongs to a value
in the 1/4 semitone resolution, each bin of the masks with
the STFT resolution takes the value that belongs to in the
1/4 semitone resolution. Consequently, all bins belonging
to the same 1/4 semitone have the same mask value. Per-
cussive and harmonic masks with the resolution of the
STFT are then obtained and the inverse transform can be
computed following Equations 17 and 18.

3.3 Algorithms for comparison
We use three recent state-of-the-art percussive/harmonic
sound separation methods to evaluate the developed
method: HPSS [1], MFS [7] and NMPCF [8]. HPSS and
MFS are implemented in this study, whereas the separa-
tion results from NMPCF have been provided directly by
the authors.

3.4 Results
Three metrics are used to assess the performance of the
developed method [29,30]: (1) the source-to-distortion
ratio (SDR), which provides information on the over-
all quality of the separation process; (2) the source-to-
interferences ratio (SIR), which is a measure of the pres-
ence of harmonic sounds in the percussive signal and vice
versa; and (3) the source-to-artifacts ratio (SAR), which
provides information on the artifacts in the separated
signal from separation and/or resynthesis.
As previously mentioned, the output of each method is

composed of two signals, a percussive signal xp(t) (i.e.,

harmonic sounds have been attenuated or removed) and
a harmonic signal xh(t) (i.e., percussive sounds have been
attenuated or removed). In the database T1, the percus-
sive average (Perc) is computed using the mean of all
of the separated percussive signals. The harmonic aver-
age (Harm) is computed using the mean of all of the
separated harmonic signals. In the same way, the overall
average (Overall) is computed using the mean of all of the
separated percussive and harmonic signals.

3.4.1 Parameters optimization
Figure 2 shows the optimization of the parameters β , KSP
and KSM that are used to analyze the effect of the β-
divergence cost and the weight of the smoothness and
sparseness constraints in the development database E.
Standard NMF (smoothness and sparseness constraints
are disabled, i.e., KSM = KSP = 0) achieves a SDR
value approximately equal to 3 dB. This fact suggests that
standard NMF does not properly separate percussive and
harmonic sounds because each separated signal, using
standard NMF, is composed of percussive and harmonic
sounds but its energy is approximately half of the energy
of the mixed input signal. The results show that the max-
imum SDR is obtained using β = 1.5 because the SDR
is maximized at the best trade-off between high and low
energy changes in the frequency, unlike the Euclidean dis-
tance (which corresponds to β = 2.0 and is more sensitive
to high energy changes) or the Itakura-Saito divergence
(which corresponds to β = 0 and is more sensitive to
low energy changes). This optimization produces a sig-
nificant improvement of approximately 2.7 dB over the
standard NMF showing that a percussive separated sig-
nal is composed of sounds that exhibit percussive features
in which harmonic sounds have been attenuated, and
the harmonic separated signal is composed of sounds
that exhibit harmonic features where percussive sounds
have been attenuated. As a consequence, the factorized
spectrograms exhibit time-frequency energy distributions
such as can be found in real-world percussive or harmonic
sounds. In order to obtain the maximum SDR, the percus-
sive and harmonic costs are found to be equally significant
(KSM = KSP = 0.1) but must be sufficiently small com-
pared to the β-divergence cost to reconstruct the signal
correctly. As a result of this fact, the developed method
fails for KSM >>1 or KSP >>1 because NMF does not
prioritize signal reconstruction under these conditions.
Figure 2 has shown the optimization of β , KSP and

KSM using a fixed dictionary size (Rp = Rh = 150). In
order to analyze the dependence of the parameters of the
developed method, Figures 3, 4 and 5 are shown.
Figure 3 shows the optimization of the parameters KSP

and KSM using β = 1.5 and different number of per-
cussive Rp and harmonic Rh components in order to
analyze the effect of different dictionary sizes. Results
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Figure 2 Optimization of β, KSP and KSM parameters using the development database E. (a) β = 0, (b) β = 0.5, (c) β = 1.0, (d) β = 1.5 and
(e) β = 2.0. The number of percussive Rp and harmonic Rh spectral patterns is equal to 150. It can be observed the effect of the β-divergence cost
in the separation process when varying the contribution of the smoothness and sparseness constraints. The goal of this analysis was to find the
optimum value of parameters β , KSP and KSM looking for the value of the combination of them that maximizes the SDR measure for the
development database E. The maximum SDR value is obtained using β = 1.5. This fact may be due to the best trade-off between high and low
energy changes in frequency.

show the optimal values of the parameters KSP and KSM
are obtained using KSP = KSM = 0.1 for all the dictio-
nary sizes evaluated. This fact suggests that the dictionary
size could not affect the optimal values of KSP and KSM
because these values provide the maximum SDR for each
dictionary size evaluated.
Figure 4 shows the optimization of the parameter β

using the optimal KSP = KSM = 0.1 and different number
of percussive and harmonic components in order to ana-
lyze the effect of a different dictionary sizes. For each value
β , results show that SDR performance exhibits the similar
behaviour independently of the dictionary size, increasing
from β = 0 to β = 1.5 and decreasing from β = 1.5 to
β = 2. As occurred in Figure 2, the value β thatmaximizes
SDR is achieved using β = 1.5, but the differences, com-
pared to the other results using different dictionary sizes,
are not significant.
Figure 5 shows the optimization of the smooth-

ness KTSM-KSSM and sparseness KTSP-KSSP parameters.
Figure 5a shows that although different values of KTSM

and KSSM have been used, the maximum SDR perfor-
mance is obtained using KTSM = KSSM = 0.1 as occurred
when these parameters were initialized with the same
values (see Figure 2d). This fact suggests that the smooth-
ness parameters KTSM and KSSM could be initialized using
equal values KSM = KTSM = KSSM since they do not
show significant differences from initializing them with
different values in order to obtain the best SDR perfor-
mance. A similar behaviour can be observed from the
sparseness KTSP-KSSP parameters (see Figure 5b) which
obtain the maximum SDR performance using a sparse-
ness parameter equal to each other KSP = KTSP =
KSSP = 0.1.
Figure 6 shows how SDR results can be improved

by analyzing a more accurate range of the parameters
KSM and KSP around of the previous optimum value 0.1.
The maximum SDR is obtained using a higher value
of smoothness constraints than sparseness constraints,
specifically KSM = 0.2 and KSP = 0.1, evaluating the
development database E. This fact can be observed by
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Figure 3 Optimization of parameters KSP and KSM. Using β = 1.5 and different dictionary sizes composed of the same number of percussive and
harmonic components ((a) 50, (b) 100, (c) 150, (d) 250, and (e) 500 components) using the development database E.
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Figure 4 Optimization of the parameter β. Using the optimal KSP = KSM = 0.1 and different dictionary sizes composed of the same number of
percussive and harmonic components (50, 100, 150, 250 and 500 components) in the development database E.
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Figure 5 Optimization of (a) the smoothness and (b) sparseness parameters. (a) Smoothness parameters KTSM and KSSM using the values
β = 1.5, KTSP = KSSP = 0.1 and Rp = Rh = 150 components in the development database E; (b) sparseness parameters KTSP and KSSP using the
values β = 1.5, KTSM = KSSM = 0.1 and Rp = Rh = 150 components in the development database E.

analyzing the diagonals in Figure 6. Thus, using a KSM
value that is twice the KSP value (i.e., see the lower diag-
onals from the main diagonal from left to right) improves
the SDR results and slows the decrease in the SDR. How-
ever, when KSP is twice KSM (i.e., see the upper diago-
nals from the main diagonal from left to right), the SDR
results are generally worse, and the SDR decreases more
rapidly.
Once β , KSM and KSP are optimized (β = 1.5,KSM =

0.2 and KSP = 0.1), the number of the percussive Rp
and harmonic Rh components is optimized (see Figure 7).
A slight better separation is obtained when it is used
Rp = 250 and Rh = 500. It seems that a wider vari-
ety of harmonic spectral patterns could improve SDR
results; however, the improvement, about 0.3dB, com-
pared to Rp = Rh = 150 is not significant. In fact,
a higher number of components, i.e., Rp > 250 and
Rh > 500, reduces the SDR performance (in a simi-
lar way as occurred in Figure 3). This reduction of SDR
may be explained by using a large dictionary size (usu-
ally Rp + Rh is chosen to be smaller than F or T , so that
F(Rp + Rh) + (Rp + Rh)T << FT in a NMF framework
[14,21]).

3.4.2 Performance evaluation
Figures 8, 9 and 10 show SDR, SIR and SAR results
evaluating the database T1 for the proposed method
and the three aforementioned state-of-the-art percus-
sive/harmonic sound separation methods. Each box rep-
resents 20 data points, one for each excerpt of the test
database: each data point in the blue box represents the
average value of the percussive separation results; each
data point in the red box represents the average value of
the harmonic separation results; and each data point in
the black box represents the average value of the overall
separation results (the average value considering the per-
cussive and harmonic separation results). The lower and
upper lines of each box show the 25th and 75th percentiles
for the database. The line in the middle of each box rep-
resents the mean value of the dataset. The lines extending
above and below each box show the extent of the rest of
the samples, excluding outliers. Outliers are defined as
points that are over 1.5 times the interquartile range from
the sample median, which are shown as crosses.
Figure 8 shows that the developed method obtains, on

average, the best quality performance in terms of the
percussive, harmonic and overall SDR for the separation
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Figure 6 SDR average results. Obtained by using β = 1.5 and varying the smoothness term KSM and the sparseness term KSP for the development
database E. The number of percussive Rp and harmonic Rh spectral patterns is equal to 150.

process relative to the three state-of-the-art separation
methods. MFS and HPSS can still be considered to be
competitive methods, unlike NMPCF (this method will be
analyzed later). The proposed method significantly out-
performs HPSS and NMPCF in percussive/harmonic SDR
results but not compared to MFS which is confirmed by a
one-sided paired t-test (see Table 4). A possible strength of
the developedmethod, which is not exhibited by the other
methods, seems to be its robustness in evaluating different
databases (databases T1 and T2). This robustness is in the
fact of including smoothness and sparseness constraints
into the factorization process because the main difference
between the develop method and HPSS and MFS is the
use of sparseness constraints to achieve time-frequency
energy distributions as can be found in real-world percus-
sive or harmonic sounds. In both databases, the developed
method produces nearly identical overall SDR results,
6.3 dB, independent of the database evaluated. Moreover,
the lower line of each box of the developed method is
above the mean obtained from using HPSS and NMPCF.
Thus, more reliable SDR results are obtained in compar-
ison with those methods when evaluating different types
of sounds used in different music genres.
Figure 9 shows that HPSS produces the best overall SIR

results but the SIR performance of the developed method

is nearly identical to that obtained using HPSS. It can
be confirmed using a one-sided paired t test that indi-
cates HPSS does not significantly outperform SIR results
compared to the developed method neither in percus-
sive nor harmonic sounds (see Table 4). However, Table
4 shows that the developed method improves signifi-
cantly SIR results compared to MFS and NMPCF for both
percussive and harmonic sounds. Both HPSS and the pro-
posed one: (i) enable most of the harmonic content to be
removed while maintaining the quality of the percussive
signal and vice versa and (ii) capture polyphonic rich-
ness. The developed method produces better percussive
quality for the SIR than MFS because it uses informa-
tion to model percussive sounds that is not used by MFS.
That is, the developed method models percussive sounds
using smoothness in the frequency and sparseness in the
time, whereas MFS models percussive sounds using only
smoothness in the frequency (by removing outliers in a
temporal slice).
As previously mentioned, HPSS produces the best over-

all SIR on average. However, these results are obtained
at the expense of introducing more artifacts and lead to
greater overall distortion. This fact can be observed in
Figure 10 in which the worst percussive and harmonic
SAR results are obtained by HPSS. Considering SAR
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Figure 7 SDR average results (β = 1.5, KSM = 0.2 and KSP = 0.1). As a function of the number of percussive/harmonic components applied to
the development database E.

results and using a one-sided paired t test (see Table 4), the
developed method significantly outperforms HPSS and
NMPCF in percussive sounds and the three state-of-the-
art methods in harmonic sounds. The developed method
also offers the advantage of producing the best SAR results

(excluding NMPCF, which will be discussed in the next
paragraph) because the artifacts in the reconstruction
signal are minimized.
For the case of NMPCF, SDR and SIR results exhibit the

worst separation performance, and therefore, this method
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Figure 8 Comparative SDR results. Evaluating database T1 for the proposed method and the three aforementioned state-of-the-art
percussive/harmonic sound separation methods.



Canadas-Quesada et al. EURASIP Journal on Audio, Speech, andMusic Processing 2014, 2014:26 Page 13 of 17
http://asmp.eurasipjournals.com/content/2014/1/26

HPSS MFS NMPCF Proposed
−5

0

5

10

15

20

25

30

35

40

S
IR

 (
dB

)

Perc+Harm
Harm
Perc

Figure 9 Comparative SIR results. Evaluating the database T1 for the proposed method and the three aforementioned state-of-the-art
percussive/harmonic sound separation methods.

always ranks last. The poor performance of NMPCF may
be attributed to its high dependence on the drum-only
matrix used in the decomposition process. This drum-
only matrix is obtained training with drum sounds, but
these trained drum features may be sufficiently differ-
ent from the percussive features evaluated in the test
database T1. The harmonic signal, provided by NMPCF,
is composed of most of the original harmonic and per-
cussive sounds. It causes a high harmonic SAR because
the proportion of artifacts is too small compared to the
proportion of the target (harmonic) and the interference
(percussive) sounds. However, the percussive signal, pro-
vided by NMPCF, is composed of a residual part of the
original percussive and harmonic sounds. It causes a low

percussive SAR because the proportion of artifacts is too
high compared to the proportion of the target (percussive)
and the interference (harmonic) sounds.
To illustrate some of the strengths and weaknesses of the

developed method, Table 5 shows the SDR, SIR and SAR
results for each individual music excerpt from database
T2. Results show that the developed method produces the
best average percussive, harmonic and overall SDR and
SAR results. The main strength of the developed method
is its high separation performance in evaluating purely
harmonic or percussive sounds (e.g., SAR (dB) bass or
drums). However, HPSS obtains the better SIR results
on average with more than 1 dB above the proposed
method and MFS. For all the methods evaluated, the
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Figure 10 Comparative SAR results. Evaluating the database T1 for the proposed method and the three aforementioned state-of-the-art
percussive/harmonic sound separation methods.
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Table 4 Analysis of the statistical significance of the
percussive/harmonic SDR-SIR-SAR results

Percussive Harmonic

SDR SIR SAR SDR SIR SAR

HPSS < 10−8 0.2 < 10−11 < 10−9 0.9 < 10−14

MFS 0.2 < 10−3 0.8 0.1 < 4 · 10−2 < 10−6

NMPCF < 10−7 < 10−4 < 10−7 < 10−6 < 10−4 < 10−5

Comparing the developed method with the three state-of-the-art separation
methods using a one-sided paired t test in the database T1. Each cell show the
parameter p that represents the probability of setting a statistically significant
result. Considering a confidence interval of 95%, small values of p<0.05 indicate
that there exists statistical significance of the results evaluated.

main weaknesses of harmonic/percussive separation are
the following: (i) It is not effective in separating harmonic
onsets, that is, the transients of harmonic sounds played
by harmonic instruments (e.g., the initial milliseconds of
a note played by guitar) because they exhibit a percussive
behaviour. In these cases, harmonic onsets are not sepa-
rated in the harmonic signal as can be seen in Figure 11.
The reason is because a harmonic onset exhibits spectro-
temporal features that have been modelled as percussive

sounds in the factorization process; (ii) it cannot effec-
tively separate audio effects, e.g., a synthesizer can gen-
erate a harmonic sound that exhibits spectro-temporal
features (e.g., the vibrato effect shows non-smoothness
in time) which are not modelled in the factorization
process.
To illustrate the separation performance of the devel-

oped method, audio examples (from the T1 and T2
databases) have been uploaded to a web page. Each
audio example (mixed track, separated-percussive track
and separated-harmonic track) has been evaluated using
HPSS, MFS and the developed method. The web page
can be found at https://dl.dropboxusercontent.com/u/
22448214/PercHarmFeb2014/index.html.

4 Conclusions
This paper presents an unsupervised learning process for
separating percussive and harmonic sounds from monau-
ral instrumental music. Our formulation is based on a
modified NMF approach that automatically distinguishes
between percussive and harmonic bases by integrating
spectro-temporal features, such as anisotropic smooth-
ness or time-frequency sparseness, into the factorization

Table 5 Percussive, harmonic and overall SDR, SIR and SAR results for each excerpt of the database T2

HPSS MFS Proposed

SDR SIR SAR SDR SIR SAR SDR SIR SAR

Percussive separation

Identifier

T2_01 2.6 13.2 1.1 −0.2 −1.5 8.4 4.0 6.5 5.7

T2_02 2.4 10.2 3.4 3.1 8.0 4.9 5.2 8.3 7.5

T2_03 2.6 6.9 4.0 2.5 2.1 12.3 2.8 2.6 11.1

T2_04 5.5 11.5 6.5 6.2 9.6 8.0 7.5 10.3 10.3

Average 3.2 10.5 3.8 2.9 4.6 8.4 4.9 7.0 8.7

Harmonic separation

Identifier

T2_01 9.8 13.8 11.9 7.1 13.8 11.5 11.0 14.8 13.9

T2_02 4.8 6.3 9.8 5.5 16.2 11.6 7.5 9.3 12.1

T2_03 4.8 8.7 6.3 4.6 11.0 8.0 5.0 9.1 8.6

T2_04 5.6 11.5 6.7 6.2 9.3 8.7 7.5 10.6 10.5

Average 6.3 10.1 8.7 5.9 12.6 10.0 7.8 11.0 11.3

Overall separation

Identifier

T2_01 6.2 13.5 6.5 3.5 6.2 10.0 7.5 10.7 9.8

T2_02 3.6 8.3 6.6 4.3 12.1 8.3 6.4 8.8 9.8

T2_03 3.7 7.8 5.2 3.6 6.6 10.2 3.9 5.9 9.9

T2_04 5.6 11.5 6.6 6.2 9.5 8.4 7.5 10.5 10.4

Average 4.8 10.3 6.2 4.4 8.6 9.2 6.3 9.0 10.0

Each row titled Average shows three italic values. Each italic value represents the best percussive, harmonic or overall SDR, SIR or SAR result comparing all methods
evaluated in this table.

https://dl.dropboxusercontent.com/u/22448214/PercHarmFeb2014/index.html
https://dl.dropboxusercontent.com/u/22448214/PercHarmFeb2014/index.html
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Figure 11 A harmonic excerpt, played by guitar instrument, extracted from the file T2_02 in Table 3. It can be observed that the harmonic
onsets (vertical lines at the beginning of some notes) in the original harmonic signal (a) do not appear in the harmonic signal (b) output of the
proposed method.

process. The developed method exhibits the following
advantages: (i) prior knowledge of the number of instru-
ments playing the music excerpt is not required, and (ii)
neither prior information about the musical instruments
nor a supervised training are required to classify the
bases.
Different experiments are performed to optimize the

parameters of the developed method. The results show
that (i) the value β = 1.5 provides the maximum SDR
since this measure has been computed at the best trade-
off between high and low energy changes in the frequency;
(ii) The maximum SDR is achieved using a higher value
of smoothness constraints compared to sparseness con-
straints evaluating the databases T1 and T2 and (iii) a
higher number of components, i.e., Rp > 250 and Rh >

500, reduces the SDR performance.
The analysis of the dependence of the parameters of the

developed method shows that (i) the dictionary size could
not affect the optimal values of KSP and KSM because
they provide the maximum SDR for each dictionary size
evaluated; (ii) SDR performance obtains the maximum
SDR using β = 1.5 independently of the dictionary size
and (iii) the smoothnessKTSM-KSSM and sparseness KTSP-
KSSP parameters could be initialized using equal values
KSM = KTSM = KSSM and KSP = KTSP = KSSP since they
do not show significant differences from initializing them
with different values in order to obtain the maximum SDR
performance.

Evaluating the database T1 shows that the developed
method obtains the best quality performance in terms of
the percussive, harmonic and overall SDR for the sep-
aration process in relation to the three state-of-the-art
separation methods. The proposed method significantly
outperforms the other methods taking into account most
of the percussive/harmonic SDR, SIR or SAR results
which is confirmed by a one-sided paired t test. A signifi-
cant strength of the developed method is its robustness in
evaluating different databases.
Evaluating the database T2 illustrates some of the

strengths and weaknesses of the developed method. An
interesting strength shown by the developed method
is its successful separation performance in evaluating
purely harmonic or percussive sounds. However, har-
monic onsets and audio effects are not successfully sep-
arated because their spectro-temporal features have not
been modelled in the factorization process.
Future work will focus on three topics. First, we will try

to improve the quality of the separated signals by defining
a new spectral distance that integrates novel spectro-
temporal features of the percussive and harmonic sounds.
Second, a novel constraint based on the vibrato effect will
be investigated to extend this method to singing-voice
signals. Finally, in order to improve the singing-voice sig-
nals, a set of novel percussive constraints will be analyzed
to distinguish between percussive music instruments and
unvoiced vocal sounds.
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Appendix
Detailed terms of themultiplicative update rules of
percussive sounds

Here, each of the terms
[

∂dβ

∂WP

]±
,
[

∂SSM
∂WP

]±
,
[

∂dβ

∂HP

]±
and[

∂TSP
∂HP

]±
belonging to the percussivemultiplicative update

rules are detailed:[
∂dβ

∂WP

]−
= [
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]
HT
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[
∂dβ

∂HP

]+
= WT

P
[
(WPHP + WHHH)β−1] (24)

[
∂TSP
∂HP

]−

rp,t
= √

T
HPrp,t

∑T
i=1 HPrp,i(∑T

i=1 H2
Prp,i

) 3
2

(25)

[
∂TSP
∂HP

]+

rp,t
= 1√

1
T

∑T
i=1 H2

Prp,i

(26)

where T denotes the transpose matrix operator. The terms[
∂SSM
∂WP

]±
and

[
∂TSP
∂HP

]±
are defined using [22], as adapted

to the matrixWP and HP.

Detailed terms of themultiplicative update rules of
harmonic sounds

Here, each of the terms
[

∂dβ

∂WH

]±
,
[

∂SSP
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]±
,
[

∂dβ

∂HH

]±
and[
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belonging to the harmonic multiplicative update

rules are detailed:[
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i=1 H2
Hrh,i

⎤
⎦

+
2THHrh,t

∑T
i=2

(
HHrh ,i

− HHrh ,i−1

)2
(∑T

i=1 H2
Hrh,i

)2
(33)

[
∂TSM
∂HH

]+

rh,t
= 4THHrh,t∑T

i=1 H2
Hrh ,i

(34)

where T denotes the transpose matrix operator. The terms[
∂SSP
∂WH

]±
and

[
∂TSM
∂HH

]±
are defined using [22], as adapted

to the matrixWH and HH .
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