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Abstract

Music identification via audio fingerprinting has been an active research field in recent years. In the real-world
environment, music queries are often deformed by various interferences which typically include signal distortions and
time-frequency misalignments caused by time stretching, pitch shifting, etc. Therefore, robustness plays a crucial role
in music identification technique. In this paper, we propose to use scale invariant feature transform (SIFT) local
descriptors computed from a spectrogram image as sub-fingerprints for music identification. Experiments show that
these sub-fingerprints exhibit strong robustness against serious time stretching and pitch shifting simultaneously. In
addition, a locality sensitive hashing (LSH)-based nearest sub-fingerprint retrieval method and a matching
determination mechanism are applied for robust sub-fingerprint matching, which makes the identification efficient
and precise. Finally, as an auxiliary function, we demonstrate that by comparing the time-frequency locations of
corresponding SIFT keypoints, the factor of time stretching and pitch shifting that music queries might have
experienced can be accurately estimated.

1 Introduction
With the proliferation of a huge amount of digital music,
online listening, downloading, and searching have become
very popular applications among end users of the Internet
in the past decade. Among the applications, music iden-
tification that is capable of recognizing unknown music
segments has attracted much attention from both the
research community and the industry. Music identifica-
tion technique relies on an audio fingerprint which is
defined as a unique and compact digest characterizing and
summarizing the perceptually relevant audio content. Dif-
ferent methods have been proposed to construct a valid
fingerprint, exploiting the properties of music characteris-
tics as in [1-3] or applying computer vision techniques on
the spectrogram of music signals as in [4,5]. Audio finger-
print is used in the music identification typically following
the framework described in [6]. First, the algorithm calcu-
lates fingerprints of the original music signals and stores
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them together with affiliated metadata into a fingerprint
database; then, when presented with an unlabeled and
probably distortedmusic segment, it extracts a fingerprint
from the query audio and compares it with those in the
database. If a match is found for the query fingerprint, the
unlabeled music segment is identified and the associated
metadata such as information concerning singers, album,
lyrics, and the like is returned.
The fingerprint for music identification should be

highly discriminative over a large number of distinct fin-
gerprints, compact for ease of storing and comparing,
scalable to a large database of music records or a large
number of concurrent identifications, and robust against
a range of environmental distortions and transmission
interferences. Among the above properties, robustness
plays a central role. In the real world, a person might
be interested to know the lyrics or singer of a song
played in a noisy environment, then she/he records a
short piece of music using a mobile phone and sends it
to a remote server for identification through fingerprint
matching. In this circumstance, to achieve a success-
ful matching, the extracted fingerprint must be robust
against serious distortions caused by, for example, poor
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speakers, cheap microphones, background noise, echo,
and wireless telecommunication. Moreover, many musi-
cal recordings played by TVs or radio broadcasts are
often played at arbitrarily different speeds with the pitch
changed or unchanged to comply with strict program
schedule constraints, which constitutes the most chal-
lenging problem in the context of music identification.
Specifically, such time-frequency distortions can be mod-
eled by time scaling (or linear speed change) which mod-
ifies both duration (or speed) and pitch of music signals
by resampling, time stretching (or time scale modifica-
tion (TSM)) which changes only the duration using cer-
tain algorithms, and pitch shifting which merely causes
the change of pitch. Roughly speaking, time scaling can
be approximately deemed as the combination of time
stretching and pitch shifting. Compared with other signal
degradations which only influence the perceptual quality,
time stretching/scaling and pitch shifting usually lead to a
more significant drop of identification performance since
they bring about desynchronization problems in the time
and/or frequency domains.
In this paper, we extend our previous work of [7] and

propose a novel music identification algorithm that is
highly robust to not only common audio signal distortions
but also serious time- and frequency-domain synchro-
nization warping simultaneously. The basic idea of our
algorithm follows the line of applying computer vision
techniques for music identification as did in [4] and [5].
Specifically, we first convert a music signal into a two-
dimensional spectrogram image, then a powerful local
descriptor, i.e., scale invariant feature transform (SIFT), is
computed from the image to construct a sub-fingerprint.
Thanks to the stability of the SIFT feature, the pro-
posed algorithm exhibits a high discrimination and strong
robustness. To our knowledge, this is the first algorithm
that can simultaneously resist the abovementioned three
challenging distortions, namely time scaling, time stretch-
ing, and pitch shifting. Moreover, introducing the SIFT
feature into the spectrogram image brings an auxiliary
contribution to this paper, i.e., a novel method of estimat-
ing the factor-of-time stretching and pitch shifting, which
provides further information on how the query music has
been wrapped in time and frequency. To make the iden-
tification efficient and precise, a locality sensitive hashing
(LSH)-based nearest sub-fingerprint retrieval method and
a matching determination mechanism are also integrated
into this algorithm.
The remainder of the paper is organized as follows.

Section 2 summarizes related works. Section 3 describes
the processes of spectrogram image construction and
robust audio fingerprint extraction. Section 4 details the
LSH-based nearest sub-fingerprint retrieval method and
the matching determination mechanism for robust sub-
fingerprint matching. Section 5 introduces the principle

of factor estimation of time stretching and pitch shift-
ing. Finally, robustness and identification experiments are
shown in Section 6 and the whole paper is concluded in
Section 7.

2 Related work
Recently, a variety of audio fingerprinting algorithms have
been proposed in the literature, each with a different
degree of robustness. Most of them generate audio finger-
prints from spectral features and obtain enough robust-
ness against common audio signal deformations such as
audio coding and noise addition and equalization. How-
ever, only few methods exhibit a certain capability of
resisting time stretching/scaling and pitch shifting, as
summarized below. Philips robust hash (PRH) [8] is one
of the most significant methods and is usually deemed
as a milestone. By segmenting audio signals into heavily
overlapped (31/32) frames and extracting a 32-bit sub-
fingerprint from 33 Bark-scale frequency sub-bands of
each frame according to the energy differences between
sub-bands, PRH exhibits a certain robustness when audio
lengths are stretched from−4% to +4%a on a small dataset
consisting of only four music excerpts. Unfortunately, the
basic idea of this algorithm makes it susceptible to even
a small amount (e.g., ±1%) of frequency misalignment
caused by speed change, with significantly dropped per-
formance. To overcome the pitch-sensitive problem, the
Philips authors commented that two simple methods can
be utilized. One is to store the original audio and its pitch-
shifted versions into the database, and the other attempts
to use multiple pitch-shifted queries for each audio clip to
be identified. However, the exhaustive nature makes both
methods inefficient. Namely, the first needsmorememory
space, and the second aggravates the retrieval complex-
ity since it needs to exhaustively search within a set of
possible scaling parameters.
To enhance the speed-change robustness of PRH, sev-

eral extensions of this method have been developed. In
[9], the Philips authors modified their original algorithm
and achieved ±6% tolerance of speed change by exploit-
ing shift invariance of the auto-correlation function of a
densely sampled power spectrum, which logarithmically
portions the energy from 300 to 2,000 Hz into 512 instead
of the original 33 sub-bands. Seo et al. [10] extracted
fingerprints from the phase components of the Fourier-
Mellin transform of locally normalized audio spectrum. In
a rather small testing dataset with only four different orig-
inal excerpts, scale invariance of the transform renders the
fingerprints robust against pitch shifting caused by speed
changes up to ±10%, and local normalization ensures the
robustness against other common audio manipulations.
Bellettini and Mazzini [11] replaced the original 33 Bark-
scale sub-bands of PRH with the sub-band division in
terms of 12-tone equal temperament (12-TET). Under the
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constraints of musical scale, the authors assume that gen-
erally pitch shifting will only occur on integer-multiples of
semitone, and their algorithm achieves as high as +41.42%
(+6 semitones) resistance against frequency misalignment
by shifting the fingerprint bits. As indicated above, the
major drawback of this method is that it cannot handle
random pitch shifting, which lowers its value.
Motivated by the human auditory algorithm, Sukittanon

et al. [12] proposed to use long-term modulation scale
features for audio content identification. Combined with
channel compensation and sub-band normalization tech-
niques, this method achieves certain insensitivity to dis-
tortions such as low-bit-rate MP3 and WMA, frequency
equalization, dynamic range normalization, and TSM
(±5%). Whereas, experiments on pitch shifting are not
reported. Seo et al. [13] first divided the audio spectrum
(300 ∼ 5,300 Hz) into 16 critical bands, then calculated
a normalized frequency centroid for each critical band
and used the 16 frequency centroids as the fingerprint of
an audio frame. This fingerprint is able to resist moder-
ate time stretching (±4%) and slight linear speed change
(±1%). Malekesmaeili and Ward extracted audio finger-
prints from adaptively scaled patches of the time-chroma
representation, i.e., chromagram of the input audio sig-
nal [14]. The proposed fingerprint shows high robustness
against tempo change and pitch shifting.
In [15], Wang described an audio fingerprinting algo-

rithm whose ideas have been used in the famous Shazam
music matching serviceb. This algorithm first identifies
spectrogram peaks which are considered stable under
noise and distortion. It then forms these peaks into pairs
and uses the parameters of these pairs (frequencies of the
peaks and the time interval between them) to generate
fingerprints. Experiments show that the Wang algorithm
is robust to noise addition and GSM compression, but its
basic principle makes it sensitive to time and frequency
synchronization distortions. In [16], Fenet et al. extended
theWang algorithm by using constant Q transform (CQT)
and a new peak pair encoding mechanism. These modifi-
cations make the algorithm more robust to pitch shifting.
In [17], Dupraz and Richard proposed a similar algorithm
and used an ensemble of time-localized frequency peaks
as the fingerprint for audio identification. By determin-
ing a constant pitch-shifting factor and multiplying all
peak frequencies of the query signal by this factor prior
to fingerprint matching, this method allows for promis-
ing audio identification performance with a +5% speed
change.
AudioPrint [18], proposed by IRCAM, is a music

recognition algorithm based on short-term and long-
term frames (double-nested) short-time Fourier trans-
form (STFT). Ramona and Peeters performed two-round
improvements on this alogrithm in 2011 and 2013. In the
first round, they improve the algorithm by introducing

perceptual scales for amplitude and frequency (Bark
bands) and then synchronizing the stream and database
frames using an onset detection algorithm [19]. In the sec-
ond round, cosine filters are introduced in the short-term
spectral analysis to compensate the effect of pitch shift-
ing. A simple solution is proposed to determine the frame
positions, robust to audio degradations, with nearly no
additional cost [20].
As opposed to the above audio identification algorithms

based on fixed-length framing plus heavy overlap, which
are usually more or less susceptible to time variations,
Bardeli and Kurth proposed in [21] to divide audio sig-
nals into unequal-length disjoint time intervals. The basic
idea is to acquire invariance against cropping and time
scaling by picking out prominent local maxima of spec-
tral features as segmentation boundaries. Experiments
demonstrate that this algorithm allows identification of
audio signals time-scaled up to ±15%, which notably
outperforms most fixed-length framed methods.
Spectral features characterizing local spectral or har-

monic behavior of a signal serve as the basis of most
existing audio fingerprinting methods. However, several
other types of interesting audio features have also been
investigated. For example, Kurth et al. proposed in [3] a set
of time-related features that capture local tempo, rhythm,
and meter characteristics of music signals. By quantizing
estimated tempos into certainmodular tempo classes sim-
ilar to the well-known pitch chroma classes, a so-called
cyclic beat spectrum (CBS) invariant with respect to
tempo doubling is obtained, which endows the designed
algorithm with high-identification rates even under time
scaling from −21% to +26%.
In [22], Lyon proposed a machine-hearing algorithm

structure, which first converts the one-dimensional sound
into a two-dimensional auditory image and then extracts
features from the image to work with a following train-
able classifier or decision module. By using this struc-
ture, a machine-hearing problem can be transformed
into a machine vision problem, and the ideas and tech-
niques from the vision field (e.g., sparse representation,
compression, multi-scale analysis, and keypoint detec-
tion) can be used to solve the machine-hearing prob-
lem. As an illustration, Lyon et al. showed in [23] that
sparse-coded auditory image features degrade less in
interferences than vector-quantized Mel-frequency cep-
stral coefficients (MFCCs). In the literature, there have
been several attempts that apply computer vision tech-
niques for music identification. In [4], Ke et al. designed
an algorithm that automatically learns local descriptors
from the spectrogram via pairwise boosting. In con-
trast, Baluja and Covell [5] first divided the spectrogram
into smaller spectral images and then decomposed these
images using Haar wavelet. Audio fingerprints are finally
obtained by binary quantization of retained significant
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wavelet components. Unfortunately, the algorithm in
[4] is by nature very weak to time-varying distortions
and there are no related experimental results reported,
and the algorithm in [5] shows only certain robust-
ness against ±10% TSM and slight resistance under ±
2% speed change.

3 Robust audio fingerprint extraction
Music signals are often contaminated by various distor-
tions in the real-world environment. Therefore, creating
highly robust feature representation is a prerequisite and
challenging task for music identification. In this paper, we
propose to use a SIFT local feature originating from the
computer vision field for music identification. Although
the link betweenmusic identification and computer vision
has been made in several published algorithms such as
[4] and [5], we argue that a SIFT descriptor calculated in
a spectrogram image is indeed a novel and rather robust
feature. The details of calculating a SIFT-based audio
fingerprint are described as follows.

3.1 Spectrogram image construction
The first step of our algorithm is to construct a spectro-
gram image from the input music signal. This is accom-
plished as follows.
1) Perform STFT on the music signal to obtain the

linear spectrogram, using Hanning-windowed frames of
185.76 ms (8,192 points) with a three-fourth overlap. The
frame length and overlap are selected based on the fol-
lowing considerations. First, a long frame length endues
the spectrogram with a low time resolution, which makes
the representation insensitive to time variations. Second,
under the framework of fixed framing, heavy overlap is
a prerequisite to deal with the lack of synchronization
between the short query music and the long original sig-
nal [24], since excerpts only a few seconds long are used to
identify the whole audio signals. Classical PRH algorithm
[8] uses an overlap up to 31/32; herein, we experimen-
tally adopt three fourths to balance the desynchronization
resistance and searching speed.
2) Quantize the linear spectrogram obtained above into

64 logarithmically spaced frequency sub-bands in terms
of Equation 1 so that frequency multiplication can be
reduced to addition:

fi = fmin × 2
i−1
12 , (1)

where fi is the central frequency of the ith sub-band,
i = 1, . . . , 64 is the sub-band index, and fmin = 318
Hz is the minimum frequency. Therefore, the spectro-
gram adopted ranges from 318 to 12,101 Hz, which covers
the five medium-to-high perceptually important octaves
and is large enough to extract more local image features
described in the next section for robust matching.

3) Convert the logarithmic spectrogram into a gray
image where image features can be extracted. To achieve
this end, the spectrogram is first transformed into a log-
magnitude representation as follows:

S(i, j) = log |X(i, j)|, (2)

where X is the spectrogram and i and j are the fre-
quency sub-band index and the frame index, respec-
tively. Compared with the linear-magnitude version, the
log-magnitude spectrogram reveals more about small-
magnitude components where robust local features can
also be extracted. After obtaining S, the spectrogram
image I is then generated as:

I(i, j) = S(i, j) − min(S)
max(S) − min(S)

× 255, (3)

where min(S) and max(S) are the minimum and maxi-
mum values of S, respectively.

3.2 Relationships between audio manipulations and
spectrogram image transformations

As mentioned in the introduction, time stretching, pitch
shifting, and time scaling are the threemost arduous audio
distortions for music identification algorithms to resist.
Since time scaling can be roughly deemed as the combi-
nation of time stretching and pitch shifting, in this sub-
section, we only take time stretching and pitch shifting
into consideration and reveal that they can be distinctly
described as corresponding spectrogram image transfor-
mations. Remember that time stretching merely changes
the speed of an audio signal without affecting its pitch.
Therefore, when an audio signal is time-stretched, its
spectrogram image remains stable in the frequency axis
with only the time axis lengthened or shortened, see sub-
figures (a), (b1), and (c1) in Figure 1 for example. By
contrast, pitch shifting just modifies the pitch of an audio
signal with no influence on its duration. When an audio
signal is pitch-shifted, its spectrogram image remains
unchanged in the time axis with only frequency compo-
nents translated upwards or downwards; see sub-figures
(a), (d1), and (e1) in Figure 1 for instance.
To make things clearer, below we give some formalized

explanations on the relations between pitch shifting and
spectrogram image translation. Given a signal component
with frequency f, its energy distributes around the sub-
band with index Y (f ), which is calculated by inverting
Equation 1 as below:

Y ( f ) = Round
(
12 × log2

f
fmin

+ 1
)
, (4)

where Round(x) rounds x to the nearest integer. If the sig-
nal component is pitch-shifted by a factor k, which is neg-
ative when the pitch decreases and positive when the pitch
increases, it will move to a new frequency (1+k)f , with its
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Figure 1 Relationships between audio manipulations and corresponding spectrogram image transformations. (a) is the spectrogram
image of an original 10-s music clip. From the second row, the leftmost column displays spectrogram images of four audio excerpts distorted from
the original clip: (b1) −20% time stretching, (c1) +20% time stretching, (d1) −30% pitch shifting, and (e1) +30% pitch shifting. The middle column
displays corresponding images after spectrogram image (a) is modified with image transformations: (b2) 20% time-axis shortening, (c2) 20%
time-axis lengthening, (d2) six frequency bins downshifting, and (e2) five frequency bins upshifting. The rightmost column (b3, c3, d3, e3)
accordingly illustrates the differences between corresponding sub-figures of the leftmost and the middle columns. Note that warmer colors
represent larger spectral differences while cooler colors represent smaller ones.

energymoved to the vicinity of the Y ((1+k)f )th sub-band.
Note that the frequency-axis hopping is independent of
the absolute frequency f , as shown in Equation 5:

Y ((1 + k)f ) − Y (f ) ≈ Round(12 × log2(1 + k)), (5)

which means that pitch shifting applied to an audio sig-
nal can be approximately modeled as a constant vertical
translation of its spectrogram determined only by coeffi-
cient k.
Figure 1 verifies the above deduction, where we can

see that spectrogram images calculated from differently
time-stretched or pitch-shifted audio signals exhibit high
similarity with correspondingly transformed spectrogram
images. For example, sub-figures (b3) and (c3) in Figure 1
are chiefly composed of cool-color components, mean-
ing that (b1) and (c1), spectrogram images calculated
from−20% and +20% time-stretched audio, possess pretty
low difference with (b2) and (c2), −20% and +20% time-
axis-stretched images of the original spectrogram. For
another example, sub-figures (d3) and (e3) in Figure 1 are
mostly composed of cool-color components, except that
there are some warmer ones in the upper part of (d3) and

the lower part of (e3). As these warmer patches are rather
limited, sub-figures (d1) and (e1) in Figure 1, spectrogram
images calculated from −30% and +30% pitch-shifted
audio, can still be correctly matched to (d2) and (e2),
images translated by −6 and +5 frequency-axis bins from
the original spectrogram in terms of Equation 5. To con-
clude, since time stretching and pitch shifting of an audio
signal can be modeled by the stretch and translation of its
spectrogram image, we argue that image features robust
to stretch and translation should also be able to resist time
stretching and pitch shifting of the original audio signal.

3.3 Robust spectrogram image feature extraction
Inspired by the machine-hearing algorithm structure of
[22], the basic idea of our algorithm is to seek robust spec-
trogram image features for audio fingerprinting. These
features should be discriminative, scalable, and, more
importantly, robust to various image distortions including
stretch and translation.
In order to resist stretch and translation, local spectro-

gram image features following the line of implicit synchro-
nization should be more effective than global features.
During these last years, local image features have received
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much attention because of their efficiency for several
computer vision problems such as image retrieval [25,26]
and object recognition [27,28]. Also, these features have
found their applications in audio analysis tasks. In [29], Yu
and Slotine drew inspiration from the visual classification
method of [30] and proposed to extract spectrogram block
matching-based features for instrument classification. In
[31], Matsui et al. first extracted SIFT keypoints [27] from
the spectrogram and then clustered these keypoints based
on their descriptors to form a musical feature for genre
classification. In [32], Kaliciak et al. first generated a set of
local spectrogram patches by combining a corner detector
[33] with a random points generator and then character-
ized these local patches in the form of a co-occurence
matrix or color moments as was done in [34]. These local
patch descriptors are finally employed for music genre
classification by using the ‘bag-of-visual-words’ approach.

3.3.1 Scale invariant feature transform (SIFT)
Among the proposed local image features, the SIFT-based
features [27] are most invariant to image rotation and
robust to changes in scale, illumination, and other image
deformations. A typical SIFT feature extractor consists of
four major stages briefly summarized as below.

• Scale-space extrema detection: The image is first
convolved with Gaussian filters at different scales,
then the difference of successive Gaussian-blurred
images is taken. Potential keypoints are chosen as
local maxima/minima of the Difference-of-Gaussians
(DoG) that occur at multiple scales.

• Keypoint localization: The above detection produces
too many keypoint candidates, some of which are
unstable. In this step, keypoints that have low contrast
are first discarded due to the sensitivity to noise and
then those poorly located along edges are filtered out.

• Orientation assignment: Each keypoint is assigned
one or more orientations based on local image
gradient directions. By representing the keypoint
descriptor relative to this consistent orientation,
invariance to image rotation is achieved.

• Generation of keypoint descriptor: A set of
orientation histograms are created on 4 × 4 pixel
neighborhoods. Histograms contain eight bins each,
and accordingly, a 128-dimensional (4 × 4 × 8)
descriptor is obtained for each keypoint.

3.3.2 SIFT-based local spectrogram image feature
extraction

In the literature, there have been a lot of different robust
local image features proposed, among which the SIFT-
based features possess the best results compared with
other local features in the context of matching and recog-
nition under various image deformations [35]. Naturally,
we are inspired to employ SIFT feature extracted from the

logarithmic spectrogram image for music identification.
Although SIFT feature is originally designed for object
recognition in natural images, we claim that its use in the
spectrogram image is feasible. According to [29], a typi-
cal music piece usually involves lots of different sounds,
and its spectrogram contains many partial areas with
distinctive local spectral patterns. These patterns in the
spectrogram can be regarded as ‘objects’ in a real image
[31].
The output of the SIFT feature extractor is a set of key-

points represented by their location, scale, orientation,
and 128-dimensional descriptor (see Figure 2). The SIFT
descriptor measures local image gradients and is highly
distinctive between different features and robust against
a corpus of image transformations. Particularly, compari-
son tests carried out in [35] have shown that SIFT-based
descriptors exhibit the highest matching accuracies for
affine transformation such as stretch and translation com-
pared with many other local descriptors. Based on these
facts, we believe that the SIFT feature extracted from a
spectrogram image is a good choice for music identifica-
tion, especially considering that its invariance to image
stretch and translation will endow the identification algo-
rithmwith a strong robustness against time stretching and
pitch shifting.
In our method, we take the 128-dimensional SIFT

descriptors calculated from the spectrogram image as
sub-fingerprints of the underlying music signal. We also
reserve the location of each SIFT keypoint for the esti-
mation of time-stretching and pitch-shifting factor (see
Section 5). The scale and orientation will not be used and
are thus abandoned.

4 Robust matching of audio fingerprints
Following the procedure described in the previous
section, we extract sub-fingerprints for each reference
music signal and store them in the fingerprint database.
When presented with an unlabeled query excerpt, we
extract sub-fingerprints from it and independently match
each of these sub-fingerprints against the fingerprint

Figure 2 Illustration of SIFT local features extracted from the
spectrogram image of a 10-s music excerpt. Each red circle
indicates a SIFT keypoint, represented by a 128-dimensional
descriptor.
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database. The reference music signal which has the most
matched sub-fingerprints with the query excerpt is finally
returned as the identification result.
In this section, the mechanism of sub-fingerprint

matching is described. It consists of two stages, i.e., near-
est sub-fingerprint retrieval and matching determination.

4.1 Preliminaries of locality sensitive hashing
LSH [36] is an approximate nearest neighbor search tech-
nique that works efficiently even in high-dimensional
spaces. Two ‘similar’ points in the original space can
be hashed into a same bucket with high probability,
which makes LSH appropriate to perform indexing in the
retrieval task. It allows one to quickly find similar ele-
ments in large databases and has thus attracted plenty of
attention from the research community. In recent years,
LSH and its extensions have been successfully applied to
a range of applications (e.g., [1,2,25,37,38]) and shown to
significantly outperform conventional tree-based schemes
such as BBF-Kd-Tree by comparison tests [39].

4.2 Nearest sub-fingerprint retrieval based on LSH
The matching of a query sub-fingerprint is performed
by first retrieving its nearest neighbor, i.e., the sub-
fingerprint in the fingerprint database that has minimum
Euclidean distance to the query sub-fingerprint. However,
audio databases in practical applications are usually large,
of which corresponding fingerprint databases may con-
tain millions of (or even more) sub-fingerprints. To find
the nearest neighbor in such a large database using lin-
ear search is, in many cases, unacceptable. Also, owing
to the high-dimensional SIFT-based sub-fingerprint vec-
tors, traditional tree-like data structures succumb to the
curse of dimensionality and perform no better than an
exhaustive linear search.
The LSH-based nearest sub-fingerprint retrieval algo-

rithm contains two phases: indexing and retrieval. In
indexing, all the sub-fingerprints in the fingerprint
database are inserted into L hash tables corresponding
to L randomly selected hash functions {gi, i = 1, . . . , L}.
Given a set of sub-fingerprints {p}, each of the L hash
functions is defined as:

g(p) = (h1(p), . . . , hk(p)), (6)

where k is the width parameter, and {hj, j = 1, . . . k}
are LSH functions satisfying the LSH property, i.e., sub-
fingerprints that are close to each other have a higher
probability to be hashed into the same bucket than sub-
fingerprints that are far apart. Since our SIFT-based sub-
fingerprints lie in the Euclidean space, we directly employ
the LSH functions proposed in [40] as below:

h(p) = �a
T · p + b

r
�, (7)

where �x� rounds x to the nearest integer towards nega-
tive infinity, a ∈ R

128 is a random vector with elements
chosen independently from a Gaussian distribution, r is
a constant which is set to 2.8284 in our implementation
following the suggestion of [41], and b is a real number
chosen uniformly from the range of [0, r].
In the retrieval phase of the nearest sub-fingerprint

search algorithm, given a query sub-fingerprint q, the
algorithm iterates over the L hash tables. For each table
considered, it compares q with the sub-fingerprints that
are hashed into the same bucket as q. The resulting near-
est neighbor is identified as the compared sub-fingerprint
which has the smallest Euclidean distance with q over the
L hash tables.

4.3 Matching determination of sub-fingerprint
Using LSH, we first regroup similar elements in the fin-
gerprint database and then, during retrieval, perform a
nearest neighbor search for each of the query excerpt’s
sub-fingerprints within this reorganized database. Con-
ventionally, nearest neighbors found in the database are
returned as matched sub-fingerprints. However, since
music signals are often distorted in a real-world envi-
ronment, it is possible that a query sub-fingerprint does
not have any correct counterparts in the fingerprint
database so that nearest neighbors returned are actually
false matches. Also, LSH is substantially an approximate
similarity search algorithm; consequently, false positives
do exist though very small. Considering these situations,
additional measures apart from the basic LSH method
must be taken to reduce the rate of false matching.
A natural way is to use a global threshold to the dis-

tance between the query sub-fingerprint and its nearest
neighbor returned by LSH, rejecting those matches whose
distances are larger than the threshold. However, due to
the diversity of music signals, determining the thresh-
old is an intractable problem in practical implementation.
In this case, we turn to another more effective matching
measure which is adopted in [27]. Given a query sub-
fingerprint q, we perform a two-nearest neighbor search
using LSH and then compare the distance of the clos-
est neighbor v to that of the second-closest neighbor v′.
Specifically, let D(·, ·) be the Euclidean distance between
two sub-fingerprints and θ be a threshold, if:

D(q, v) < θ × D(q, v′), (8)

sub-fingerprint q and v are judged to be matched.

5 Factor estimation of time stretching and pitch
shifting

In some applications such as content-based audio authen-
tication, it might be useful to know whether and how
seriously an input music excerpt has been time-stretched
or pitch-shifted [42]. In spite of this, to our knowledge,
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few related works have been reported in the literature. In
this section, we design a novel estimation method under
the framework of our audio fingerprinting algorithm.
As elaborated in the introduction, time stretching and

pitch shifting applied to an audio can be equivalently
reflected by time-axis stretch and frequency-axis trans-
lation of its logarithmic spectrogram, and it is natural to
estimate factors of the two audio distortions by calculating
factors of corresponding spectrogram image transforma-
tions. Let us take Figure 3 as an example of time-stretching
factor estimation. In this figure, A and A0 are spectro-
gram images of a query music clip and its reference audio,
respectively. a1 is a stable SIFT keypoint in A and a2
is the keypoint with minimum time-axis distance to a1
among all the stable keypoints in A whose time-axis coor-
dinate values are larger than that of a1. Note that stable
keypoints here refer to the SIFT keypoints for which a
matched keypoint can be found in the reference audio.
This matched keypoint has the smallest Euclidean dis-
tance under the constraint of Equation 8 to the stable
keypoint. In Figure 3, a01 and a02 are matched keypoints
of a1 and a2, respectively.
Given the four keypoints a1, a2, a01, and a02, a candidate

of time-axis stretch factor kt between A and A0 can be
estimated in terms of Equation (9):

kt = dt
dt0

− 1, (9)

where dt is the time-axis distance between a1 and a2,
and dt0 is the time-axis distance between a01 and a02. In
general, dozens of stable SIFT keypoints can be extracted
from spectrogram image A, and consequently, a series of
factor candidates can be computed. The median of all
these candidates, k̃t , is returned as the final estimation
result of the time-axis stretch factor of A and also the
time-stretching factor of the original query excerpt.
Next, as shown in Figure 4, a candidate of the frequency-

axis translation distance between spectrogram images of a

Figure 3 Example of time-stretching factor estimation.

Figure 4 Example of pitch-shifting factor estimation.

query excerpt and its reference audio, B and B0, is simply
calculated in terms of Equation 10:

�yf = yf − yf 0, (10)

where yf and yf 0 are the frequency-axis coordinate val-
ues of a pair of matched stable SIFT keypoints, b and b0,
respectively. Similarly, there exists a series of translation
distance candidates, and the median, �̃yf , is selected as
the final result.
Remember that Equation 5 depicts the non-linear rela-

tion between the pitch-shifting factor (k̃f ) of an audio
signal and the frequency-axis translation distance (�̃yf )
of its logarithmic spectrogram image. Given �̃yf obtained
as above, k̃f can be straightly calculated according to
Equation 11:

k̃f ≈ 2
�̃yf
12 − 1. (11)

6 Experimental results
To thoroughly evaluate the performance of our method,
in this section, we first describe the establishment of a
music database and affiliated fingerprint database, then
experimentally determine several variable parameters,
and finally tabulate and show the robustness and identi-
fication results. The performance of factor estimation for
time stretching and pitch shifting is also presented in this
section.

6.1 Database setup
To assess the proposed algorithm, we first collect a total
of 10,641 music pieces of various genres such as pop,
rock, disco, jazz, country music, classical music, and folk
song. Each music signal is mono, 60 s long, and origi-
nally sampled at 44.1 kHz. These music pieces are then
divided into two audio databases, namely DBtrain contain-
ing 500 music pieces for parameter estimation, and DBtest
containing 10,141 music pieces for robustness and iden-
tification testing. The affiliated fingerprint databases are
called FP-DBtrain and FP-DBtest, respectively, where each
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sub-fingerprint is a 128-dimensional 8-bit integer vector
extracted from the logarithmic spectrogram image using
the SIFT algorithm implemented in VLFeat [43] with
default setting.
Considering the large amount of high-dimensional sub-

fingerprints which are found in FP-DBtrain and FP-DBtest,
we index the two fingerprint databases using the LSH
toolbox published by Shakhnarovich [41] (the E2LSH
scheme in the toolbox is chosen) for more efficient
sub-fingerprint retrieval. The indexed versions of the
two fingerprint databases are denoted as FP-DB′

train and
FP-DB′

test, respectively.
As typical music identification algorithms usually iden-

tify unlabeled and distorted music fragments within the
database, we also construct two query sets, i.e., QStrain
and QStest, for DBtrain and DBtest, respectively. QStrain and
QStest consist of 10-s short excerpts randomly cut from
distinct music pieces inDBtrain andDBtest, respectively. To
simulate real-world environments, all the query fragments
are subjected to different audio signal distortions and syn-
chronization attacks. The applied audio signal distortions
include the following:

• Lossy compression: MPEG-1 layer 3
encoding/decoding at 32 kbps;

• Echo adding: 50% decay and 500-ms delay;
• Equalization: 10-band equalization with the settings

of [8];
• Noise addition: White Gaussian noise with a

signal-to-noise-ratio (SNR) of 18 dB;
• Resampling: Subsequent down and up sampling to

22.05 and 44.1 kHz, respectively;
• Bandpass filtering: Cutoff frequencies of 100 and

6,000 Hz.

The applied synchronization attacks include time
stretching, pitch shifting, and time scaling. Since in the
real world these three distortions mostly occur in the
range of [−10%, +10%], we deform all the query clips with
time stretching/scaling and pitch shifting of ±2%, ±5%,
and ±10%. Meanwhile, to obtain the performance limit of
the proposed algorithm, time stretching/scaling and pitch
shifting out of the above range are also evaluated. To con-
clude, synchronization distortions we apply on the queries
include the following:

• Time stretching: ±2%, ±5%, ±10%, ±20%, ±30%,
+40%, and +50%;

• Pitch shifting: ±2%, ±5%, ±10%, ±20%, ±30%,
±40%, ±50%, +60%, +70%, +80%, +90%, and +100%;

• Time scaling: ±2%, ±5%, ±10%, ±20%, ±30%, and
+40%.

Note that all the 10-s query music excerpts in the query
sets are cut from corresponding original audio pieces

starting at arbitrary offsets; accordingly, all distortions
performed on the queries are indeed mixed with a prece-
dent random cropping.

6.2 Parameter estimation
There are three parameters to be tuned in the algorithm.
In this sub-section, we experimentally investigate their
effect on the system performance and make a suitable
setting for each of them.
The first parameter to be set is the threshold θ that con-

trols the matching determination principle described in
Equation 8. Due to the constraint of θ between the nearest
and the second nearest neighbors, not every query sub-
fingerprint is ensured to get a matching result, no matter
true or false. For a specific sub-fingerprint, bigger θ will
bring about more chance to get a result returned. Accord-
ingly, for all query sub-fingerprints, morematching results
will be returned with the increase of θ ; within the returned
results, true matches and false matches generally increase
synchronously.
In Figure 5, we increase θ from 0.1 to 1 with a step

size of 0.1 and in each step calculate the correct and the
false match rates of all sub-fingerprints extracted from
the original and differently distorted excerpts of QStrain
against FP-DBtrain without using LSH. More specifically,
a correct (false) match rate here refers to the percent-
age of query sub-fingerprints for which we find correct
(false) matches in the fingerprint database. A match is
considered as correct if the query sub-fingerprint and its
matched sub-fingerprint belong to the query excerpt and
the reference audio of a same music signal, respectively.
As can be seen in the figure, both the correct and the
false match rates increase with the increment of θ . When
θ < 0.8, the false match rate increases slowly while the

Figure 5 Correct match rates and false match rates of
sub-fingerprints for different θs.
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correct match rate increases significantly faster; when θ >

0.8, the false match rate becomes more notable and soon
exceeds the correct match rate. Based on these observa-
tions, we set θ = 0.8 in our experiment. In contrast with
the results when θ = 1, this setting eliminates 98.41% of
the false matches at the cost of lowering 23.86% of the
correct matches.
The next two parameters to be set are related to

LSH, i.e., k, the width parameter, and L, the number of
hash tables. They directly affect the distribution of sub-
fingerprints in the fingerprint database and thus affect
the efficiency of nearest sub-fingerprint retrieval. To be
specific, a larger k reduces the chance of hitting sub-
fingerprints that are not nearest neighbors and thus
makes the nearest neighbor retrieval faster. However, this
speedup is at the expense of increasing the probability
of missing true nearest neighbors. In contrast, a larger L
enhances the probability of finding true nearest neighbors,
but it increases the time consumption at the same time.
Therefore, k and L should be comprehensively considered
to balance the trade-off between the retrieval accuracy
and speed. In addition, increasing k and L will both lead
to more memory usage. In the following, we set k = 3
and L = 10, and experiments show that this combination
prevails over other values on our machinec.
As an approximate similarity retrieval technique, LSH is

aimed to accelerate the retrieval speed at the cost of slight
accuracy decrease. Figure 6 compares the performance of
LSH with a linear search, where hit rate indicates the per-
centage of query excerpts in QStrain and all their distorted
versions which are correctly identified within DBtrain. It is
clear that the matching time for a single sub-fingerprint
using LSH is significantly reduced, about 25 times faster
than a linear search in our experiment environment, with
only 4.7% hit rate decreases.

6.3 Robustness tests
Several groups of experiments are performed in this sub-
section to evaluate the robustness of the proposed music

Figure 6 Comparison of accuracy and speed of music
identification using LSH and linear search.

identification algorithm, using audio database DBtest,
query set QStest, and the corresponding indexed finger-
print database FP-DB′

test. The performance of each exper-
iment is measured using the hit rate, which refers to the
percentage of queries that are correctly identified within
the reference database.
For comparison, identification results of the classic

Shazam algorithm and state-of-the-art WavePrint [5] are
also presented. The Shazam algorithm is implemented
by Dan Ellis [44], and implementation of the WavePrint
algorithm is available at [45].
Figure 7 compares the robustness against time stretch-

ing of the WavePrint, Shazam, and our algorithm. When
there is no time stretching, the hit rates of WavePrint,
Shazam, and our algorithm are 100%, 99.35%, and 100%,
respectively. Under slight time stretching of ±2%, the hit
rates of WavePrint and our algorithm remain approxi-
mately 100%, and Shazam drops to around 93%. When
the query is further time stretched under −5% and +5%,
both the WavePrint and our algorithm still maintain hit
rates as high as about 99%, while the Shazam quickly
drops to 60.78% and 67.7%, respectively. The reason is
that the time intervals of key points, which are used
to construct the fingerprint in the Shazam algorithm,
are destroyed at such a level of time stretching. When
queries are stretched at ±10%, both the WavePrint and
our algorithm possess hit rates above 95%. However,
when stretching factor goes up to −20% and +20%, the
WavePrint algorithm begins to be inferior to our algo-
rithm, with hit rates 50% vs. 96% and 80% vs. 98%,
respectively. In more extreme cases where the stretch fac-
tor is bigger than ±30%, WavePrint’s hit rates quickly
drop down to below 35%, while our algorithm’s results
remain surprisingly around 80% or above. In summary,
in terms of time stretching, the Shazam, WavePrint,
and our algorithm exhibit successive increased robust-
ness, from less than ±5%, to less than ±20%, to bigger
than ±30%.
Identification results of differently pitch-shifted queries

are shown in Figure 8. As stated in the introduction, pitch
shifting of an audio signal can be equivalently modeled
as the frequency-axis translation of its logarithmic spec-
trogram image; consequently, the translation-invariant
SIFT image features introduced in the proposed algorithm
bring strong robustness to the audio signal against fre-
quency changes. Figure 8 shows that when query music
fragments are pitch-shifted at different levels even up
to −50% (one octave down) and +100% (one octave up),
all hit rates of the proposed algorithm are still above
80%. Note that for our method, there is no linear rela-
tionship between identification results and pitch-shifting
factors. For example, identification hit rates of −50%
and +100% pitch-shifted queries are larger than those of
nearby less distorted excerpts. In these two special cases,
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Figure 7 Identification hit rates under time stretching.

pitch shifting occurs on integer-multiples (−12 and +12)
of semitone and thus causes more accurate spectrogram
translations. Note that performances of the WavePrint
algorithm and Shazam system are not displayed in the
figure, because these algorithms are by nature very sen-
sitive to frequency misalignments. Even for slight pitch
shifting of −2% and +2%, identification hit rates are only
about 72.2% and 37.3%, respectively, for WavePrint and
about 11.1% and 13.3%, respectively, for Shazam. And
when the distortion becomes more serious, the result gets
even worse and quickly drops to near zero.
As mentioned in the introduction, time scaling can

be approximately modeled as the combination of time
stretching and pitch shifting. Therefore, SIFT features

calculated from an audio logarithmic spectrogram image
should also possess certain robustness against time scal-
ing since they have been demonstrated to be rather stable
under time stretching and pitch shifting. Figure 9 illus-
trates the hit rates with respect to different time-scaling
levels. It shows that when music queries are deformed
with a common time scaling of −10% ∼ +10%, iden-
tification results of our algorithm are pretty good, i.e.,
all above 98%. When the scaling gets even harder, i.e.,
to the factors of ±20 and +30%, our algorithm can still
obtain hit rates of more than 90%, which outperforms
other state-of-the-art algorithms like [3,9,10,17,21] (±6%,
±10%, +5% ±15%, −21% ∼ +26%). Finally, when the
music queries are time-scaled up to −30% and +40%,

Figure 8 Identification hit rates under pitch shifting.
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Figure 9 Identification hit rates under time scaling.

which has been beyond the scaling scope of previous algo-
rithms’ experiments, the hit rates drop to around 70%
and 80%, respectively. Note that similar to the case of
pitch shifting, identification results of theWavePrint algo-
rithm and Shazam algorithm are neither illustrated in
the figure. Due to poor tolerance to pitch distortions,
the WavePrint algorithm only exhibits certain robustness
against a time scaling of +2% (hit rate = 89.5%). The
Shazam algorithm is worse, with only 9.1% and 8.7% hit
rates under time scaling of −2% and +2%, respectively.
And when the distortion becomes a bit more serious, both
of the WavePrint’s and Shazam’s hit rates drop quickly to
zero.

In addition to the above time- and frequency-domain
synchronization distortions, music queries are often con-
taminated by various signal distortions in the real-world
environment. Figure 10 compares the robustness against
audio signal distortions of the WavePrint, Shazam, and
our algorithm. Under the cases of lossy compression,
noise addition, resampling, and bandpass filtering, both
the WavePrint and our algorithm exhibit almost 100%
hit rates. The results of Shazam are also excellent (at
least 95%), only slightly weaker. In terms of equaliza-
tion and echo addition, our algorithm’s hit rates drop to
around 90% and 80%, respectively, inferior to those of the
WavePrint and Shazam. This is as expected, for the two

Figure 10 Identification hit rates under audio signal distortions.
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distortions have greatly affected the energy distributions
on spectrograms of the query excerpts and thus havemore
negative impact on the extraction and matching of SIFT
features than other signal distortions.
In the above experiments, the source codes are written

in Matlab and run on a workstation (3.2-GHz Intel Xeon
CPU and 8-GB memory). The average time of extracting
the SIFT features of a 10-s music query is approximately
0.23 s, which is acceptable for the identification task.

6.4 Factor estimation of time stretching and pitch shifting
In this subsection, we assess the factor estimation
method of time stretching and pitch shifting proposed
in Section 5. The test dataset is composed of 10-s audio
excerpts randomly cut from distinct music signals in
DBtest, and each of them is time-stretched from −30%
to +50% and pitch-shifted from −50% to +100%, in accor-
dance with the above robustness tests. After identifying
the queries within DBtest using the proposed finger-
printing algorithm, the corresponding reference music
signal and query signal are compared to estimate the
factor of time stretching or pitch shifting in light of
Equations (9-11).
Let kest be the estimated factor and kref be the refer-

ence one. The distribution of kest − kref is illustrated in
Figure 11 for time stretching and Figure 12 for pitch shift-
ing. As shown in the figures, our proposed method pro-
vides highly accurate factor estimation results, and more
than 95% of the estimated factors are in the ±0.05 scope
of the reference ones. This phenomenon actually demon-
strates from a distinct aspect that treating time stretching
and pitch shifting of an audio signal as the time-axis
stretch and frequency-axis translation of its logarithmic
spectrogram, respectively, is a reasonable way to go.

Figure 11 Factor estimation result of time stretching.

Figure 12 Factor estimation result of pitch shifting.

7 Conclusions
In this paper, a novel and robust music identification
method is proposed. By combining computer vision tech-
nique, the SIFT descriptor of a spectrogram image to
be exact, with locality sensitive hashing, this algorithm
exhibits good performance in robustness, accuracy, and
speed. What is most attractive is that even when query
audio excerpts are seriously time-stretched from −30%
to +50% or pitch-shifted from −50% to +100%, this
method still exhibits good identification hit rates, which
has been beyond all other existing algorithms, to our
knowledge. Moreover, by comparing the locations of sta-
ble SIFT keypoints, a novel method is developed to
estimate the distortion factor of time-stretched or pitch-
shifted audio signals. In future work, we intend to com-
bine the proposed SIFT-based feature with other spectral
features to further improve the robustness under common
audio signal distortions. To apply this proposed feature to
other audio-related applications is also an interesting way
to go.

Endnotes
aIn this paper, positive (negative) factors of time

stretching/scaling indicate the increase (decrease) of
duration of a music piece. For example, +4% (−4%) time
stretching/scaling lengthens (shortens) an audio signal to
104% (96%) of its original length. Similarly, positive
(negative) factors of pitch shifting mean the increase
(decrease) of pitch.

bhttp://www.shazam.com/.
cExperiments are performed on a workstation with a

3.2-GHz Intel Xeon CPU and 8-GB memory.
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