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Abstract

The full modulation spectrum is a high-dimensional representation of one-dimensional audio signals. Most previous
research in automatic speech recognition converted this very rich representation into the equivalent of a sequence of
short-time power spectra, mainly to simplify the computation of the posterior probability that a frame of an unknown
speech signal is related to a specific state. In this paper we use the raw output of a modulation spectrum analyser in
combination with sparse coding as a means for obtaining state posterior probabilities. The modulation spectrum
analyser uses 15 gammatone filters. The Hilbert envelope of the output of these filters is then processed by nine
modulation frequency filters, with bandwidths up to 16 Hz. Experiments using the AURORA-2 task show that the
novel approach is promising. We found that the representation of medium-term dynamics in the modulation
spectrum analyser must be improved. We also found that we should move towards sparse classification, by modifying
the cost function in sparse coding such that the class(es) represented by the exemplars weigh in, in addition to the
accuracy with which unknown observations are reconstructed. This creates two challenges: (1) developing a method
for dictionary learning that takes the class occupancy of exemplars into account and (2) developing a method for
learning a mapping from exemplar activations to state posterior probabilities that keeps the generalization to unseen
conditions that is one of the strongest advantages of sparse coding.

Keywords: Sparse coding/compressive sensing; Sparse classification; Modulation spectrum; Noise robust automatic
speech recognition

1 Introduction
Nobody will seriously disagree with the statement that
most of the information in acoustic signals is encoded
in the way in which the signal properties change over
time and that instantaneous characteristics, such as the
shape or the envelope of the short-time spectrum, are less
important - though surely not unimportant. The dynamic
changes over time in the envelope of the short-time spec-
trum are captured in the modulation spectrum [1-3].
This makes the modulation spectrum a fundamentally
more informative representation of audio signals than a
sequence of short-time spectra. Still, most approaches
in speech technology, whether it is speech recognition,
speech synthesis, speaker recognition, or speech cod-
ing, seem to rely on impoverished representations of the
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modulation spectrum in the form of a sequence of short-
time spectra, possibly extended with explicit information
about the dynamic changes in the form of delta and
delta-delta coefficients. For speech (and audio) coding,
the reliance on sequences of short-time spectra can be
explained by the fact that many applications (first and
foremost telephony) cannot tolerate delays in the order
of 250 ms, while full use of modulation spectra might
incur delays up to a second. What is more, coders can rely
on the human auditory system to extract and utilize the
dynamic changes that are still retained in the output of
the coders. If coders are used in environments and appli-
cations in which delay is not an issue (music recording,
broadcast transmission), we do see a more elaborate use
of information linked to modulation spectra [4-6]. Here
too, the focus is on reducing bit rates by capitalizing on
the properties of the human auditory system. We are not
aware of approaches to speech synthesis - where delay is
not an issue - that aim to harness advantages offered by
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the modulation spectrum. Information about the tempo-
ral dynamics of speech signal by means of shifted delta
cepstra has proven beneficial for automatic language and
speaker recognition [7].
In this paper we are concerned with the use of mod-

ulation spectra for automatic speech recognition (ASR),
specifically noise-robust speech recognition. In this appli-
cation domain, we cannot rely on the intervention of the
human auditory system. On the contrary, it is now nec-
essary to automatically extract the information encoded
in the modulation spectrum that humans would use to
understand the message.
The seminal research by [1] showed that modulation

frequencies >16 Hz contribute very little to speech intel-
ligibility. In [8] it was shown that attenuating modulation
frequencies <1 Hz does not affect intelligibility either.
Very low modulation frequencies are related to station-
ary channel characteristics or stationary noise, rather than
to the dynamically changing speech signal carried by the
channel. The upper limit of the band with linguistically
relevant modulation frequencies is related to the maxi-
mum speed with which the articulators can move. This
insight gave rise to the introduction of RASTA filtering
in [9] and [10]. RASTA filtering is best conceived of as
a form of post-processing applied on the output of oth-
erwise conventional representations of the speech signal
derived from short-time spectra. This puts RASTA filter-
ing in the same category as, for example, Mel-frequency
spectra and Mel-frequency cepstral coefficients: engi-
neering approaches designed to efficiently approximate
representations manifested in psycho-acoustic experi-
ments [11]. Subsequent developments towards harnessing
the modulation spectrum in ASR have followed pretty
much the same path, characterized by some form of addi-
tional processing applied to sequences of short-time spec-
tral (or cepstral) features. Perhaps somewhat surprisingly,
none of these developments have given rise to substan-
tial improvements of recognition performance relative to
other engineering tricks that do not take guidance from
knowledge about the auditory system.
All existing ASR systems are characterized by an archi-

tecture that consists of a front end and a back end. The
back end always comes in the form of a state network,
in which words are discrete units, made up of a directed
graph of subword units (usually phones), each of which is
in turn represented as a sequence of states. Recognizing
an utterance amounts to searching the path in a finite-
state machine that has the maximum likelihood, given
an acoustic signal. The link between a continuous audio
signal and the discrete state machine is established by
converting the acoustic signal into a sequence of likeli-
hoods that a short segment of the signal corresponds to
one of the low-level states. The task of the front end is
to convert the signal into a sequence of state likelihood

estimates, usually at a 100-Hz rate, which should be more
than adequate to capture the fastest possible articulation
movements.
Speech coding or speech synthesis with a 100-Hz frame

rate using short-time spectra yields perfectly intelligible
and natural-sounding results. Therefore, it was only natu-
ral to assume that a sequence of short-time spectra at the
same frame rate would be a good input representation for
an ASR system. However, already in the early seventies,
it was shown by Jean-Silvain Liénard [12] that it was nec-
essary to augment the static spectrum representation by
so-called delta and delta-delta coefficients that represent
the speed and acceleration of the change of the spectral
envelope over time and that were popularized by [13].
For reasonably clean speech, this approach appears to be
adequate.
Under acoustically adverse conditions, the recognition

performance of ASR systems degrades much more rapidly
than human performance [14]. Convolutional noise can be
effectively handled by RASTA-like processing. Distortions
due to reverberation have a direct impact on the modula-
tion spectrum, and they also cause substantial difficulties
for human listeners [15,16]. Therefore, much research
in noise-robust ASR has focused on speech recognition
in additive noise. Speech recognition in noise basically
must solve two problems simultaneously: (1) one needs to
determine which acoustic properties of the signal belong
to the target speech and which are due to the background
noise (the source separation problem), and (2) those
parts of the acoustic representations of the speech signal
which are not entirely obscured by the noise must be pro-
cessed to decode the linguistic message (speech decoding
problem).
For a recent review of the range of approaches that has

been taken towards noise-robust ASR, we refer to [17].
Here, we focus on one set of approaches, guided by the
finding that humans have less trouble recognizing speech
in noise, which seems to suggest that humans are either
better in source separation or in latching on to the speech
information that is not obscured by the noise (or in both).
This suggests that there is something in the auditory pro-
cessing system that makes it possible to deal with additive
noise. Indeed, it has been suggested that replacing the
conventional short-time spectral analysis based on the fast
Fourier transform by the output of a principled auditory
model should improve robustness against noise. How-
ever, up to now, the results of research along this line
have failed to live up to the promise [18]. We believe that
this is at least in part caused by the fact that in previous
research, the output of an auditory model was converted
to the equivalent of the energy in one-third octave fil-
ters, necessary for interfacing with a conventional ASR
back end, but without trying to capture the continuity
constraints imposed by the articulatory system. In this
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conversion most of the additional information carried by
the modulation spectrum is lost.
In this paper we explore the use of a modulation spec-

trum front end that is based on time-domain filtering that
does not require collapsing the output to the equivalent
of one-third octave filters, but which still makes it pos-
sible to estimate the posterior probability of the states in
a finite-state machine. In brief, we first filter the speech
signal with 15 gammatone filters (roughly equivalent to
one-third octave filters) and we process the Hilbert enve-
lope of the output of the gammatone filters with nine
modulation spectrum filters [19]. The 135-dimensional
(135-D) output of this system can be sampled at any rate
that is an integer fraction of the sampling frequency of
the input speech signal. For the conversion of the 135-D
output to posterior probability estimates of a set of states,
we use the sparse coding (SC) approach proposed by
[20]. Sparse coding is best conceived of as an exemplar-
based approach [21] in which unknown inputs are coded
as positive (weighted) sums of items in an exemplar
dictionary.
We use the well-known AURORA-2 task [22] as

the platform for developing our modulation spectrum
approach to noise-robust ASR. We will use the ‘standard’
back end for this task, i.e. a Viterbi decoder that finds the
best path in a lattice spanned by the 179 states that result
from representing 11 digit words by 16 states each, plus
3 states for representing non-speech. We expect that the
effect of the additive noise is limited to a subset of the 135
output channels of the modulation spectrum analyser.
The major goal of this paper is to introduce a novel

approach to noise-robust ASR. The approach that we
propose is novel in two respects: we use the ‘raw’ out-
put of modulation frequency filters and we use Sparse
Classification to derive state posterior probabilities from
samples of the output of the modulation spectrum fil-
ters. We deliberately use unadorned implementations of
both the modulation spectrum analyser and the sparse
coder, because we see a need for identifying what are the
most important issues that are involved with a funda-
mentally different approach to representing speech signals
and with converting the representations to state poste-
rior estimates. In doing so we are fully aware of the risk
that - for the moment - we will end up with word error
rates (WERs) that are well above what is considered state-
of-the-art [23]. Understanding the issues that affect the
performance of our systemmost will allow us to propose a
road map towards our final goal that combines advanced
insight in what it is that makes human speech recognition
so very robust against noise with improved procedures for
automatic noise-robust speech recognition.
Our approach combines two novelties, viz. the features

and the state posterior probability estimation. To make it
possible to disentangle the contributions and implications

of the two novelties, we will also conduct experiments
in which we use conventional multi-layered perceptrons
(MLPs) to derive state posterior probability estimates
from the outputs of the modulation spectrum analyser.
In section 4, we will compare the sparse classification
approach with the results obtained with the MLP for esti-
mating state posterior probabilities. This will allow us to
assess the advantages of the modulation spectrum anal-
yser, as well as the contribution of the sparse classification
approach.

2 Method
2.1 Sparse classification front end
The approach to noise-robust ASR that we propose in this
paper was inspired by [20] and [24], which introduced
sparse classification (SCl) as a technique for estimating the
posterior probabilities of the lowest-level states in an ASR
system. The starting point of their approach was a repre-
sentation of noisy speech signals as overlapping sequences
of up to 30 speech frames that together cover up to 300
ms intervals of the signals. Individual frames were rep-
resented as Mel-frequency energy spectra, because that
representation conforms to the additivity requirement
imposed by the sparse classification approach. SC is an
exemplar-based approach.Handling clean speech requires
the construction of an exemplar dictionary that contains
stretches of speech signals of the same length as the
(overlapping) stretches that must be coded. The exem-
plars must be chosen such that they represent arbitrary
utterances. For noisy speech a second exemplar dictionary
must be created, which contains equally long exemplars
of the additive noises. Speech is coded by finding a small
number of speech and noise exemplars which, added
together with positive weights, accurately approximate an
interval of the original signal. The algorithms that find
the best exemplars and their weights are called solvers;
all solvers allow imposing a maximum on the number of
exemplars that are returned with a weight >0 so that it is
guaranteed that the result is sparse. Different families of
solvers are available, but some require that all coefficients
in the representations of the signals and the exemplars
are non-negative numbers. Least angle regression [25],
implemented by means of a version of the Lasso solver,
can operate with representations that contain positive and
negative numbers.
The SC approach sketched above is interesting for two

reasons. Sequences of short-time spectra implicitly repre-
sent a substantial part of the information in the modula-
tion spectrum. That is certainly true if the sequences cover
up to 300-ms signal intervals. In addition, in [26] it was
shown that it is possible to convert the weights assigned
to the exemplars in a SC system to the estimates of state
probabilities, provided that the frames in the exemplars
are assigned to states. The latter can be accomplished
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by means of a forced alignment of the database from
which the exemplars are selected with the states that cor-
respond to a phonetic transcription. In actual practice,
the state labels are obtained by means of a forced align-
ment using a conventional hidden Markov model (HMM)
recognizer.
The success of the SC approach in [20,24] for noise-

robust speech recognition is attributed to the fact that the
speech exemplars are characterized by peaks in the spec-
tral energy that exhibit substantial continuity over time;
the human articulatory system can only produce signals
that contain few clear discontinuities (such as the release
of stop consonants), whilemany noise types lack such con-
tinuity. Therefore, it is reasonable to expect that the mod-
ulation spectra of speech and noise are rather different,
even if the short-time spectra may be very similar.
In this paper we use the modulation spectrum directly

to exploit the continuity constraints imposed by the
speech production system. Since the modulation spec-
trum captures information about the continuity of the
speech signal in the low-frequency bands, there is no
need for a representation that stacks a large number of
subsequent time frames. Therefore, our exemplar dictio-
nary can be created by selecting individual frames of the
modulation spectrum in a database of labelled speech. As
in [20,24], we will convert the weights assigned to the
exemplars when coding unknown speech signals into esti-
mates of the probability that a frame in the unknown
signal corresponds to one of the states.
In [20,24] the conversion of exemplar weights into state

probabilities involved an averaging procedure. A frame in
an unknown speech signal was included in as many solu-
tions of the solver as there were frames in an exemplar.
In each position of a sliding window, an unknown frame
is associated with the states in the exemplars chosen in
that position. While individual window positions return
a small number of exemplars and therefore a small num-
ber of possible states, the eventual set of state probabilities
assigned to a frame is not very sparse. With the single-
frame exemplars in the approach presented here, no such
averaging is necessary or possible. The potential down-
side of relying on a single set of exemplars to estimate
state probabilities is that it may yield overly sparse state
probability vectors.

2.2 Data
In order to provide a proof of concept that our ap-
proach is viable, we used a part of the AURORA-2
database [22]. This database consists of speech recordings
taken from the TIDIGITS corpus for which participants
read sequences of digits (only using the words ‘zero’ to
‘nine’ and ‘oh’) with one up to seven digits per utter-
ance. These recordings were then artificially noisified by
adding different types of noise to the clean recordings at

different signal-to-noise ratios. In this paper we focus on
the results obtained for test set A, i.e. the test set that
is corrupted using the same noise types that occur in
the multi-condition training set. We re-used a previously
made state-level segmentation of the signals obtained by
means of a forced alignment with a conventional HMM-
based ASR system. These labels were also used to estimate
the prior probabilities of the 179 states.

2.3 Feature extraction
The feature extraction process that we employ is illus-
trated in Figure 1. First, the (noisy) speech signal (sam-
pling frequency Fs = 8 kHz) is analysed by a gammatone
filterbank consisting of 15 band-pass filters with centre
frequencies (Fc) spaced at one-third octave. More specifi-
cally, Fc = 125, 160, 200, 250, 315, 400, 500, 630, 800, 1,000,
1,250, 1,600, 2,000, 2,500, and 3,150 Hz, respectively. The
amplitude response of an nth-order gammatone filter with
centre frequency Fc is defined by

g(t) = a · tn−1 · cos(2πFct + φ) · e−2πbt . (1)

With b = 1.0183 × (24.7 + Fc/9.265) and n = 4,
this yields band-pass filters with equivalent rectangular
bandwidth equal to 1 [27]. Subsequently, the time enve-
lope ei(t) of the ith filter output, xi, is computed as the
magnitude of the analytic signal

ei(t) =
√
x2i + x̂2i , (2)

with x̂i the Hilbert transform of xi. We assume that the
time envelopes of the outputs of the gammatone filters are
a sufficiently complete representation of the input speech
signal. The frequency response of the gammatone filter-
bank is shown in the upper part at the left-hand side of
Figure 1.
The Hilbert envelopes were low-pass filtered with a

fifth-order Butterworth filter (cf. (3)) with cut-off fre-
quency at 150 Hz and down-sampled to 400 Hz. The
down-sampled time envelopes from the 15 gammatone
filters are fed into another filterbank consisting of nine
modulation filters. This so-called modulation filterbank
is similar to the EPSM-filterbank as presented by [28]. In
our implementation of the modulation filterbank, we used
one-third-order Butterworth low-pass filter with a cut-off
frequency of 1 Hz, and eight band-pass filters with centre
frequencies of 2, 3, 4, 5, 6, 8, 10, and 16 Hza.
The frequency response of an nth-order low-pass filter

with gain a and cut-off frequency Fc is specified by [29]

H( f ) = a

1.0 +
(

f
Fc

)2n (3)
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Figure 1 Feature extraction. The magnitude envelope of each of the 15 gammatone filters is decomposed into nine different modulation
frequency bands. Thus, the speech is represented by 9 × 15 = 135-D feature vectors which are computed every 2.5 ms.
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The complex-valued frequency response of a band-pass
modulation filter with gain a, centre frequency Fc and
quality factor Q = 1 is specified by

H( f ) = a
1.0 + jQ.

(
f
Fc − Fc

f

) (4)

As an example, the upper panel at the right-hand side in
Figure 1 shows the time envelope of the output of the gam-
matone filter with centre frequency at 315 Hz for the digit
sequence ‘zero six’. The frequency response of the com-
plete filterbank, i.e. the sum of the responses of the nine
individual filters, is shown in Figure 2. Due to the spac-
ing of the centre frequency of the filters and the over-
lap of their transfer functions, we effectively give more
weight to themodulation frequencies that are dominant in
speech [30].
The modulation frequency filterbank is implemented as

a set of frequency domain filters. To obtain a frequency
resolution of 0.1 Hz with the Hilbert envelopes sampled at
400Hz, the calculations were based on Fourier transforms
consisting of 4,001 frequency samples. For that purpose
we computed the complex-valued frequency response of
the filters at 4,001 frequency points. An example of the
ensemble of waveforms that results from the combination
of the gammatone and modulation filterbank analysis for
the digit sequence ‘zero six’ is shown in the lower panel
on the right-hand side of Figure 1. The amplitudes of the
9 × 15 = 135 signals as a function of time are shown in
the bottom panel at the left-hand side of Figure 1. The top
band represents the lowest modulation frequencies (0 to
1 Hz) and the bottom band the highest (modulation filter
with centre frequency Fc = 16 Hz).

We experimented with two different implementations
of the modulation frequency filterbank, one in which we
kept the phase response of the filters and the other in
which we ignored the phase response and only retained
the magnitude of the transfer functions. The results are
illustrated in Figure 3 for clean speech and for the 5-dB
signal-to-noise ratio (SNR) condition. From the second
and third rows in that figure, it can be inferred that the
linear phase implementation renders sudden changes in
the Hilbert envelope as synchronized events in all modu-
lation bands, while the full-phase implementation appears
to smear these changes over wider time intervals. The
(visual) effect is especially apparent in the right column,
where the noisy speech is depicted. However, prelimi-
nary experiments indicated that the information captured
in the ‘visually noisy’ full-phase representation could be
harnessed by the recognition system: the full-phase imple-
mentation yields a performance increase in the order of
20% at the lower SNR levels compared with the perfor-
mance of the linear phase implementation. However, the
linear phase implementation works slightly better in clean
and high SNR conditions (yielding ≈1% higher accura-
cies). This confirms the results of previous experiments
in [31]. Therefore, all results in this paper are based on the
full-phase implementation.
Another unsurprising observation that can be made

from Figure 3 is that the non-negative Hilbert envelopes
are turned into signals that have both positive and neg-
ative amplitude values. This will limit the options in
choosing a solver in the SC approach to computing state
posterior probabilities.
Figure 4 provides an extended view of the result of a

modulation spectrum analysis of the utterance ‘zero six’.

Figure 2 Sum of modulation transfer functions. The sum of the transfer functions of all modulation frequency filters gives a stronger weight to
the frequencies that are known to be important for speech recognition [30].
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Figure 3 Full and linear phase features comparison. Top: spectrum envelope of 6th gammatone band for a sample utterance for clean (left) and
5-dB SNR (right). Middle: output of linear phase modulation filterbank. Bottom: output of full-phase modulation filterbank.

The nine heat map representations in the lower left-hand
part of Figure 1 are re-drawn in such a way that it is pos-
sible to see the similarities and differences between the
modulation bands. The top panel in Figure 4 shows the
output amplitude of the low-pass filter of the modulation
filter bank. Subsequent panels show the amplitude of the
outputs of the higher modulation band filters. It can be
seen that overall, the amplitude decreases with increasing
band number.
Speech and background noise tend to cover the same

frequency regions in the short-time spectrum. Therefore,
speech and noise will be mixed in the outputs of the
15 gammatone filters. The modulation filterbank decom-
poses each of the 15 time envelopes into a set of nine
time-domain signals that correspond to different mod-
ulation frequencies. Generally speaking, the outputs of
the lowest modulation frequencies are more associated
with events demarcating syllable nuclei, while the higher
modulation frequencies represent shorter-term events.
We want to take advantage of the fact that it is unlikely
that speech and noise sound sources with frequency

components in the same gammatone filter also happen to
overlap completely in the modulation frequency domain.
Stationary noise would not affect the output of the higher
modulation frequency filters, while pulsatile noise should
not affect the lowest modulation frequency filters. There-
fore, we expect that many of the naturally occurring noise
sources will show temporal variations at different rates
than speech.
Although the modulation spectrum features capture

short- and medium-time spectral dynamics, the informa-
tion is encoded in a manner that might not be optimal
for automatic pattern recognition purposes. Therefore,
we decided to also create a feature set that encodes the
temporal dynamics more explicitly. To that end we con-
catenated 29 frames (at a rate of one frame per 2.5 ms),
corresponding to 29 × 2.5 = 72.5 ms; to keep the number
of features within reasonable limits, we performed dimen-
sionality reduction by means of linear discriminant analy-
sis (LDA), with the 179 state labels as categories. The ref-
erence category was the state label of the middle frame of
a 29-frame sequence. The LDA transformationmatrix was
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Figure 4 An extended view of the result of a modulation spectrum analysis of the utterance ‘zero six’.

learned using the exemplar dictionary (cf., section 2.4).
The dimension of the feature vectors was reduced the
135, the same number as with single-frame features. To
be able to investigate the effect of the LDA transform, we

also applied an LDA transform to the original single-frame
features. Here, the dimension of the transformed feature
vector was limited to 135 (nine modulation bands in 15
gammatone filters).
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2.4 Composition of exemplar dictionary
To construct the speech exemplar dictionary, we first
encoded the clean train set of AURORA-2 with the mod-
ulation spectrum analysis system, using a frame rate of
400 Hz. Then, we quasi-randomly selected two frames
from each utterance. To make sure that we had a rea-
sonably uniform coverage of all states and both genders,
2×179 counters were used (one for each state of each gen-
der). The counters were initialized at 48. For each selected
exemplar, the corresponding counter was decremented
by 1. Exemplars of a gender-state combination were no
longer added to the dictionary if the counter became zero.
A simple implementation of this search strategy yielded
a set of 17,148 exemplars, in which some states missed
one or two exemplars. It appeared that 36 exemplars had
a Pearson correlation coefficient of >0.999 with at least
one other exemplar. Therefore, the effective size of the
dictionary is 17,091.
We also encoded the four noises in the multi-condition

training set of AURORA-2 with the modulation spectrum
analysis system. From the output, we randomly selected
13,300 frames as noise exemplars, with an equal number
of exemplars for the four noise types.
When using LDA-transformed concatenated features, a

new equally large set of exemplars was created by selecting
sequences of 29 consecutive frames, using the same proce-
dures as for selecting single-frame exemplars. In a similar
vein, 29-frame noise exemplars were selected that were
reduced to 135-D features using the same transformation
matrix as for the speech exemplars.

2.5 The sparse classification algorithm
The use of sparse classification requires that it must be
possible to approximate an unknown observation with

a (positive) weighted sum of a number of exemplars.
Since all operations in the modulation spectrum analysis
system are linear and since the noisy signals were con-
structed by simply adding clean speech and noise, we are
confident that the modulation spectrum representation
does not violate additivity to such an extent that SC is
rendered impossible. The same argument holds for the
LDA-transformed features. Since linear transformations
do not violate additivity, we assume that the transformed
exemplars can be used in the same way as the original ones.
As can be seen in Figures 1 and 3, the output of themod-

ulation filters contains both positive and negative num-
bers. Therefore, we need to use the Lasso procedure for
solving the sparse coding problem, which can operate with
positive and negative numbers [25]. We are not aware of
other solvers that offer the same freedom. Lasso uses the
Euclidean distance as the divergence measure to evaluate
the similarity of vectors. This raises the question whether
the Euclidean distance is a suitable measure for comparing
modulation spectrum vectors. We verified this by com-
puting the distributions of the Euclidean distance between
neighbouring frames and frames taken at random time
distances of >20 frames in a set of 100 randomly selected
utterances. As can be seen from Figure 5, the distributions
of the distances between neighbouring and distant frames
hardly overlap. Therefore, we believe that it is safe to
assume that the Euclidean distance measure is adequate.
Using the Euclidean distance in a straightforward man-

ner implies that vector elements that have a large variance
or large absolute values will dominate the result. Prelim-
inary experiments showed that the modulation spectra
suffer from this effect. It appeared that the difference
between /u/ in two and /i/ in three, which is mainly
represented by different energy levels in the 2,000-Hz
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Figure 5 Distributions of the Euclidean distance between neighbouring (red) and distant (blue) 135-D feature vectors.
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region, was often very small because of the absolute values
of the output of the modulation filters in the gammatone
filters with centre frequencies of 2,000 and 2,500Hzwhich
were very much smaller than the values in the gammatone
filters with centre frequencies up to 400 Hz. This effect
can be remedied by using a proper normalization of the
vector elements. After some experiments, we decided to
equalize the variance in the gammatone bands. For this
purpose we first computed the variance in all 135 mod-
ulation bands in the set of speech exemplars. Then, we
averaged the variance over the nine modulation bands in
each gammatone filter. The resulting averages were used
to normalize the outputs of the modulation filters. The
effect of this procedure on the representation of the out-
put of the modulation filters is shown in Figure 6. This
procedure reduced the number of /u/ - /i/ confusions by
almost a factor of 3.

2.5.1 Obtaining state posterior estimates
The weights assigned to the exemplars by the Lasso solver
must be converted to estimates of the probability that a
frame corresponds to one of the 179 states. In the sparse

classification system of [20], weights of up to 30 window
positions were averaged. In our SC system, we do not have
a sliding window with heavy overlap between subsequent
positions.We decided to use the weights of the exemplars
that approximate individual frames to derive the state pos-
terior probability estimates. In doing so, we simply added
theweights of all exemplars corresponding to a given state.
The average number of non-zero elements in the activa-
tion vector varied between 15.1 for clean speech and 6.5
at −5-dB SNR. Therefore, we may face overly sparse and
potentially somewhat noisy state probability estimates.
This is illustrated in Figure 7a for the digit sequence ‘3 6 7’
in the 5-dB SNR condition. The traces of state probability
estimates are not continuous (do not traverse all 16 states
of a word) and they include activations of other states,
some of which are acoustically similar to the states that
correspond to the digit sequence.

2.6 Recognition based on combinations of individual
modulation bands

Substantial previous research has investigated the possi-
bility to combat additive noise by fusing the outputs of a

Figure 6 Normalization of the modulation filter outputs. Upper left: standard deviation of all 135 elements in the speech exemplars. Upper
right: standard deviation in the gammatone filters averaged over all nine modulation filters. Lower panel: standard deviation of all 135 elements in
the speech exemplars after normalization.
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Figure 7 State probability traces for the digit sequence ‘3 6 7’ at
5-dB SNR. (a) Traces obtained by using the activation weights of the
full modulation spectrum exemplars only. The Viterbi decoder returns
the incorrect sequence ‘3 3 7’. (b) Traces obtained from fusing the
probability estimates obtained with the full modulation spectrum
and the probability estimates obtained from nine modulation bands
(weights obtained with a genetic algorithm). The Viterbi decoder now
returns the correct sequence ‘3 6 7’.

number of parallel recognizers, each operating on a sepa-
rate frequency band (cf., [32] for a comprehensive review).
The general idea underlying this approach is that additive
noise will only affect some frequency bands so that other
bands should suffer less. The same idea has also been pro-
posed for different modulation bands [33]. In this paper
we also explore the possibility that additive noise does not
affect all modulation bands to the same extent. Therefore,
we will compare recognition accuracies obtained when
estimating state likelihoods using a single set of exem-
plars represented by 135-D feature vectors and the fusion
of the state likelihoods estimated from the 135-D sys-
tem and nine sets of exemplars (one for each modulation
band) represented as 15-D feature vectors (for the 15 gam-
matone filters). The optimal weights for the nine sets of
estimates will be obtained using a genetic algorithm with

a small set of held-out training utterances. Also, combin-
ing state posterior probability estimates from ten decoders
might help to make the resulting probability vectors less
sparse.

2.7 State posteriors estimated bymeans of anMLP
In order to tease apart the contributions of the modu-
lation frequency features and the sparse coding, we also
conducted experiments in which we used a MLP for esti-
mating the posterior probabilities of the 179 states in the
AURORA-2 task. For this purpose we trained a number
of networks by means of the QuickNet software pack-
age [34]. We trained networks on clean data only, as well
as on the full set of utterances in the multi-condition
training set. Analogously to [35], we used 90% of the train-
ing set, i.e. 7,596 utterances for training the MLP and
the remaining 844 utterances for the cross-validation. To
enable a fair comparison, we trained two networks, both
operating on single frames. The first network used frames
consisting of 135 features; the second network used ‘static’
modulation frequency features extended with delta and
delta-delta features estimated over a time interval of 90
ms, making for 405 input features. The delta and delta-
delta features were obtained by fitting a linear regression
on the sequence of feature values that span the 90-ms
intervals. Actually, the 90-ms interval corresponds to the
time interval covered by the perceptual linear prediction
(PLP) features used in [35]. There too, the static PLP
features were extended by delta and delta-delta features,
making for 9 × 39 = 351 input nodes.

3 Results
The recognition accuracies obtained with the 135-Dmod-
ulation spectrum features are presented in the top part of
Tables 1 and 2 for the SC-based system. The second and
third rows of Table 2 show the results for the MLP-based
system. Both tables also contain results obtained previ-
ously with conventional Mel-spectrum or PLP features.
Note that the results in Table 1 pertain to a single-noise
condition of test set A (subway noise), while Table 2
shows the accuracies averaged over all four noise types
in test set A. In experimenting with the AURORA-2 task,
it is a pervasive finding that the results depend strongly
on the word insertion penalty (WIP) that is used in the
Viterbi back end. A WIP that yields the lowest WER in
the clean condition invariably gives a very high WER in
the noisiest conditions. In this paper we set aside a small
development set, on which we searched the WIP that
gave the best results in the conditions with SNR ≤ 5 dB;
in these conditions the best performance was obtained
with the same WIP value. Inevitably, this means that we
will end up with relatively bad results in the cleanest
conditions. Unfortunately, there is no generally accepted
strategy for selecting the ‘optimal’ WIP. Since different
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Table 1 Accuracy for five systems on noise type 1 (subway noise) of test set A

Clean 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Sys1 90.51 91.00 89.53 87.69 83.76 76.76 65.31
(single frame)

Sys2
(single frame) 89.19 89.62 87.57 83.54 76.51 62.57 36.91

(LDA transformed)

Sys3
(29 frames) 87.50 88.70 87.41 85.42 77.62 59.41 27.85

(LDA transformed)

Sys4 89.71 90.57 89.28 87.41 84.13 77.71 63.83
(9 bands - GA)

Sparse coding [24] 93.12 90.18 87.22 82.62 72.64 56.31 34.57
5-frame exemplars

Sparse coding [24] 93.21 91.86 91.53 89.62 87.47 80.01 61.61
30-frame exemplars

Sys1, 135-D vectors; Sys2, LDA-transformed 135-D vectors of Sys1; Sys3, LDA-transformed 29× 135-D vectors of 29 consecutive frames; Sys4, Sys1 plus nine
recognizers operating on 15-D vectors, weights obtained from a genetic algorithm. Recognition results for noise type 1 using the sparse coding approach [20,24]
using 5 and 30 frame windows are included for comparison in the bottom part.

authors make different (and not always explicit) decisions,
detailed comparisons with results reported in the litera-
ture are difficult. For this paper this is less of an issue, since
we are not aiming at outperforming previously published
results.

3.1 Analysing the features
To better understand the modulation spectrum features,
we carried out a clustering analysis on the exemplars in
the dictionary, using k-means clustering. We created 512
clusters using the scikit-learn software package [36]. We
then analysed the way in which clusters correspond to
states. The results of the analysis of the raw features are
shown in Figure 8a. The horizontal axis in the figure
corresponds to the 179 states, and the vertical axis to clus-
ter numbers. The figure shows the association between

clusters and states. It can be seen that the exemplar
clusters do associate to states, but there is a substantial
amount of ‘confusions’. Figure 8b shows the result of the
same clustering of the exemplars after applying an LDA
transform to the exemplars, keeping all 135 dimensions.
It can be seen that the LDA-transformed exemplars result
in clusters that are substantially purer. Figure 8c shows
the results of the same clustering on the 135-D features
obtained from the LDA transform of sequences of 29 sub-
sequent frames. Now, the cluster purity has increased
further.
Although cluster purity does not guarantee high recog-

nition performance, from Tables 1 and 2 it can be seen
that the modulation spectrum features appear to capture
substantial information that can be exploited by two very
different classifiers.

Table 2 Accuracies averaged over all noise types in test set A

Clean 20 dB 15 dB 10 dB 5 dB 0 dB −5 dB

Modulation features sparse coding 90.62 90.87 89.90 88.17 84.46 76.83 59.65
1-frame exemplar (Sys1)

Modulation features MLP 135 96.93 96.66 95.84 94.07 87.14 68.05 35.46
input nodes multi-condition

Modulation features + � + �� 97.71 97.36 96.74 95.08 89.79 70.58 34.55
MLP 405 input nodes
multi-condition

PLP + � and ��MLP 351 input 99.08 98.89 98.45 96.89 91.80 72.80 35.67
nodes [35] multi-condition

Mel features sparse coding [24] 93.43 90.94 89.06 84.57 75.91 58.20 32.57
5-frame exemplars

Mel features sparse coding [24] 93.68 92.53 92.02 90.78 88.01 78.93 57.11
30-frame exemplars

Accuracies (averaged over all noise types in test set A) obtained with Sys1 (SC system operating on 135-D modulation spectrum features), MLP classifiers (on same
features without and with �s and ��s), MLP classifier on PLP features with �s and ��s [35], SC classifier on Mel spectra [24] using 5- and 30-frame windows,
respectively.
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Figure 8 Clustering results. (a) Single-frame raw features. (b) Single-frame LDA-transformed features. (c) The 29-frame LDA-transformed features.

3.2 Results obtainedwith the SC system
Table 1 summarizes the recognition accuracies obtained
with six different systems, all of which used the SC
approach to estimate state posterior probabilities. Four
of these systems use the newly proposed modulation

spectrum features, while the remaining two describe
the results using Mel-spectrum features as obtained in
research done by Gemmeke [24].
From the first three rows of Table 1, it can be seen

that estimating state posterior probabilities from a single
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frame of a modulation spectrum analysis by converting
the exemplar weights obtained with the sparse classifica-
tion system already yields quite promising results. Indeed,
from a comparison with the results obtained with the orig-
inal SC system using five-frame stacks in [24], it appears
that the modulation spectrum features outperform stacks
of five Mel-spectrum features in all but one condition.
The conspicuous exception is the clean condition, where
the performance of Sys1 is somewhat disappointing. Our
Sys1 performs worse than the system in [24] that used
30-frame exemplars. From the first and second rows, it
can be inferred that transforming the features such that
the discrimination between the 179 states is optimized
is harmful for all conditions. Apparently, the transform
learned on the basis of 17.148 exemplars does not gen-
eralize sufficiently to the bulk of the feature frames. In
section 4 we will propose an alternative perspective that
puts part of the blame on the interaction between LDA
and SC.

3.2.1 The representationof the temporal dynamics
In [20,24] the recognition performance in AURORA-2
was compared for exemplar lengths of 5, 10, 20, 30 frames.
For clean speech, the optimal exemplar length was around
ten frames and the performance dropped for longer
exemplars; at SNR = −5 dB, increasing exemplar length
kept improving the recognition performance and the opti-
mal length found was the longest that was tried (i.e. 30).
Longer windows correspond with capturing the effects
of lower modulation frequencies. The trade-off between
clean and very noisy signals suggests that emphasizing
long-term continuity helps in reducing the effect of noises
that are not characterized by continuity, but using 300-ms
exemplars may not be optimal for covering shorter-term
variation in the digits. From the two bottom rows in
Table 1, it can be seen that going from 5-frame stacks to
30-frame stacks improved the performance for the nois-
iest conditions very substantially. From the second and
third rows in that table, it appears that the performance
gain in our system that used 29-frame features (covering
72.5 ms) is nowhere near as large. However, due to the
problems with the generalizability of the LDA transform
that we already encountered in Sys2, it is not yet possible
to draw conclusions from this finding.
A potentially important side effect of using exemplars

consisting of 30 subsequent frames in [20,24] was that the
conversion of state activations to state posterior proba-
bilities involved averaging over 30 frame positions. This
diminishes the risk that a ‘true’ state is not activated at
all. Our system approximates a feature frame as just one
sum of exemplars. If an exemplar of a ‘wrong’ state hap-
pens to match best with the feature frame, the Lasso
procedure may fill the gap between that exemplar and the
feature frame with completely unrelated exemplars. This

can cause gaps in the traces in the state probability lat-
tice that represent the digits. This effect is illustrated in
Figure 7a, which shows the state activations over time of
the digit sequence ‘3 6 7’ at 5-dB SNR for the state proba-
bilities in Sys1. The initial fricative consonants /θ/ and /s/
and the vowels /i/ and /I/ in the digits ‘3’ and ‘6’ are acous-
tically very similar. For the second digit in the utterance,
this results in somewhat grainy, discontinuous, and largely
parallel traces in the probability lattice for the digits ‘3’
and ‘6’. Both traces more or less traverse the sequence
of all 16 required states. The best path according to the
Viterbi decoder corresponds to the sequence ‘3 3 7’, which
is obviously incorrect.

3.2.2 Results based on fusing ninemodulation bands
In Sys1, Sys2, and Sys3, we capitalize on the assump-
tion that the sparse classification procedure can harness
the differences between speech and noise in the modu-
lation spectra without being given any specific informa-
tion. In [32] it was shown that it is beneficial to ‘help’
a speech recognition system in handling additive noise
by fusing the results of independent recognition oper-
ations on non-overlapping parts of the spectrum. The
success of the multi-band approach is founded in the
finding that additive noise does not affect all parts of
the spectrum equally severely. Recognition on sub-bands
can profit from superior results in sub-bands that are
only marginally affected by the noise. Using modula-
tion spectrum features, we aim to exploit the different
temporal characteristics of speech and noise, which are
expected to have different effects in different modulation
bands. Therefore, we conducted an experiment to inves-
tigate whether combining the output of nine independent
recognizers, each operating on a different modulation fre-
quency band, will improve recognition accuracy. In each
modulation frequency band, we have the output of all
15 gammatone filters; therefore, each modulation band
‘hears’ the full 4-kHz spectrum. The experiment was con-
ducted using the part of test set A that is corrupted by
subway noise.
In our experiments we opted for fusion at the state

posterior probability level: We constructed a single-state
probability lattice for each utterance by means of a
weighted sum of the state posteriors obtained from the
individual SC systems. In all cases we fused the probability
estimates of Sys1, which operates with 135-D exemplars
with nine sets of state posteriors from SC classifiers that
each operate on 15-D exemplars. Sys1 was always given
a weight equal to 1. The weights for the nine modulation
band classifiers were obtained using a genetic algorithm
that optimized the weights on a small development set.
The weights and WIP that yielded the best results in the
SNR conditions≤5 dB were applied to all SNR conditions.
The set of weights is shown in Table 3.
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Table 3 Weights obtained for combining the 15 gammatone filterbands in themulti-streamanalysis

Fc (Hz) 0 2 3 4 5 6 8 10 16

GA −0.0172 −0.0921 0.0001 −0.0103 −0.223 −0.0336 −0.0072 −0.0625 0.201

GA, weights obtained with a genetic algorithm.

From row 4 (Sys4) in Table 1, it can be seen that fus-
ing the state likelihood estimates from the nine individual
modulation filters with the state likelihoods from the full
modulation spectrum deteriorates the recognition accu-
racy for all but two SNRs. From Table 3 it appears that
the Genetic Algorithm returns very small weights for all
nine modulation bands. This strongly suggests that the
individual modulation bands are not able to highlight spe-
cific information that is less easily seen in the complete
modulation spectrum.
A potentially very important concomitant advantage of

fusing the probability estimates from the 135-D system
and the nine 15-D systems is that the fusion process may
make the probability vectors less sparse, thereby reduc-
ing the risk that wrong states are being promoted. This
is illustrated in Figure 7b, where it can be seen that the
state probability traces obtained from the fusion of the full
135-D system and the weighted sub-band systems suffer
less from competing ‘ghost traces’ of acoustically simi-
lar competitors that traverse all 16 states of the wrong
digit: Due to the lack of consensus between the multi-
ple classifiers, the trace for the wrong digit ‘3’, which is
clearly visible in Figure 7a, has become less clear and
more ‘cloud-like’ in Figure 7b. As a consequence, the digit
string is now recognized correctly as ‘3 6 7’. However,
from the results in Table 1, it is clear that on average
the impact of making the probability vectors less sparse
by means of fusing modulation frequency sub-bands is
negligible.

3.3 Results obtainedwith MLPs
We trained four MLP systems for computing state poste-
rior probabilities on the basis of the modulation spectrum
features, two using only clean speech and two using the
multi-condition training data. We increased the number
of hidden nodes, starting with 200 hidden nodes up to
1,500 nodes. In all cases the eventual recognition accuracy
kept increasing, although the rate of increase dropped
substantially. Additional experiments showed that further
increasing the number of hidden nodes no longer yields
improved recognition results. For each number of hid-
den nodes, we also searched for the WIP that would
provide optimal results for the cross-validation set (cf.
section 2.7). We found that the optimal accuracy in the
different SNR conditions was obtained for quite different
values of the WIP. Training on multi-condition data had
a slight negative effect on the recognition accuracy in the
clean condition, compared to training on clean data only.

However, as could be expected, theMLPs trained on clean
data did not generalize to noisy data.
Table 2 shows the results obtained with SC systems

operating on modulation spectrum and Mel-spectrum
features and the MLP-based systems trained with multi-
condition data. It can be seen that adding � and ��

features to the ‘static’ modulation spectrum features
increases performance somewhat, but by no means to the
extent that adding � and �� features improves perfor-
mance with Mel-spectrum or PLP features [12,13].
The two systems that used modulation spectrum fea-

tures performmuch worse on clean speech than theMLP-
based system that used nine adjacent 10-ms PLP+�+��

features [37]. This suggests that the modulation spectrum
features fail to capture part of the dynamic information
that is represented by the speed and acceleration features
derived from PLPs. Interestingly, that information is not
restored by adding the regression coefficients obtained
with stacks of modulation frequency features. In the nois-
ier conditions, the networks trained with modulation fre-
quency features derived from themulti-condition training
data approximate the performance of the stacks of nine
extended PLP features.

4 Discussion
In this paper we introduced a basic implementation of a
noise-robust ASR system that uses the modulation spec-
trum, instead of the short-time spectrum to represent
noisy speech signals, and sparse classification to derive
state probability estimates from time samples of the mod-
ulation spectrum. Our approach differs from previous
attempts to deploy sparse classification for noise-robust
ASR. The first difference is the use of the modulation
spectrum and the second is that the exemplars in our
system are constituted by individual frames, rather than
by (long) sequences of adjacent frames in [20,24], which
needed such sequences to effectively cover essential infor-
mation about continuity over time that comes for free in
the modulation spectrum, where individual frames cap-
ture information about the dynamic changes in the short-
time spectrum. Our unadorned implementation yielded
recognition accuracies that are slightly below the best
results in [20,24], but especially the fact that our system
yielded higher accuracies in the −5-dB SNR condition
than their systems with exemplars with a length of 50 ms
corroborates our belief that we are on a promising track
towards a novel approach to noise-robust ASR. Although
all results are based on a combination of feature extraction
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and posterior state probability estimation, we will discuss
the features and the estimators separately - to the extent
possible.

4.1 The features
In designing the modulation spectrum analysis system, a
number of decisions had to be made about implemen-
tation details. Although we are confident that all our
decisions were reasonable (and supported by data from
the literature), we cannot claim that they were optimal.
Most data in the literature on modulation spectra are
based on perception experiments with human subjects,
but more often than not these experiments use auditory
stimuli that are very different from speech. While the
results of those experiments surely provide guidance for
ASR, it may well be that the automatic processing aimed
at extracting the discriminative information is so differ-
ent from what humans do that some of our decisions
are sub-optimal. Our gammatone filterbank contains 15
one-third octave filters, which have a higher resolution in
the frequencies <500 Hz than the Mel filterbank that is
used in most ASR systems. However, initial experiments
in which we compared our one-third octave filterbank
with a filterbank consisting of 23 Mel-spaced gammatone
filters, spanning the frequency range of 64 to 3,340 Hz
did not show a significant advantage of the latter over
the former. From the speech technology’s point of view,
this may seem surprising because the narrow-band filters
of the one-third octave filterbank in the low frequen-
cies may cause interactions with fundamental frequency,
while the relatively broad filters in the higher frequencies
cannot resolve formants. But from an auditory system’s
point of view, there is no such surprise, since one-third
octave filters are compatible with most, if not all, out-
comes of psycho-acoustic experiments. This is also true
for experiments that focused on speech intelligibility [1].
For the modulation filterbank, it also holds that the

design is partly based on the results of perception experi-
ments [19]. Ourmodulation frequency analyser contained
filters with centre frequencies ranging from 0 to 16 Hz.
From [30] it appears that the modulation frequency range
of interest for ASR is limited to the 2- to 16-Hz region.
Therefore, here too we must ask whether our design is
optimal for ASR. It might be that the spacing of the
modulation filters in the frequency band that is most
important for human speech intelligibility is not optimal
for automatic processing. However, as with the gamma-
tone filters, it is not evident why a different spacing should
be preferred. It might be necessary to treat modulation
frequencies≤1 Hz, which are more likely to correspond to
the characteristics of the transmission channel, different
than modulation frequencies that might be related to
articulation. One might think that the very low modula-
tion frequencies would best be discarded completely in

the AURORA-2 task, where transmission channel char-
acteristics do not play a role. However, experiments in
which we did just that yielded substantially worse results.
Arguably, the lowest modulation frequencies help in dis-
tinguishing time intervals that contain speech from time
intervals that contain only silence or background noise.
We decided to not include modulation filters with centre
frequencies >16 Hz. This implies that we ignore almost
all information related to the periodicity that character-
izes many speech sounds. However, it is well known that
the presence of periodicity is a powerful indicator of the
presence of speech in noisy signals and also, in case the
background noise consists of speech from one or more
interfering speakers, a powerful means to separate the tar-
get speech from the background speech. In future experi-
ments we will investigate the possibility of adding explicit
information about the harmonicity of the signals to the
feature set.
The experiments with the MLP classifiers for obtaining

state posterior probabilities from the modulation spec-
trum features confirm that the modulation spectrum fea-
tures capture most of the information that is relevant for
speech decoding. Still, the WERs obtained with the MLPs
were always inferior to the results obtained with stacks of
nine conventional PLP features that include � and ��

features, especially in the cleanest SNR conditions.
Although the modulation spectrum features are perform-
ing quite well in noisy conditions, in cleaner conditions
their performance is worse than the classical PLP features.
Adding �s and ��s, computed as linear regressions over
90ms windows, to themodulation spectrum features does
not improve performance nearly as much as adding speed
and acceleration to MFCC or PLP features. This suggests
that our modulation spectrum features are suboptimal
with respect to describing the medium-term dynamics
of the speech signal. The time windows associated with
the modulation frequency filters with the lowest cen-
tre frequencies is larger than 500 ms. As a consequence,
time derivatives computed over a window of 90 ms for
these slowly varying filter outputs is not likely to carry
much additional information. We suspect that the fea-
tures in the lowest modulation bands play too heavy a
role. If we want to optimally exploit the redundancy in
the different modulation frequency channels when part of
them gets obscured by noise, information about relevant
speech events (such as word or syllable onsets and off-
sets) should ideally be represented equally well by their
temporal dynamics in all channels.
Perhaps the most striking difference between the audi-

tory model used in this paper and the model proposed
in [38] is the absence of the adaptation/compression
network between the gammatone filters and the modula-
tion frequency filters. Preliminary experiments in which
we applied tenth root compression to the output of
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the modulation filters (rather than the gammatone fil-
ters) already showed a substantial beneficial effect. The
additional high-pass filtering that is performed in the
compression/adaptation network (which should only be
applied to the output of the gammatone filters) is expected
to have a further beneficial effect in that it implements the
medium-term dynamics that we seem to be missing at the
moment. Including the adaptation stage is also expected
to enhance the different dynamic characteristics of speech
and many noise types in the modulation frequency bands.
If this expectation holds, the absence of a proper adapta-
tion network might explain the failure of the nine band
fusion system.

4.2 The classifiers
Visual inspection of traces of state activations as a func-
tion of time obtained with the SC system suggested that
the similarity between adjacent feature vectors was much
higher than the similarity between adjacent state activa-
tion vectors. Figure 9 shows scatter plots of the relation
between the similarity between adjacent feature vectors
and the corresponding state probability vectors. It can
be seen that the Pearson correlation coefficient between
adjacent feature frames is very high, which is what one

would expect, given the high sampling rate. It is also evi-
dent, and expected, that the variance increases as the SNR
decreases. However, the behaviour of the state probabil-
ity vectors is quite different. While for part of the adjacent
vectors it holds that they are very similar (the pairs with
a similarity close to one, represented by the points in the
upper right-hand corner of the panels), it can be seen that
there is a substantial proportion of adjacent state probabil-
ity vectors that are almost orthogonal. We believe that this
discrepancy is related to the difference between sparse
coding (reconstruction of an observed modulation spec-
trum in terms of a linear combination of exemplars), what
it is that the Lasso solver does, and sparse classification
(estimating the probability of the HMM state underly-
ing the observed modulation spectrum), which is our
final goal. The frames that represent an unknown (noisy)
speech signals are all decoded individually; for each frame
the Lasso procedure starts from scratch. If occasionally
a speech atom related to a wrong state or an atom from
the noise dictionary happens to match best with an input
frame, this can have a very large impact on the resulting
state activation vector. Lasso can turn a close similarity
between an input frame and exemplars related to the true
state at the feature level into a close-to-zero probability
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Figure 9 Relationship between the similarity between adjacent time frames and the corresponding adjacent state activation vectors.
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of the ‘correct’ state in the probability vector because an
exemplar related to another state (or noise) happened to
match slightly better.
The substantial deterioration of the recognition perfor-

mance with LDA-transformed features came as a surprise,
not in the last place because we have seen that cluster
purity increases after LDA transform. The fact that we see
a negative effect of the transform already for clean speech
suggests that the transformation matrix learned from the
exemplar dictionary does not generalize well to the con-
tinuous speech data. While the correlation between the
raw features in adjacent frames was very close to one in the
raw features, the average Pearson correlation coefficient
between adjacent frames dropped to about 0.75 after the
LDA transform. The LDA transformation maximizes the
differences among the 179 states, regardless of whether
states are actually very similar or not. Distinguishing adja-
cent states in the digit word ‘oh’ is equally important as
distinguishing the eighth state of oh from the first state
of ‘seven’. Exaggerating the differences between adjacent
frames, because these may relate to different states, is
likely to aggravate the risk that Lasso returns high activa-
tions for a wrong state because an exemplar assigned to
that state happens to fit the frame under analysis best. In
addition, the LDA transform affects the relations between
the distributions of the features. Because we believe that
the feature normalization applied to the raw modula-
tion spectrum features yielded the best performance since
it conforms with the mathematics in Lasso, we applied
the same normalization to the LDA-transformed features.
We did not (yet) check whether a different normaliza-
tion could improve the results. The comparison between
the single-frame LDA-transformed and 29-frame features
that are reduced to 135-D features by means of an LDA-
transform shows that adding a more explicit representa-
tion of the time context only improves the recognition
accuracy in the 10- and 5-dB SNR conditions; in all other
conditions, the results obtained with single-frame fea-
tures are better. We believe that this finding is related
to the difficulty of representing medium-term speech
dynamics in the present form of the modulation spectrum
features.
We experimented with LDA in order to be able to

explicitly include additional information about temporal
dynamics. In the present implementation, with its 400-Hz
frame rate, a stack of 29 adjacent frames covers a time
interval of 72.5 ms, resulting in 3,915-D feature vectors.
However, the 400-Hz frame rate does not seem to be nec-
essary. Preliminary experiments with low-pass filtering
the Hilbert envelopes of the outputs of the gammatone fil-
ters with a cut-off frequency of 50 Hz and a frame rate of
100 Hz yielded equal WER results. This opens the possi-
bility of covering time spans of about 70 ms by concate-
nating only nine frames. However, an experiment in which

we decoded the clean speech with exemplars consisting
of nine subsequent 10-ms frames did not yield accuracies
better than what we had obtained with single-frame fea-
tures. This corroborates our belief that the medium-term
dynamics is not sufficiently captured by our modulation
spectrum features.
The success of the MLP classifiers that is apparent from

Table 2 shows that sparse classification is not the only way
for estimating state posterior probabilities from modula-
tion spectrum features. In fact, the MLP classifier yielded
consistently better results than the SC classifier in the SNR
conditions covered by the training data. However, in the
0- and −5-dB SNR conditions, which are not present in
the multi-condition training, the SC classifier yielded bet-
ter performance. This raises the question whether it is
possible to add supervised learning to the design of an
SC-based system without sacrificing its superior general-
ization to unseen conditions.
In [20] and [24] it is mentioned that they failed to

improve the performance of their sparse coding systems
by machine learning techniques in the construction of the
exemplar dictionaries. However, the cause of the failure
was not explained. It may well be that the situation with
single-frame modulation spectrum exemplars is different
from 30-frame Mel-spectrum exemplars so that clever
dictionary learning might be beneficial. We have started
experiments with fast dictionary learning along the lines
set out in [39]. Our first results suggest that there are two
quite different issues that must be tackled. The first issue
relates to the cost function used in creating the optimal
exemplars. Conventional approaches to dictionary learn-
ing use the difference between unknown frames and their
approximation as a weighted sum of exemplars as the cri-
terion to minimize. While this criterion is obviously valid
in sparse coding applications, it is not the criterion of
choice in sparse classification. In the latter application, the
exemplars carry information about the states (the classes)
that they represent, and this information should enter into
the cost function, for example, in the form of the require-
ment that individual exemplars are promoted for frames
that do correspond to a certain state (or set of acoustically
similar states).
The second issue is that the mapping from state activa-

tions returned by some solver to state posterior probabil-
ities is less straightforward than was implemented in [20]
and [24] and in this paper. There is a need for includ-
ing some learning mechanisms that can find the optimal
mapping from a complete set of state activations to a set
of state posteriors. It is quite possible that there will be
interactions between enhanced dictionary learning and
learning the mapping from activations to probabilities.
The challenge here is to find strategies that do not fall
into the trap that we have seen in our experiments with
MLPs, viz., that the eventual performance increases in
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the conditions for which training material was available
but at the cost of a diminished generalization to unseen
conditions.
An issue that surely needs further investigation in the

construction of the dictionary is the selection of the noise
exemplars. So far, noise exemplars were extracted quasi-
randomly from the four noise types that were used in
creating the multi-condition training set in AURORA-2.
It is quite likely that the collection of noise exemplars
is much more compactly distributed in the feature space
than the speech exemplars because the variation in the
noise signals is less than in the speech signals. The gen-
eralization to other noise types can be improved by sam-
pling the exemplars from a wider range of noises, for
example all noise types that are available in the NOISEX
CD-ROM [40]. However, we think that the most impor-
tant issue in the construction of the noise exemplar dic-
tionary is the need for avoiding overlap between noise and
speech exemplars. In the Lasso procedure, it is difficult - if
not impossible - to enforce a preference for speech atoms
over noise atoms. If a noise exemplar that is very sim-
ilar to a speech exemplar happens to fit best, this may
give rise to suppressing relevant speech information. It
might be beneficial to not simply discard all noise exem-
plars activations but rather to include these, along with
the activations of the speech exemplars, in a procedure
that learns the mapping from activations to state posteri-
ors that optimizes recognition performance. An approach
in which all activations are used in estimating the even-
tual posterior probabilities would be especially important
in cases where noise and speech are difficult to distinguish
in terms of spectro-temporal properties, such as in bab-
ble noise or if the ‘noise’ consists of competing speakers.
These cases will surely require additional processing, for
example, aimed at tracking continuity in pitch, in addition
to continuity in the modulation spectrum.

5 Conclusions
In this paper we presented a novel noise-robust ASR sys-
tem that uses the modulation spectrum in combination
with a sparse coding approach for estimating state prob-
abilities. Importantly, in its present implementation, the
system does not involve any form of learning/training.
The best recognition accuracies obtained with the novel
system are slightly below the results that have been
obtained with conventional engineering systems.We have
also sketched several research lines that hold the promise
of improving the results and, at the same time, to advance
our knowledge of those aspects of the human auditory
system that are most important for ASR. We have shown
that the output of a modulation spectrum analyser that
does not involve any form of conversion to the equivalent
of a short-time power spectrogram is able to exploit the
spectro-temporal continuity constraints that are typical

for speech and which are a prerequisite for noise robust
ASR. However, we also found that the representation of
medium-term dynamics in the output of the modulation
spectrum analyser must be improved. With respect to the
sparse coding approach to estimate state posterior prob-
abilities, we have found that there is a fundamental dis-
tinction between sparse coding, where the task is to find
the optimal representation of an unknown observation in
a very large dimensional space, and sparse classification,
where the task is to obtain the best possible estimates
of the posterior probability that an unknown observation
belongs to a specific class. In this context one challenge for
future research is developing a procedure for dictionary
learning that uses state posterior probabilities, in addition
to or rather than reconstruction error, as the cost function.
The second challenge is finding a procedure for learn-
ing a mapping from state activations to state posterior
probabilities that provides the same excellent generaliza-
tion to unseen conditions that has been found with sparse
coding.

Endnote
aThe software used for implementing the modulation

frequency analyser was adapted fromMatlab code that
was kindly provided by Søren Jørgensen [41]. Some
choices that are somewhat unusual in speech technology,
such as the 400-Hz frame rate, were kept.
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