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Abstract

In recent years, deep learning has not only permeated the computer vision and speech recognition research fields but
also fields such as acoustic event detection (AED). One of the aims of AED is to detect and classify non-speech acoustic
events occurring in conversation scenes including those produced by both humans and the objects that surround us.
In AED, deep learning has enabled modeling of detail-rich features, and among these, high resolution spectrograms
have shown a significant advantage over existing predefined features (e.g., Mel-filter bank) that compress and reduce
detail. In this paper, we further asses the importance of feature extraction for deep learning-based acoustic event
detection. AED, based on spectrogram-input deep neural networks, exploits the fact that sounds have “global” spectral
patterns, but sounds also have “local” properties such as being more transient or smoother in the time-frequency
domain. These can be exposed by adjusting the time-frequency resolution used to compute the spectrogram, or by
using a model that exploits locality leading us to explore two different feature extraction strategies in the context of
deep learning: (1) using multiple resolution spectrograms simultaneously and analyzing the overall and event-wise
influence to combine the results, and (2) introducing the use of convolutional neural networks (CNN), a state of the art
2D feature extraction model that exploits local structures, with log power spectrogram input for AED. An experimental
evaluation shows that the approaches we describe outperform our state-of-the-art deep learning baseline with a
noticeable gain in the CNN case and provides insights regarding CNN-based spectrogram characterization for AED.

Keywords: Acoustic event detection; Local spectro-temporal characterization; Feature extraction; Time-frequency
resolution; Convolution neural networks

1 Introduction
In the context of conversational scene understanding,
most research is directed towards the goal of automatic
speech recognition (ASR), because speech is arguably the
most informative sound in acoustic scenes. For humans,
non-speech acoustic signals provide cues that make us
aware of the environment, and while most of our atten-
tion might be dedicated to actual speech, “non-speech”
information is critical if we are to achieve a complete
understanding of each and every situation we face. More-
over, this information is implied by the speakers, and
so they actively or passively neglect mentioning certain
concepts that can be inferred from their location, the cur-
rent activity, or event occurring in the same scene. For
instance, in a situation where two speakers are watching a
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sports game, most of the spontaneous speech utterances
are very likely to be related to sports, and ASR could bene-
fit from having such topic knowledge in advance [1]. On a
smaller scale, if we hear a door opening, we usually assume
that somebody has left or entered the room. Having access
to such information in an automated manner can enhance
the performance of ASR, diarization, or source separation
technologies [2].
Acoustic event detection (AED) is the field that deals

with detecting and classifying these non-speech acoustic
signals, and the goal is to convert a continuous acous-
tic signal into a sequence of event labels with associated
start and end times. The field has attracted increasing
attention in recent years including dedicated challenges
such as CLEAR [3], and recently D-CASE [4], with tasks
involving the detection of a known set of acoustic events
happening in a smart room or office setting. In addi-
tion, AED applications range from rich transcription in
speech communication [3, 4] and scene understanding
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[5, 6], to being a source of information for informed
speech enhancement and ASR. Gaining access to richer
acoustic event classifiers could effectively support speech
detection and informed speech enhancement [2] by pro-
viding the system with details about what kind of noise
surrounds the speakers, besides the obvious benefits of
richer transcriptions.
Recently, we have seen the potential of directlymodeling

the real spectrogram in AED in studies such as [7, 8].
The idea is that a detail-rich input such as a high reso-
lution spectrogram is sparse enough to deal with com-
plex scenarios with overlapping sounds. This complexity
does not appear only in the frequency domain, but also
in the form of a wide range of temporal structures. In
[8] (Fig. 1a), the spectrogram patch concept is used to
describe a model that receives an input including a con-
text of frames from a spectrogram. This is rather typical in
deep learning these days, but it is stressed here since a suf-
ficient amount of short-time temporal structure regarding
sounds can be packaged if the context is wide enough.
This approach is possible given the ability of DNNs to
model such a high dimensional input. This contrasts with
traditional approaches in which the classifier models pre-
defined acoustic features (e.g., MFCC, orMel-filter banks)
[9, 10], which compress and neglect details that we actu-
ally need. Espi et al. [8] succeeds in modeling spectro-
gram patches input as a whole, i.e.; it learns features that
describe “globally” a short-time spectrogram patch. How-
ever, this dismisses important properties of sounds (e.g.,
stationarity, transiency, burstiness, etc.), a taxonomy that
could also help to model acoustic events.
This concept was considered in [10] by combining fea-

tures extracted using multiple spectral resolutions, which
resulted in better classification accuracy compared with
standard single spectral scale features. This study exploits
“local” as opposed to “global” characterization of the
spectrogram. Such local properties, are also observable

at low feature levels (i.e., small and local subsets of adja-
cent time-frequency bins), since they are local in the
spectro-temporal domain.
This paper further investigates the importance of both

using the real spectrogram as a feature and achiev-
ing a proper characterization exploiting spectro-temporal
“locality”. We do this by exploring and comparing two
approaches in parallel: first, augmenting the input with
multi-resolution features and therefore dealing with the
locality outside the model, and second, exploiting the
locality with a model that integrates that concept, all
within the context of deep learning.
The main contribution of this paper relates to the

fact that while existing works rely on features that are
defined and crafted to fit certain characteristics of sounds,
deep learning is powerful enough to learn features by
itself when the appropriate architectures are in place.
This work is not novel in terms of using deep learning
for acoustic event detection as this is already familiar
in ASR [11], and we are starting to see it in acous-
tic event detection as well [12]. What these studies do
not do is truly exploit the feature learning ability of
deep learning and use custom crafted features downsam-
ple and focus on specific properties of certain sounds.
Here, we show how, with the appropriate architectures,
deep learning models can learn features directly from
a naive feature (i.e., the log power spectrogram in this
work).
The paper continues with Section 2, which addresses

the importance of spectro-temporal locality, and intro-
duces standard notions related to the deep learning frame-
work in the context of AED. Section 3 describes the first
approach combining multiple resolution spectrogram-
input DNN classifiers, thus dealing with locality outside
the model. In Section 4, the spectrogram-input con-
volutional neural network (CNN) [13, 14] is discussed,
reporting the results of our experimental evaluation in

Fig. 1 Overview of the spectrogram-input deep neural network on the left (a) and convolutional neural network on the right (b) architectures
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Section 5. Section 6 discusses the results and the insights
we obtained, concluding the paper with Section 7.

2 Conventional method and problem statement
This section describes a spectrogram input deep learning
AED baseline along with its limitations and the motiva-
tions that lead to the feature extraction strategies in this
study. It also includes a description of the spectrogram
input CNN framework that is evaluated later on.

2.1 Deep learning-based acoustic event detection
In [8], we can find an AED approach that directly mod-
els log spectra patches rather than pre-designed features
using deep neural networks (DNN). To better charac-
terize sounds that are quite different from speech, a
high-resolution spectrogram patch (a window of spectro-
gram frames stacked together) is directly used as input
shown in Fig. 1a. This ensures that the input feature is
embedded with enough time-frequency detail. But, mean-
ingful features still need to be obtained from such a
high-dimensional input. Restricted Boltzmann machines
(RBMs) [15] provide a useful paradigm for accomplishing
this, since they are unsupervised generative models with
great high-dimensional modeling capabilities, and allow
the model to learn features from data. Moreover, RBMs
form the basis of current state-of-the-art deep neural net-
works (DNNs) [16], allowing seamless integration into the
DNN framework.
The resulting model consists of a chain of RBM feature-

extraction layers trained in cascade by using spectrogram
patches as the input to the first layer and the output of
each layer as the input to the next layer. Pretrained layers
are then stacked together, with a softmax layer on top that
has an output node for each output state in the recognizer,
to form a deep neural network following standard deep
learning techniques [16]. The entire network is trained to
estimate state posteriors (one state per acoustic event),
which will be decoded later as a hidden Markov model
(HMM) forming what we know as a DNN-HMM. Please
see [8] for more details.

2.2 Importance of spectro-temporal locality
The model we described above provides excellent per-
formance, yet its main advantage is also a weakness,
and this forms the underlying idea of this paper. It is
because acoustic events have specific spectro-temporal
shapes that DNNs are capable of characterization and
classification with significant levels of robustness. How-
ever, these spectro-temporal shapes are global, meaning
that the DNN learns to model entire spectrogram patches.
That is, the input layer learns weights that describe com-
plete spectrogram patches. In a way, we can say that DNNs
are able to learn a “global” characterization of an acoustic
event. But that is only one side of the acoustic scene.While

sounds can be defined globally, a more abstract taxon-
omy can also be defined resulting in properties such as
stationarity and transiency, i.e., a “local” characterization.
In the spectrogram domain, “local” refers to the con-

cept of locality in time-frequency bins, and, with the deep
learning model described in the previous subsection as
the starting point, we approach this in two different ways:
outside the model and with a model that integrates local
characterization.
The first approach arises from observing the way in

which different spectral resolutions show different infor-
mation [10]. Figure 2 reveals that there are differences
with regard to the information shown by different spec-
tral resolutions. This is caused by the trade-off between
time and frequency resolution. That is, increasing the
frame length for computing the spectrum reduces the
time resolution. On the other hand, this increases the fre-
quency resolution. While this allows access to finer detail
in the frequency axis, the risk arises of missing low-energy
sounds such as “steps”. Conversely, with a shorter frame
length, the time resolution increases, thus reducing the
frequency detail, and potentially weakening the character-
ization of sounds with specific frequency-wide patterns
such as a “phone”, or a “door slam”. In summary, looking
at different spectral resolutions simultaneously could yield
some benefits in terms of performance.
The work reported in [10] exploits this by separating

the acoustic signal into components based on different
spectro-temporal scales, but again, these scales are hand-
crafted, and further processing is used to downsample
the feature resolution using MFCCs as features. We can
now use multiple spectrograms with multiple resolutions
directly as features thanks to the ability of deep architec-
tures to model high-dimensional inputs.
The second approach is intended to integrate the

spectro-temporal locality in the model itself. High-
resolution spectrogram patches are expected to embed
enough information about spectral and temporal struc-
tures to model complex sounds. And, if this is exploited
for “global” characterization, it can also be exploited for
“local” characterization. Rather than having a fully con-
nected input layer as in the DNN approach, a layer that
only connects a local subset of time-frequency bins to
each node of the hidden layer could exploit the concept
of locality. Moreover, if the weights locally connecting
input and hidden nodes are shared throughout the layer,
the model can potentially learn features regarding station-
arity, transiency, etc. CNNs do exactly this, and that is
what makes them the ideal candidate for our integrated
approach.

2.3 Convolutional neural networks for spectrogram input
Convolutional neural networks (CNN) [13], which
we have already seen in acoustic signal processing
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Fig. 2Magnified log power spectrogram regions for “steps” (a) and “phone ring” (b) sounds for high-time resolution (10 ms frame length, (a.1) and
(b.1)) and high-frequency resolution (90 ms frame length, (a.2) and (b.2))

applications [17–19] besides computer vision, provide
the means to extract local features from the spectro-
gram itself. The convolution of relatively small-sized
filters over a spectrogram patch makes it possible
to learn local feature maps (convolution is only per-
formed with adjacent bins in time and frequency, i.e.,
local).
CNNs consist of a pipeline of convolution-and-pooling

operations followed by a multilayer perceptron, namely
a deep neural network. CNNs are tightly related to the
concept of feature extraction, modeling not just the input
as a whole, but also independent local features in an
integrative manner. The entire model is then globally con-
structed by jointly training the convolutional and DNN

architectures as a whole using back-propagation (see
Fig. 1b for an overview).
Spectrogram input CNNs exploit time-frequency local

correlation by enforcing local connectivity patterns
between neurons of adjacent layers. The input hidden
units to the DNN part of the model (Ck , and Mk after
pooling) are connected to a locally limited subset of units
in the input spectrogram patch and are contiguous in time
and frequency. Each filter Fk is also replicated across the
entire input patch forming a feature map, which shares
the same parametrization (i.e., the same weights and bias
parameters).
The convolution-and-pooling architecture follows a

typical CNN architecture where convolved feature maps
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Ck are obtained from a spectrogram patch input xt with a
linear filter Fk of shape S × S, adding a bias term bk , and
applying a non-linear function,

Ck
ij = tanh

(∑S

m=1

∑S

n=1

(
Fk
mnx

t(
i+m−

⌊
S
2

⌋)
,
(
j+n−

⌊
S
2

⌋)
)

+ bk
)

(1)

where xtω,τ refers to the bin in the frequency index ω and
frame index τ , in patch xt . Max-pooling is then applied
following a specific shape P1 × P2, which we have chosen
to obtain the feature mapMk ,

Mk
ij = max

(
Ck

(iP1:(i+1)P1),(jP2:(j+1)P2)

)
(2)

where P1 and P2 refer to pooling along frequency and
time, respectively (e.g., 1 × 1 pooling scheme is equiva-
lent to no pooling). The pooling stage has no parameters,
and therefore, there is also no learning.
The rest of the CNN architecture consists of fully con-

nected layers of hidden nodes with sigmoid activations,
which receive a flattened concatenation of all the feature
maps

{
M1 · · ·MK}

as the input. Further details can be
found in [13, 14].

3 Exploiting locality withmultiple resolution
spectrograms

Given the differences between acoustic events in terms
of time and frequency resolution, we can assume that
spectrogram-input AED systems are dependent on the
resolution with which the spectrogram was computed.
Figure 2 shows a magnified region of two acoustic events,
“steps” and a “phone ringing” , with high-time resolution
(top), and high-frequency resolution (bottom). Observing
the high time resolution spectrogram (Fig. 2a.1, b.1), we
can recognize onsets, transient sounds, and low-energy
signals without great effort. This does not happen with
high-frequency resolution (Fig. 2(a.2, b.2), but we have
more detailed access in the frequency axis. This trade-
off between time and frequency resolution is because the
frame length influences the shape of the time-frequency
bins in a spectrogram, and this shape influences the
amount of detail on each axis. The ability to able to
observe the spectrogram with a much wider shape that
covers both long time and frequency regions simultane-
ously could reveal much richer information.
In summary, the multi-resolution approach consists in

a set multiple single-resolution DNN classifier working in
parallel for the same task. The parallel output of this rec-
ognizer is then combined using the scheme presented in
subsection 3.1. As the presented approach includes sup-
port for output of multiple event labels simultaneously,
subsection 3.2 addresses why and how this compares with
other single output models.

3.1 Combination scheme
We propose a simple combination scheme to merge the
outputs of multiple single-resolution AED systems work-
ing in parallel. The scheme combining multiple spectral
resolutions is as follows (see Fig. 3):

1. First, using a development set, we learn which
single-resolution AED system Sr works better with
each of the acoustic events in the task.

2. Multiple single-resolution recognizers, such as that
described in subsection 2.1 {S10, · · · Sr · · · SR}, each
working with a different spectral resolution r (e.g.,
r = 10ms frame length) provide output labels in
parallel.

3. Then, each output will be filtered so that only the
optimal set of events Er for resolution r is selected, as
we have previously learned with a development set.

4. The final output is obtained by merging repeated
labels and/or removing the label “silence”, if there is
another label already, on a frame-wise basis.

This is rather a simple approach, but we could draw
conclusions from it.

3.2 On event overlapping and output of multiple labels
The combination scheme described above allows the out-
put of multiple labels on each frame. In other words, it
considers the overlapping of acoustic events as long as
those events are not assigned to the same single resolu-
tion classifier. From a real world perspective, this is more
realistic. In terms of performance, this can indeed result
in an improvement of the performance as more events can
be detected. For instance, a phone can ring while some-
body is typing on a keyboard. However, in the proposed
architecture, each of the single resolution classifiers target
all events, and the results are filtered at the output of the
classifier to allow only the labels for which each single res-
olution classifier works better. In this way, this system can
be compared to systems that only output a single label at
each frame.
Moreover, even considering the previously described

situation where a phone rings in the presence of a key-
board typing sound, these non-speech events are still
sparse enough in time to allow a single event classifier to
recognize both properly, as a sequence of keyboard-phone
events. For a further discussion of this topic, the reader
can refer to [20], which presents different possible metrics
for strongly polyphonic environments.

4 Exploiting locality with a spectrogram patch
input CNNmodel

The definition of CNN has already been addressed in
subsection 2.3. In this section, specific considerations for
AED are discussed, along with an observation of how an
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Fig. 3Multi-resolution spectrogram patch input classifier and label stream combination overview

example of spectrogram input CNN behaves with acoustic
events.

4.1 AED specific considerations
CNN’s most important advantage is the ability to learn
local filters from 2D inputs, and that is the motiva-
tion behind using them to learn local maps from time-
frequency patches. While in images this accounts for
figure corners, edges, and so on, such filters are alsomean-
ingful when the inputs are spectrogram patches. Finding
local features that highlight continuity in time, continu-
ity in frequency, or other more fluctuating local patterns,
allow the model to unfold a single spectrogram into many
local feature maps and perform classification over.

4.2 Spectrogram-patch-input CNN
The principle of CNNs for replicating convolution filters
as described in subsection 2.3 allows features learned by
the model to be detected regardless of their position in
time or frequency. This directly relates to the fact that we
are not learning event-dependent features, but rather use-
ful local filters that reveal more independent aspects of
sounds. Figure 4 shows some of the filters learned dur-
ing the experiments. For instance, maps for filters such as
F3 or F4 react very lightly to the sound of applause show-
ing that they are not focused on transiency, while others
such as F2, F4, F6, F8, and F9 do have quite noticeable

responses. The case of a phone ringing is more complex as
onsets and stationary notes both appear, and this causes
many convolution maps to activate in different ways to
highlight different properties.
It would be interesting to see how these filters and

their responses compare with other standard projection
techniques used to enhance data such as PCA or LDA.
However, this would require a way of ordering the filters
and finding their equivalent filters between each CNNs
and existing projection methods. We consider this to be
worth exploring in the near future.

5 Experiments and results
As two approaches are being introduced in this paper, the
models have been evaluated from two points of view:

• We evaluate how different parameters affect the
multi-resolution and CNN approaches.

• We compare best scores for these with a
state-of-the-art DNN using a baseline based on [8].

This section presents the datasets, the setup parameters
we used, and the evaluation results.

5.1 Datasets and front-end
The proposed approaches have been tested against the
acoustic event recognition task in CHIL2007 [3], a

Fig. 4 Example of filters obtained after training a 10-filter CNN with 5 × 5 size filters and a 30 frames long spectrogram patch input
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database of seminar recordings in which twelve non-
speech event classes appear in addition to speech:
applause (ap), spoon/cup jingle (cl), chair moving (cm),
cough (co), door slam (ds), key jingle (kj), door knock
(kn), keyboard typing (kt), laugh (la), phone ring (pr),
paper wrapping (pw), and steps (st). This database con-
tains three AED-related datasets which we have used for
this evaluation: a training dataset called FBK that con-
tains only isolated acoustic events without the presence
of any speech, a development dataset that contains meet-
ings in a similar manner to those in the evaluation dataset,
and a test dataset that contains seminar recordings where
speech and acoustic events appear in a natural manner
and overlapping at times (60 % of the events reportedly
overlap with speech in the test set [3]). Each dataset con-
sists of 1.65, 3.27, and 2.55 h for training, development, and
test, respectively.
Additionally, to deal with the case where speech over-

laps with acoustic events, we need such training data to
have the neural network learn to discriminate in such a
situation, and following the approach in [8], we have arti-
ficially augmented the training dataset to contain speech-
overlapped data by adding publicly available speech from
AURORA-4 [21]. This is added by taking a random chunk
of speech from the speech dataset and adding it to the
isolated events dataset in different signal-to-noise ratios
(SNR), where the signal is the non-speech acoustic event
and the noise is the speech that corrupts the targeted
acoustic event. A total of eleven SNR conditions were gen-
erated: -9, -6, -3, 0, 3, 6, 9, 12, 15, and 18 dB, and clean (no
speech noise added).
The front-end consists of computing the log power

spectrum and a frame basis, and stacking consecutive
frames together as a two-dimensional feature. For CNNs,
the log power spectrogram was computed using 10 ms
frames with a 10 ms shift, which performed the best. For
multi-resolution DNN, the frame lengths were 10, 20, 30,
40, 50, and 60 ms, with a 10-ms shift for all of them. The
input into the neural networks was normalized to remove
any variance.

5.2 Setup parameters
CNNs add more parameters to the typical deep model,
and therefore, we have designed a broad set of experi-
ments1 to learn how these parameters affect the perfor-
mance. All settings are summarized in Table 1.
CNN models have one convolution layer and four fully

connected layers with 512 nodes each, while the DNN-
only models have a first hidden layer with 1024 nodes to
deal with the input and four hidden layers with 512 hid-
den nodes each.We also compared the performance of the
CNN settings with a DNN-only spectrogram-patch-based
AED as described in subsection 2.1. Both CNN-based and
DNN-only models were trained for 500 epochs.

Table 1 Experimental setup parameters

Deep neural networks settings

FFT resolutions 10 ms (129 bins), 20 ms (257 bins)

(multi-resolution) 30 ms (257 bins), 40 ms (513 bins)

50 ms (513 bins), 60 ms (513 bins)

Patch lengths 10, 20, and 30 frames

Convolutional neural networks settings

Filter shapes (CNN) 5 × 5, 7 × 7, 9 × 9 (bins × frames)

Number of filters (CNN) 10, 20, and 40 filters

Pooling (CNN) 1 × 1 (no pooling)

2 × 1 (frequency pooling)

1 × 2 (time pooling)

2 × 2 (both axes)

The goal of this work is to compare the feature learning
ability of convolutional (CNN) and fully connected layers
(DNN), and that is why the compared models have the
same architectures except for the first hidden layer. This
allows us to fairly compare the spectrogram-modeling
capabilities of both types of layers. The reader can refer
to recent studies such as [12] in which the number of
convolutional layers is adequately evaluated.

5.3 Multi-resolution results
Table 2 compares the two metrics: frame-score (per-
centage of correctly classified frames), as in Fig. 7, and
AED-accuracy which is the event-wise f-measure between
precision and recall. Overall results confirmed that even a
simple combination approach provided a significant clas-
sification score improvement over the best performing
single-resolution DNN. This indicates the relevance of
time-frequency resolution.
Looking at event-wise results with the best spectro-

gram patch length (20 frames) as shown in Table 3, we
compared the performance of the AED described sub-
section 2.1 for several spectral resolutions (spectrum

Table 2 AED evaluation results with the “test” set

System Frame-score AED-acc

Best single resolution DNNmodel [8]

20 frames/patch, 10 ms frames 69.80 % 54.82 %

Multi-resolution DNNmodels

10 frames/patch 71.80 % 56.95 %

20 frames/patch 72.54 % 57.03 %

30 frames/patch 70.15 % 54.01 %

Best performing CNNmodels

No pool., 9 × 9 filters (40), 30 fr./patch 76.41 % 61.38 %

1 × 2 pool., 9 × 9 filters (20), 30 fr./patch 75.20 % 60.85 %

1 × 2 pool., 5 × 5 filters (20), 30 fr./patch 75.11 % 60.85 %
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Table 3 Resolution-event-wise results (frame-score %) for the
best performing spectrogram patch size (20 frames/patch)
DNN-only model

AE Frame length (resolution)

10 ms 20 ms 30 ms 40 ms 50 ms 60 ms

ap 76.39 % 65.39 % 66.32 % 82.65% 69.90 % 72.85 %

cl 71.84 % 84.04% 68.17 % 62.26 % 62.40 % 70.64 %

cm 31.59 % 35.71 % 33.73 % 30.98 % 44.00% 23.62 &

co 36.97 % 27.82 % 27.49 % 17.09 % 21.58 % 29.97 %

ds 29.70 % 16.92 % 17.76 % 11.62 % 38.74% 21.66 %

kj 12.90 % 11.46 % 14.64 % 12.70 % 17.11% 13.66 %

kn 49.66 % 27.08 % 37.03 % 66.89% 44.57 % 23.55 %

kt 38.37 % 27.97 % 26.98 % 27.29 % 32.61 % 28.59 %

la 13.67 % 12.14 % 12.48 % 10.78 % 10.90 % 11.48 %

pr 53.58 % 55.98 % 51.35 % 60.25% 55.43 % 52.82 %

pw 83.34 % 82.28 % 87.28 % 92.02% 92.69 % 88.15 %

st 54.85 % 47.15 % 51.83 % 46.43 % 63.27 % 48.38 &

all 69.20 % 69.80% 67.34 % 68.09 % 68.33 % 67.34 %

frame length) between 10 and 60 ms to determine its
importance.
The first conclusion is that the best performing resolu-

tion overall is not the best resolution for each and every
acoustic event class separately. In general, and consis-
tent with previous assumptions, certain low-energy events
such as “keyboard typing” are better tracked with short
frame resolutions, whereas long frames perform better for
a “door slam” (50 ms). This is also the case with “applause”
(40 ms), which has a very similar structure in the fre-
quency domain. On the other hand, with events such as
“chair move” , switching the frame length seems to have
almost no effect on performance. Other sounds such as a
“laugh” perform in various ways with no strong trend.

5.4 CNN results
The results are shown in Fig. 7, and the top scores are sum-
marized for ease of comparison in Table 2. At first sight,
the first conclusion is that we are able to achieve better
performance than any DNN-only model (Table 2).
Figure 7 also provides some insights into CNN-based

AED performance. The best performance came from
the longest spectrogram patch configuration (Fig. 7a).
Regarding the convolution filters, the results indicate that
more filters provide better performance (Fig. 7b), and
filter shapes covering smaller regions provide better per-
formance on average (Fig. 7c), but the actual best score
was obtained with a wide filter (Table 2). As for pooling,
the general conclusion is that the effects are different for
pooling along frequency and pooling along time (Fig. 7d).
However, the results do show that performance degrades
visibly when frequency pooling is included.

6 Discussion
6.1 Comparingmulti-resolution input and CNN-based AED
Conceptually, the multi-resolution DNN and the CNN
approaches travel in different directions. Multi-resolution
analysis approaches the issue of characterizing spectro-
temporal locality outside the model, while the CNN
approach itself exploits local features. These approaches
are not mutually exclusive but complementary. While
CNNperforms better than combining resolutions, it is not
hard to imagine in the near future a deep model in which
parallel working convolution-and-pooling layers receive
spectrogram patches of the same signal with different
spectral resolutions, and where their outputs are stacked
and fed to the DNN part of the CNN. The question then
is if the potential gain is worth the cost.

6.2 Convolution filters
When we look at a specific example of the filters
obtained for a simple CNN configuration (Fig. 4) the
convolved maps after convolution, bias, and activation
function (Figs. 5 and 6), we can obtain some interest-
ing insights into what the convolution filters are learn-
ing. For instance, some filter responses show in Figs. 5
and 6 such as F2, F4, F6, F8, and F9 focus more on
short-time properties of the spectrum as we can see
they are more salient with an “applause” sample. With
the a “phone ringing” sample, this filters activate again
as phone ringtones contain short-time onsets, but other
filter responses also activate to highlight more station-
ary properties such as with F8. F9 is also interest-
ing as it seems to activate only with the absence of
sounds.
Using different numbers of filters (Fig. 7b), we can com-

pare their performance and see intuitively that the more
parameters we have, the more local features we can learn,
therefore more filters (40) usually means better perfor-
mance. That being said, we have already obtained fair
performance with ten filters without pooling. A careful
observation of the filters after training reveals that as we
increase the number of parameters (number of filters)
some of these filters seem to receive less training and
remain largely random. This might also be in part due the
fact that we have too few data.

6.3 Pooling
According to the results (Fig. 7d), the answer to how
pooling affects performance is that there seems to be no
gain in pooling along time or frequency. However, pool-
ing along time show up in the top three scores (Table 2).
As mentioned above, max-pooling basically downsamples
the data, and this seems to adversely affect acoustic events
signals.
Pooling along both axes is worse than with any of the

previous approaches.
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Fig. 5 Responses to filters shown in Fig. 4 for the sound of an “phone ringing”

The basis of this work is to feed the model with a
high-resolution detailed enough feature that is sufficiently
detailed to find sounds in overlapping speech scenarios.
This has worked fairly well with DNNs in the past, and

while the convolution step filters the signal, pooling is a
more drastic step that reduces the detail in the data. The
results suggest that this reduction in detail is not so impor-
tant when pooling is along time, which can be observed by
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Fig. 6 Responses to filters shown in Fig. 4 for the sound of an “applause”

the similar performance for 1× 1 and 1× 2, and 2× 1 and
2 × 2, in Fig. 7d. However, the results reveal that incor-
porating pooling along frequency has a negative effect on
performance as the accuracy decreases between 1× 1 and
2 × 1, and 1 × 2 and 2 × 2.

This difference in the way pooling among time or fre-
quency affects performance has no obvious justification,
but we can consider intuitively why pooling as performed
in image processing does not work as expected with
acoustic spectrograms. In fact, as CNNs were widely
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Fig. 7 Averaged frame-score (percentage of correctly classified frames) by parameter as described in subsection 5.2: spectrogram patch length (a),
number of convolutional filters to be trained upon (b), filter shape (c), and max-pooling scheme (d)

adopted first in image processing, pooling is a function
that makes much more sense in that domain. Downsam-
pling an image would still maintain the overall shape of
the object to be recognized, whereas this is hard to imag-
ine happening in acoustic spectrograms. While this is
not in the scope of this work, CNNs for acoustic sig-
nal processing might require a pooling function of their
own. To illustrate this, imagine downsampling a black-
and-white image of a circle or a square. Since the edges of
this figure are adjacent, traditional pooling schemes make
sense. However, with a note in a phone ringtone as seen
in Fig. 2, this does not stand. Harmonic sounds have very
specific rules in the spectrum domain, while they are still
continuous in the traditional sense in time. In fact, this is
exactly what the results show. Traditional pooling in fre-
quency has negative effects as the pooling rules in acoustic
spectrograms and in images are different. This opens the
door for future investigations of more appropriate pooling
schemes for acoustic spectrograms.

6.4 Context
While on average, we see that larger contexts provide bet-
ter performances indicate the longer the better, it is hard
to imagine acoustic events that require more than 300
ms of input to be recognized. Even when we consider
longer events such as “clapping”, this consists of shorter
“single clap” events that should not require such a long

patch. From this point of view, none of the acoustic events
require such a long patch, but this assumptionmight differ
for different acoustic events, and therefore, this assump-
tion is task-based. Additionally, the increase in complexity
when enlarging the input size must to be considered as
the dimensionality of each additional frame being added
to the context is high.

7 Conclusions
We have described two approaches that deal with the
importance of feature extraction in deep learning-based
AED. Both models highlight the superiority of using
high-resolution spectrogram patches as input to the
models, thanks to DNNs and their ability to model
high-dimensional data. First, taking a high-resolution
spectrogram-input DNN model as a starting point, we
described a model that combines the outputs of sev-
eral single-resolution models working in different spectral
resolutions to achieve a superior performance to any of
the single-resolution models by itself. Second, we intro-
duced the use of CNN in AED to model “local” properties
of acoustic events, which provided the best results in
the evaluation task. From a broader point of view, both
approaches adopt the concept that even if acoustic events
have very specific “global” spectra patterns, they also have
“local” properties, but approach the issue in complemen-
tary ways; the multi-resolution approach by dealing with
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the problem outside the model, and the CNN approach by
incorporating the locality concept in the model itself.
While results show that the CNN approach performs

considerably better, we must also note that the com-
bination scheme in the multi-resolution approach out-
performs any single-resolution model, despite it being a
rather simple and naive approach. With that in mind, fur-
ther and more advanced combination schemes must be
incorporated into the framework to assess a more real-
istic comparison based on what we have learned in this
paper. Regarding the CNN, as in ASR and other areas,
there is still much to be done and learned, but the pos-
sibility of combining both approaches, and the layer-wise
pre-training of CNNs, must be considered.

Endnote
1All the experiments were implemented using the

Theano library [22].
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